GS 05E01D02-01E

General

Model UP350 program controller is a precision controller, featuring two program profiles and universal input/output.-
For easy operation, it is provided with a large display for process variables, two program operation keys, and a program reset key. For excellent controll, auto-tuning, PID control with the "SUPER" overshoot suppressing function and the "SUPER2" hunting suppressing function are available. It also has a retransmission output and 15 V DC loop power supply as standard.

Main Features

- Extra-large digital display allows the indicated values to be read even from a long distance. LEDs of 20 mm height are used for the process variable display.
- It can store two program pattern types. Programmed operation can be started by using the two program operation keys on the front panel and terminated by using the reset key.
- Universal input and output enable users to set or change freely the type of measured inputs (thermocouple, RTD, or DCV), measurement range, type of control output (4 to 20 mA current, voltage pulse, or relay contact, etc. from the front panel.
- Parameters can be easily set using a personal computer. ("Parameter setting tool (model LL100)" sold separately is required.)
- Various communication function are provided. Communication is possible with personal computer, programable logic controller, and other controllers.

Function Specifications

- Program Setting Function

"Program setting" allows the controller's target setpoint to increase or decrease along the program pattern versus time. The instrument, provided with two program patterns, can be operated by using the front panel key or through the external contact. One program pattern consists of 10 broken lines (program segments). If the two program patterns are combined, a program pattern of up to 20 segments can be created. The length of each segment can be specified by the segment time. Users can also configure the number of repeats, event outputs, etc.

Number of program patterns: 2
Number of segments/pattern: 10
Number of program repeat: Unlimited repeats Segment time: 0 min. 0 s to 99 min .59 s , or 0 h 0 min . to 99 h 59 min .

UP350

Starting/stopping (resetting) a program pattern: A program pattern can be started or stopped (reset) by key operation.
Temporarily stopping (holding) a program pattern:
A program pattern can be temporarily stopped
(hold) by key operation or through the contact input.
Skipping (advancing) the segment of a program:
Available through key operation
Switching between program patterns:
Available through key operation or external contact

Wait Function (Guaranteed soak)

The function to delay the progress of a program pattern if the process variable (PV) has not reached the target setpoint (SP). The wait zone is the deviation band of acceptable PV response is determined, and the wait time is the time to wait for the PV to reach the wait zone. If the PV reaches the wait zone within a certain time (the wait time), then the program will advance to the next segment. If it does not reach the wait zone after the wait time has elapsed, then the program will eventually advance to the next segment.

Wait time: 0 min .1 s to 99 min .59 s , or 0 h 1 min . to 99 h 59 min .
Wait zone: OFF, 0.0 to 10.0% of measured input range width. TSP

Program Setting Function and PID Parameter Switching

PID parameter switching in accordance with the progress of the program pattern is available.

Zone PID: PID parameter selection according to the value of the PV is available. Reference point (setpoint for PID parameter switching) or reference deviation is used for switching.
Reference point method:
Up to two points can be set to divide the PV range up to three zones, and this selects the PID parameter set (PID 1 to 3) according to zone.
Reference point $=$ Measuring input range $(0 \%) \leqq$ Reference point $1 \leqq$ Reference point $2 \leqq$ Measuring input range (100%)
Reference point hysteresis $=$ Fixed to 0.5% of the measured input range width.
Reference deviation method: Switches the group of PID parameters (PID 4) depending on whether the control deviation is within or over the reference preset amount. This takes priority over the reference point.
Reference deviation $=\mathrm{OFF}, 0.1$ to 100.0% of measured input range width.

Time Event: 1 point

A time event may be set thruoghout the program pattern progress, by and uses a status lamp or a contact output.

Number of time events: 1 point for each program pattern
Time event setting points: These output time events according to the elapsed time from the program start.
Time event setting range(ON and OFF): 0 min .1 s to 99 min. 59 s , or 0 h 1 min . to 99 h 59 min .
Time event display: 1 point (TIME)
Time event contact output: 1

PV Event: 2 point

A PV event is a PV/deviation alarm which is configured in accordance with the program pattern. The alarm status is indicated by the event LED on the front of the instrument panel.
Number of PV events:
2 points maximum per program pattern
PV event LEDs:
2 points (PVE1, PVE2)
PV event types:
PV high limit, PV low limit, Deviation high limit, Deviation low limit, Deenergized on deviation high limit, Deenergized on deviation low limit, Deviation high and low limits, High and low limits within deviation, Deenergized on PV high limit, Deenergized on PV low limit
PV event setting ranges:
PV alarm: -100.0 to 100% of measured input range.
Deviation alarm: -100.0 to 100% of measured input range width.
Alarm hysteresis: 0.0 to 100.0% of measured input range width.

