

Technical Information

Omnigrad S TR61

RTD thermometer EEx-d or EEx-ia certified, replaceable insert, thermowell from pipe, process connection: threaded or flanged or sliding. PCP (4...20 mA), HART® or PROFIBUS-PA® electronics

Range of uses

The Omnigrad S TR61 is an RTD industrial thermometer with a inset (Pt100) and thermowell from pipe.

It is developed for the use in the chemical, petrochemical and energy industries, but suitable also for other generic applications.

In compliance to EN 50014/18/20 (ATEX certification) it is therefore particularly suitable also for hazardous areas. When required, it's also available with a transmitter(PCP, HART® or PROFIBUS-PA®) into the housing.

The process connection of the thermowell can be threaded, flanged or with a compression fitting in compliance to the standard rule DIN 43772 (form 2/3, 2G/3G and 2F/3F).

Application areas

- Chemicals industry
- Energy industry
- Gas Processing industry
- Petrochemical industry
- General industrial services

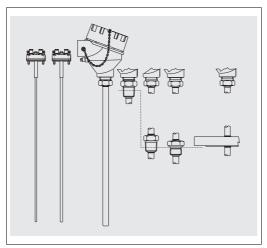
Features and benefits

- SS 316L/1.4404, SS 316Ti/1.4571 and Hast. C276/2.4819 for the "wetted" parts
- The most common process connections: threaded, flanged and compression fitting are standard; others are on request
- Customized immersion length
- Surface finishing down to Ra < 0.8 µm
- Aluminium housing, with protection grade from IP66 to IP68
- Mineral oxide replaceable insulated insert (MgO) diameter:
 3 or 6 mm
- PCP, HART® and PROFIBUS-PA®, (4...20 mA 2-wire transmitters)
- The accuracy of the sensing element (Pt100) is: class A or 1/3 DIN B (IEC 60751) with electrical connection to 2, 3 or 4 wires
- The sensing elements (Pt100) are available in wire-wound WW (range:-200...600°C) or thin-film TF (range:-50...400°C) with single or double Pt100 execution
- ATEX 1/2 GD EEx-ia certification
- ATEX 1/2 GD EEx-d certification
- ATEX 2 GD EEx-d certification

Function and system design

Measuring principle

The RTD (Resistance Temperature Detector), is a sensor where the electrical resistance varies with the temperature. The material of the RTD is Platinum (Pt) with a value of the resistance (R), referred to a nominal value at the temperature of $0^{\circ}C = 100,00~\Omega$ (in compliance to rule EN 60751; it is called Pt100). The very important is to define the RTD; it is defined with a standard " α " value measured between $0^{\circ}C$ and $100^{\circ}C$. This value is: $\alpha = 3.85~x~10^{-3}~c^{-1}$.


The temperature is measured indirectly by reading the voltage drop across the sensing resistor in the presence of a constant current flowing through it using Ohm's. The measuring current should be as small as possible to minimise possible sensor selfheating; normally this current is around 1mA, no higher.

The resistance value measured for each degree is about = 0.391 Ohm/K; over 0°C it is opposite proportional at the temperature. The standard RTD connection at the plant instrument can be to 2.3 or 4 wires for simple or double RTD element.

Equipment architecture

The construction of the Omnigrad S TR61 temperature sensor is based on the following standards:

- EN 50014/18 (housing)
- DIN 43772 (thermowell)
- EN 600751 (inset).

The housing is in painted aluminium alloy; it is suitable to contain a transmitter and/or the ceramic block of the inset; the "Ingress Protection" is from IP66 to IP68.

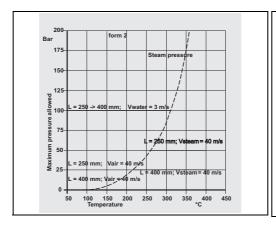
The thermowell can be made from tube with diameter 9, 11 or 12 mm.

The final part of the thermowell can be straight, tapered or reduced.

The process connection of the thermowell can be threaded (GAS or NPT), flanged (DIN or ANSI) or with a compression fitting (see the section "System components").

The replaceable inset is a probe's tip with a Pt100 positioned into; it is placed inside the thermowell.