- Control Computation Functions

Control computation:
Select from the following types of control strategies: Continuous PID control, time proportional PID control, Relay ON/OFF control
Control cycle time: 250 ms
Number of PID parameter sets: 4
Auto-tuning: Available as standard. If auto-tuning is enabled, the PID constant is set automatically. (Limit cycle method)
"SUPER" function: This suppresses overshooting caused by the sudden change of the target setpoint or disturbance.
"SUPER2" function:
This stabilizes the state of control that is unstable due to hunting, etc. without requiring any change in PID constants, when the load and/or gain varies greatly, or when there is a difference between the characteristics of temperature zones.

Control Parameters Setting Range

Proportional band: 0.1 to 999.9%
Integral time: 1 to $6,000 \mathrm{~s}$, or OFF (for Manual Reset)
Derivative time: 1 to $6,000 \mathrm{~s}$, or OFF
Manual reset value: -5.0 to 105.0% of output range (functions when integral time is off)
ON/OFF control hysteresis: 0.0 to 100.0% of measured input range width
Direct/Reverse action: Defining the direction of an increase/decrease in output corresponding to a positive or negative deviation is available.
Anti-reset windup: When the output of the controller is limited, this stops normal integration to suppress overintegration; instead, it performs anti-reset windup computation.
Control output cycle time: 1 to 1000 s
Preset output value: -5.0 to 105.0% of output range Output tracking:

Selecting output with bump or without bump is available by changing the PID control mode.
Output limiter:
high limit: Low limit to 105.0% of output range
low limit: $\quad-5.0 \%$ of output range to high limit

- Signal Computation Functions

Measured input configuration:
Bias addition (-100.0 to 100.0% of measured input range width.), first order lag filter (time constant: off, 1 to 120 s)
Contact input function:
Program pattern switching operation, program operation hold mode switching, display keylock parameter enabled/disabled switching For program pattern operation, select from the dual-pattern switching operation and singlepattern operation.

- If the single-pattern operation is selected, program operation hold mode switching can also be used.
- If the dual-pattern switching operation is selected, program operation hold mode switching cannot be used.
If displaying key-lock parameter enabled/ disabled switching is used, switching between the single-pattern operation and dual-pattern switching operation is not available.

- Display and Operation Function

PV display: 4-digit digital display for engineering data Setpoint display:

Various types of data, including setpoint (SP), are available selectively on 4-digit digital display.

Status indicating lamps:
2 PV event (alarm) LEDs: PVE1, PVE2
1 time event LED: TME
2 program operation number LEDs: PRG1, PRG2
1 program operation hold LED: HLD (lights up during hold mode)
Operation key:
$\mathbf{\Delta}, \boldsymbol{\nabla}$ key: Increases/decreases the value of setpoint or other parameters which appear on LED display.
SET/ENT key: Sets/changes the setting value, and calls/ switches between parameters.
PRG1, PRG2: Program operation control key
RESET: Program operation stop key
SELECT display:
Allows selection and registration of frequently changed parameters from the operation parameters during operation. For example, if the bias parameter is registered in the SELECT display, the setpoint can easily be displayed during operation.
Security function:
An operation inhibiting mode using a password is available.

- Communication Functions (optional)

The communication function, provided with the instrument, allows connection to personal computer, programmable logic controller, and other GREEN series controllers.
Communication protocol:
Computer link communication: Communication protocol with a personal computer
Ladder communication: Communication protocol with programmable logic controller
MODBUS communication: Communication protocol with a personal computer or PLC.
Coordinated operation: Protocol to realize coordinated operation with more than one UT controller in the GREEN series. The UP350 is always configured as a master unit.
Communication interface:
Communication protocol: Computer link, ladder communication, MOBUS or coordinated operation
Standard: EIA RS485
Maximum number of connectable controllers: 31 Green series controllers
Maximam communication distance: 1,200 m
Communication method:
Two-wire half duplex or four-wire half duplex, start-stop synchronization system, handshaking
Communication rate: 600, 1200, 2400, 4800, 9600 bps

Sample structures of communication systems
(1) Computer link communication/MODBUS communication

(3) Coordinated operation

(2) Ladder communication

Hardware Specifications

Measured Input Signal

Number of inputs: 1 point
Input type: Possible to select input type/measurement ranges from the input list with software.
Input type, measurement ranges, and measurement accuracy:
Refer to the table in the next page.
Burnout detection:
Available with TC, RTD, stadard signal, 0.4 to 2 V DC and 1 to 5 V DC.
Up-scale, down-scale, and off can be set. For standard signal, an input of 0.1 V or less is regarded as burnout.
Input bias current: $0.05 \mu \mathrm{~A}$ (for TC and RTD b-terminal)
Measuring current(RTD): about 0.13 mA
Input resistance:
$1 \mathrm{M} \Omega$ or more for $\mathrm{TC} / \mathrm{mV}$ input
About $1 \mathrm{M} \Omega$ for DC voltage input
Allowable signal source resistance:
250Ω or less; effect of permissible signal source resistance $0.1 \mu \mathrm{~V} / \Omega$ or less for $\mathrm{TC} / \mathrm{mV}$ input $2 \mathrm{k} \Omega$ or less; effect of permissible signal source resistance $0.01 \% / 100 \Omega$ or less for DC voltage input
Allowable leadwire resistance:
Max. of $150 \Omega /$ wire (resistance in each of three wires must be equal) for RTD input However, $10 \Omega /$ wire in the range of -150.0 to $150.0^{\circ} \mathrm{C}$.

Effect of permissible leadwire resistance $\pm 0.1^{\circ} \mathrm{C} / 10 \Omega$ or less
Allowable input voltage:
$\pm 10 \mathrm{~V}$ DC for $\mathrm{TC} / \mathrm{mV} / \mathrm{RTD}$ input
$\pm 20 \mathrm{~V}$ DC for DC voltage input

Noise rejection ratio:
Normal mode $40 \mathrm{~dB}(50 / 60 \mathrm{~Hz})$ or more Common mode $120 \mathrm{~dB}(50 / 60 \mathrm{~Hz})$ or more
Reference-junction compensation error: $\pm 1.0^{\circ} \mathrm{C}$ (15 to $35^{\circ} \mathrm{C}$), $\pm 1.5^{\circ} \mathrm{C}$ (0 to $15^{\circ} \mathrm{C}, 35$ to $50^{\circ} \mathrm{C}$)
Applicable standards: JIS, IEC, or DIN (ITS-90) for TC and RTD

15V DC Loop Power Supply

The controller supplies power to a two-wire transmitter. Place a resistor (10 to 250Ω, optional) between the controller and the transmitter, convert a current signal to a voltage signal, and read it from the PV input. Either the retransmission output or the loop power supply can be used.
Supply voltage is 14.5 to 18.0 V DC. Maximum supply current is about 21 mA (with a protection circuit for a field short-circuit).

Retransmission Output

Either PV, target setpoint, or control output is output. Either the retransmission output or the 15 V DC loop power supply can be used.

Number of output points: 1 point
Output signal: 4 to 20 mA DC
Load resistance: 600Ω or less
Output accuracy: $\pm 0.3 \%$ of span
Performance in the standard operating
conditions (at $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and $50 /$
60 Hz power frequency)