Fig. 1: TR61 with the various types of process connections and end parts of the probe


Material & Weight

Housing	Insert	Process connection	Weight
aluminium epoxy	sheath in SS 316L/1.4404	fixed or sliding SS	From 0.5 to 1.0 kg for standard
coated		316/1.4401	options

Performance

Operating conditions

Operating condition or test	Product type or rules		Value or data of test
Ambient temperature	housing (without head-mounted tr	-40÷130°C	
	housing (with head-mounted trans	mitter)	-40÷85°C
Process temperature	Same of measurement range (see b	elow).	
Process pressure (Maximum)	The pressure values to which the t	hermowell can be	50 bar to 20°C
	subjected at the various temperature	res are illustrated	33 bar to 250°C
	by the drawings in fig. 2 . For 9 mr	n diameter pipes,	24 bar to 400°C
	with a limited flow velocity, the ma		
	pressures are the following:		
Maximum flow velocity	The highest flow velocity, (of the s	tream or of the fluid	l), tolerated by the thermowell,
	diminishes with increasing lengths,	, of the thermowell/	probe exposed (fig. 2).
Shock and vibration resistance	RTD Inset in according to the rule	Acceleration	3 g of peak
test	IEC 60751:	Frequency	from 10Hz to 500Hz and back
		Time of the test	10 hours

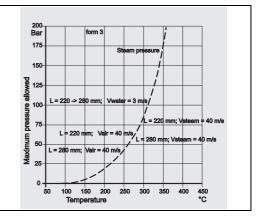
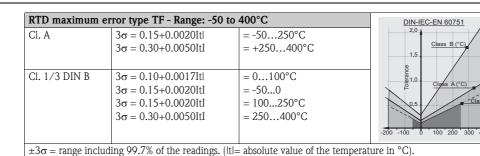



Fig. 2: Pressure/temperature drawing for thermowell with straight tube ø 11 mm in SS 316Ti/1.4571(left), with tapered tube ø 12 mm in SS 316Ti/1.4571 (right)

Accuracy

 $\pm 3\sigma$ = range including 99.7% of the readings. (|t|= absolute value of the temperature in °C).

Others errors	
Transmitter maximum error	See the corresponding documentation (codes at the end of the document)
Display maximum error	0.1% FSR + 1 digit (FSR = Full Scale Range)

The "4 wires" configuration, is provided as a standard connection for the single Pt 100's excludes additional errors in every condition.

Generally in the "4 wires" configuration there is a higher guarantee of accurancy.

Response time

Tests in water at 0.4 m/s (according to IEC 60751; from 23 to 33°C step changes)

D:	D(100.)	1.	D 1 11	m 14:	0 1
Diameter of the stem	Pt100 type	t _(x)	Reduced tip	Tapered tip	Straight tip
9	TF / WW	t ₅₀	7,5 s	11 s	18 s
		t ₉₀	21 s	37 s	55 s
11	TF / WW	t ₅₀	7,5 s	_	18 s
		t ₉₀	21 s	_	55 s
12	TF / WW	t ₅₀	_	10 s	38 s
		ton	_	24 s	125 s

Insulation

Measurement Insulation type	Result
Insulation resistance between terminals and probe sheath	above 100 M Ω at 25°C
according to IEC 60751, test voltage 250 V	above 10 MΩ at 300°C

Self heating

Negligible when the E+H iTEMP® transmitters are employed.

Installation

The Omnigrad S TR61 thermometers can be installed on pipes or tanks by means of threaded or flanged connections. The immersion length must take into account all the parameters of the thermometer and the process to measure. If the immersion is too low, an error may be generated in the temperature recorded due to the lower temperature of the process fluid near to the walls and heat transfer, which takes place through the sensor stem. The incidence of such an error can be not negligible if there is a big difference between the process temperature and the ambient temperature. To prevent measuring errors of this kind, it is advisable to use thermometer with a small diameter on well and an immersion length (L) of at least $80 \div 100 \text{ mm}$.

In small section ducts the tubing's axis must be reached and preferibly slightly exceeded by the tip of the probe (see fig. 3A-3C).

Insulation of the outer part of the sensor reduces the effect produced by a low immersion. Alternatively, it is also possible to adopt a tilted installation (see fig. 3B-3D).

With regard to corrosion, the base material of the wetted parts (SS 316L, SS 316Ti, Hastelloy C) can tolerate the common corrosive media right up to even the highest temperatures.

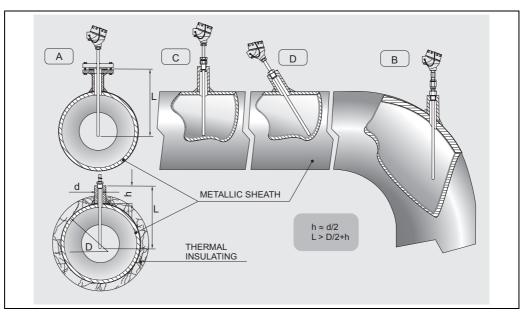


Fig. 3: Installation examples

For further information on specific applications, please contact the E+H Customer Service Department. In the case that the sensor components are disassembled, in the following reassembly procedure the definite torques must be employed. This will assure the housings with the IP grade defined.