Input type		Input range code	Instrument range (${ }^{\circ} \mathrm{C}$)	Instrument range (${ }^{\circ} \mathrm{F}$)	Instrument accuracy*1
Unspecified(when shipped from the factory)		OFF	Set the data item PV input type "IN" to the OFF option to leave the PV input type undefined.		
Thermocouple	K	1	-200 to $1370^{\circ} \mathrm{C}$	-300 to $2500^{\circ} \mathrm{F}$	At or above $0^{\circ} \mathrm{C} \pm 0.1 \% \pm 1$ digit of F.S. Below $0^{\circ} \mathrm{C}, \pm 0.2 \% \pm 1$ digit of F.S.
		2	-199.9 to $999.9^{\circ} \mathrm{C}$	0 to $2300^{\circ} \mathrm{F}$	
		3	-199.9 to $500.0^{\circ} \mathrm{C}$	-199.9 to $999.9^{\circ} \mathrm{F}$	
	J	4	-199.9 to $999.9^{\circ} \mathrm{C}$	-300 to $2300^{\circ} \mathrm{F}$	
	T	5	-199.9 to $400.0^{\circ} \mathrm{C}$	-300 to $750{ }^{\circ} \mathrm{F}$	
		6	0.0 to $400.0^{\circ} \mathrm{C}$	-199.9 to $750.0^{\circ} \mathrm{F}$	
	B	7	0 to $1800{ }^{\circ} \mathrm{C}$	32 to $3300^{\circ} \mathrm{F}$	At or above $400^{\circ} \mathrm{C} \pm 0.15 \% \pm 1$ digit of F.S. Below $400^{\circ} \mathrm{C} \pm 5 \% \pm 1$ digit of F.S.
	S	8	0 to $1700^{\circ} \mathrm{C}$	32 to $3100^{\circ} \mathrm{F}$	$\pm 0.15 \% \pm 1$ digit of F.S.
	R	9	0 to $1700^{\circ} \mathrm{C}$	32 to $3100^{\circ} \mathrm{F}$	
	N	10	-200 to $1300^{\circ} \mathrm{C}$	-300 to $2400^{\circ} \mathrm{F}$	$\pm 0.1 \% \pm 1$ digit of F.S. Below $0^{\circ} \mathrm{C} \pm 0.25 \% \pm 1$ digit of F.S.
	E	11	-199.9 to $999.9^{\circ} \mathrm{C}$	-300 to $1800^{\circ} \mathrm{F}$	At or above $0^{\circ} \mathrm{C} \pm 0.1 \% \pm 1$ digit of F.S. Below $0^{\circ} \mathrm{C} \pm 0.2 \% \pm 1$ digit of F.S.
	L (DIN)	12	-199.9 to $900.0^{\circ} \mathrm{C}$	-300 to $1300^{\circ} \mathrm{F}$	
	U (DIN)	13	-199.9 to $400.0^{\circ} \mathrm{C}$	-300 to $750{ }^{\circ} \mathrm{F}$	
		14	0.0 to $400.0^{\circ} \mathrm{C}$	-199.9 to $750.0^{\circ} \mathrm{F}$	
	W (DIN)	15	0 to $2300^{\circ} \mathrm{C}$	32 to $4200{ }^{\circ} \mathrm{F}$	$\pm 0.2 \% \pm 1$ digit of F.S.
	Platinel 2	16	0 to $1390{ }^{\circ} \mathrm{C}$	32 to $2500^{\circ} \mathrm{F}$	$\pm 0.1 \% \pm 1$ digit of F.S.
	PR20-40	17	0 to $1900^{\circ} \mathrm{C}$	32 to $3400^{\circ} \mathrm{F}$	At or above $800^{\circ} \mathrm{C} \pm 0.5 \% \pm 1$ digit of F.S. Below $800^{\circ} \mathrm{C}$, not guaranteed
	W97Re3-W75Re25	18	0 to $2000{ }^{\circ} \mathrm{C}$	32 to $3600^{\circ} \mathrm{F}$	$\pm 0.2 \% \pm 1$ digit of F.S.
RTD	JPt100	30	-199.9 to $500.0^{\circ} \mathrm{C}$	-199.9 to $999.9^{\circ} \mathrm{F}$	$\pm 0.1 \% \pm 1$ digit of F.S. (Note1) (Note2)
		31	-150.0 to $150.0^{\circ} \mathrm{C}$	-199.9 to $300.0^{\circ} \mathrm{F}$	$\pm 0.2 \% \pm 1$ digit of F.S. (Note1)
	Pt100	35	-199.9 to $850.0^{\circ} \mathrm{C}$	-300 to $1560^{\circ} \mathrm{F}$	$\pm 0.1 \% \pm 1$ digit of F.S. (Note1) (Note2)
		36	-199.9 to $500.0^{\circ} \mathrm{C}$	-199.9 to $999.9^{\circ} \mathrm{F}$	
		37	-150.0 to $150.0^{\circ} \mathrm{C}$	-199.9 to $300.0^{\circ} \mathrm{F}$	$\pm 0.2 \% \pm 1$ digit of F.S. (Note1)
Standard signal	0.4 to 2 V	40	0.400 to 2.000 V	$\begin{aligned} & \text { Scaling is enable in the } \\ & \text { following } 4 \text { range. } \\ & -1999 \text { to } 9999 \\ & -199.9 \text { to } 999.9 \\ & -19.99 \text { to } 99.99 \\ & -1.999 \text { to } 9.999 \end{aligned}$	$\pm 0.1 \% \pm 1 \text { digit of F.S. }$
	1 to 5 V	41	1.000 to 5.000 V		
DC voltage	0 to 2 V	50	0.000 to 2.000 V		
	0 to 10 V	51	0.00 to 10.00 V		
	-10 to 20 mV	55	-10.00 to 20.00 mV		
	0 to 100 mV	56	0.0 to 100.0 mV		

Note1: The accuracy is $\pm 0.3^{\circ} \mathrm{C}$ of instrument range ± 1 digit for a temperature range from 0 to $100^{\circ} \mathrm{C}$.
Note2: The accuracy is $\pm 0.5^{\circ} \mathrm{C}$ of instrument range ± 1 digit for a temperature range from -100 to $200^{\circ} \mathrm{C}$.
*1: Performance in the standard operating conditions (at $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and $50 / 60 \mathrm{~Hz}$ power frequency)

Contact Inputs

Usage: Program pattern selection, program operation hold mode switching, display key lock parameter enabled/disabled switching
Number of inputs: 2 points
Input type: non-voltage contact input or transistor open collector input
Input contact capacity: $12 \mathrm{~V} \mathrm{DC}$,10 mA or more (for nonvoltage contact input)
On/off detection:
For non-voltage contact input,
$\mathrm{ON}=$ contact resistance of $1 \mathrm{k} \Omega$ or less, $\mathrm{OFF}=$ contact resistance of $20 \mathrm{k} \Omega$ or more.
For transistor open collector input, $\mathrm{ON}=2 \mathrm{~V}$ or less, OFF=leak current of $100 \mu \mathrm{~A}$ or less.
Minimum retention time for status detection: about 1 s

Contact Outputs

Usage: Event output
Number of relay contact outputs: 3 points
Relay contact rating: 240 V AC 1 A , or 30 V DC 1 A , make contact

- Display Specifications

Process variable display unit:
4-digit 7-segment red LED; each digit 20 mm in height
Parameter display:
4-digit 7 -segment red LED; each digit 9.3 mm in height
Status indicating lamps: LEDs

- Conformance to Safety and EMC Standards

Safety standard:
Conforms to IEC1010-1: 1990 and EN610101: 1992. Certified for CSA1010. The voltage category of each input is CAT II (IEC1010-1) Certified for UL 508 application

EMC standards:

Conforms to the following standards. During test, the controller continues to operate with the measurement accuracy within $\pm 20 \%$ of the range.
EMI (Emission) EN61326-1: 1997+Am1: 1998 EMS (immunity) EN61326-1: 1997+Am1: 1998

- Construction, Installation, and Wiring

Structure: Dust-proof and Drip-proof front panel conforming to IP55.
For side-by-side close installation, the controller loses its dust-proof and drip-proof protection.
Body construction: ABS resin and polycarbonate
Case color: Black
Weight: Approx. 1 kg or less
Dimensions: $96 \mathrm{~W} \times 96 \mathrm{H} \times 100 \mathrm{D}$ (from the front panel) (mm)

Mounting: Direct panel mounting; mounting bracket, one each for upper and lower mounting.
Panel cutout dimensions: $92_{0}^{+0.8}(\mathrm{~W}) \times 92_{0}^{+0.8}(\mathrm{H}) \mathrm{mm}$
Mounting attitude: Up to 30 degrees above the horizontal. No downward tilting allowed.
Wiring: M3.5 screw terminal (signals, power supply/ ground)

Power Supply / Isolation

Power supply: Voltage rating at 100 to 240 V AC ($\pm 10 \%$), $50 / 60 \mathrm{~Hz}$
Power consumption: MAX. 20VA (MAX. 8.0W)
Memory back-up: Non-volatile memory (Service life approx. 100,000 times of writings)
Withstanding voltage:
Between primary terminal and secondary terminal: 1500 V AC for 1 min . (Note)
Between primary terminal and ground terminal: 1500 V AC for 1 min . (Note)
Between ground terminal and secondary terminal: 1500 V AC for 1 min .
Between two secondary terminals: 500 V AC for 1 min
(Primary terminal: Power supply, relay output Secondary terminal:

Analog input/output signal terminals, voltage pulse output terminal, contact input terminal
Note. The withstanding voltage is specified as 2300 V AC perminute to provide amargin of safety.
Isolation resistance:
Between power supply terminal and ground terminal, 500 V DC $20 \mathrm{M} \Omega$
Ground: class 3 grounding (grounding resistance of 100Ω or less)
Isolation Specifications:
Measured input terminal:
Isolated from other input/output terminals.
Not isolated from internal circuit.
Control output (current or voltage pulse output) and retransmission terminals: Not isolated between control and retransmission output terminal mutvally, output terminals, Isolated from other input/output terminals and internal circuit.
Relay contact control output terminals:
Isolated from other I/O terminals and internal circuits.
Contact input terminal:
Not isolated from contact input terminals
mutually and communication terminals. Isolated from other input/output terminals and internal circuit.
Relay contact event output terminal: Isolated from other input/output terminals and internal circuit.
RS-485 communication terminal:
Not isolated from contact input terminals. Isolated from other input/output, ground and internal terminals.
Power supply terminal:
Isolated from other input/output and ground terminals, and internal circuit.
Ground terminal:
Isolated from other input/output and ground terminals, and internal circuit.

- Environmental Conditions

Normal operating conditions:
Ambient temperature: 0° to $50^{\circ} \mathrm{C}$ (less than $40^{\circ} \mathrm{C}$ when mounted side by side)
Ambient temperature change limit: $10^{\circ} \mathrm{C} / \mathrm{h}$ or less
Ambient humidity: 20 to 90% RH (non-condensing)
Magnetic field: $400 \mathrm{~A} / \mathrm{m}$ or less
Continuous vibration (5 to 14 Hz):
Amplitude of 1.2 mm or less
Continuous vibration (14 to 150 Hz): $4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less
Short-period vibration: $14.7 \mathrm{~m} / \mathrm{s}^{2}, 15 \mathrm{~s}$. or less
Shock: $\quad 147 \mathrm{~m} / \mathrm{s}^{2}$ or less, 11 ms .
Installation altitude:
$2,000 \mathrm{~m}$ above sea level maximum
Warm-up time: 30minutes or more

Transit/storage conditions:
Temperature: -25° to $70^{\circ} \mathrm{C}$
Temperature change limit: $20^{\circ} \mathrm{C} / \mathrm{h}$ or less
Humidity: 5 to 95% RH (non-condensing)
Effects on operating conditions
Effect of ambient temperature:
For voltage/TC input, within $\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ and $\pm 0.01 \%$ of
F.S. $/{ }^{\circ} \mathrm{C}$, whichever is greater.

For RTD input, within $\pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ (ambient temperature)
For analog output, $\pm 0.05 \%$ of $\mathrm{F} . \mathrm{S} . /{ }^{\circ} \mathrm{C}$ or less
Effect of power supply fluctuation (within rated voltage range):
For analog input, within $\pm 1 \mu \mathrm{~V} / 10 \mathrm{~V}$ and $\pm 0.01 \%$ of F.S./10V, whichever is greater.

For analog output, within $\pm 0.05 \%$ of F.S./ 10 V

Function Block Diagram for Single-loop Control

* DIS is a setup parameter.

Changing DIS setpoint allows you to change the function of external contact input.

Correspondence between parameter DIS and external contact input functions				
When DIS=OFF (Factory-set default)	When DIS=1	When DIS=2	When DIS=3	
No function	Start program 1 when DI1 $=$ ON Reset program 1 when DI1 $=$ OFF	Hide setup parameter lock when DI1 $=$ ON Show setup parameter lock when DI1 $=$ OFF	Start program 1 when DI1 $=$ ON Reset program 1 1 when DI1 $=$ OFF	
	Start program 2 when DI2 $=$ ON	No function	Hold program when DI2 $=$ ON Cancel hold when DI2 $=$ OFF	

UP350 Standard Type, Terminal Arrangements.

External Dimensions and Panel Cutout Dimension

UP350
Unit: mm

Side-by-side close installation

" N " stands for the number of controllers to be installed.
However, the measured value applies if $\mathrm{N} \geq 5$.

Model and Suffix Codes

Model	Suffix Code		Description
UP350			Program controller (provided with retransmission output and 15 V DC loop power supply as standard)
Type	-0	Standard type	
Optional functions	0 1	None With communication	

Standard accessories: Brackets (mounting hardware), unit label, User's Manuals, and User's Manual (reference) (CD-ROM version).

Items to be specified when ordering

Model and suffix codes, necessary/unnecessary of User's Manual or QIC.