In the case of vibrations the thin film sensing element Pt100 (TF) may offer advantages; the wire wound Pt100 (WW), besides having a larger measurement and accuracy range, guarantees greater long term stability.

System components

Housing

The protection housing, our "TA21H", commonly referred to the "connection head", is used to contain and protect the terminal block or the transmitter and to join the electric connections to the mechanical component.

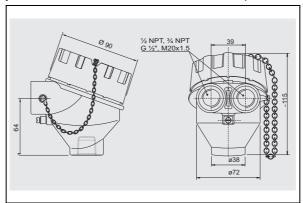


Fig. 4: Housing TA21H

The TA21H used for the TR61 is compliant with EN 50014/18 and EN 50281-1-1, EN 50281-1-2 standards (EEx-d certification for explosion proof type of protection).

The matching of the head with the extension below the head and the cover (threaded) ensures a degree of protection from IP66 to IP68. The head also has a chain to connect the body to the cover, which facilitates the use of the instrument during the maintenance on systems.

The single or double threaded electrical cable entry can be: M20x1.5, 1/2" NPT or 3/4" NPT, G1/2".

Extension neck

The extension neck is the part between the process connection and the housing. It is normally made of a tube with dimensional and physical characteristics (diameter and material) which are the same of the tube under the connection.

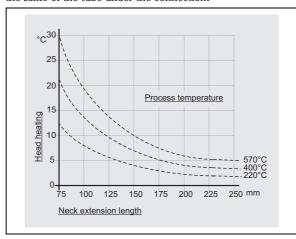


Fig. 5: Heating of the head consequent to the process temperature

The standard lengths of the neck are 80 or 145 mm, according to the selected option. In accordance with the norm DIN 43772, in the case of a thermowell with a diameter of 12 mm and a tapered tip (form 3G), the extension neck will be respectively 82 or 147 mm. The connection situated in the upper part of the neck allows for orientation of the sensor head. As illustrated by the drawing in figure 5, the length of the extension neck may influence the temperature in the head. It is necessary that this temperature is kept within the limit values defined in the paragraph "Operating Conditions".

Electronic head transmitter

The required type of output signal can be obtained by choosing the correct head mounted transmitter. Endress+Hauser supplies "state-of-the-art" transmitters (the iTEMP® series) built in 2-wire technology and with 4...20 mA output signal, HART® or PROFIBUS-PA®. All of the transmitters can be easily programmed using a PC:

Head transmitter	Communication software
PCP TMT181	ReadWin® 2000
HART® TMT182	ReadWin® 2000, FieldCare, Hand held module DXR275, DXR375
PROFIBUS PA® TMT184	FieldCare

In the case of PROFIBUS-PA® transmitters, E+H recommends the use of PROFIBUS® dedicated connectors. The Weidmüller type is provided as a standard option. For detailed information about transmitters, please refer to the relevant documentation (refer to TI codes at the end of the document). If a head-mounted transmitter is not employed, the sensor probe may be connected through the terminal block to a remote converter (i.e. DIN rail transmitter). The customer may specify the configuration desired during the order phase. The head-mounted transmitters available are:

Description	Dwg
TMT180 and TMT181:PCP 420 mA. The TMT180 and the TMT181 are PC programmable transmitters. The TMT180 is also available in a version with enhanced accuracy (0.1°C vs. 0.2°C) in the temperature range -50250°C and in a version with a fixed measurement range (specified by the customer in the order phase). The TMT182 output consists of 420 mA and HART® superimposed signals. TMT182: Smart HART®.	Ø 33 Ø 6.5 Ø 6.5 Ø 6.5 Ø 6.5 Ø 6.5 Ø 6.5 Ø 6.5
TMT184: PROFIBUS-PA®. For the TMT184, with PROFIBUS-PA® output signal, the communication address may be set via software or via mechanical dip-switch.	Ø 33 Ø 44 Ø 33 Ø 33 Ø 33

Process connection

Standard connections are available in the following types: Threaded or Flanged $\,$

Other versions may be supplied upon request, while other characteristic are available in the structure at the and of this document. The table below illustrate the engaging lengths and typics of process connections.

Type	Ø D 1	Ø D2	ØS	ØF	С	Thread/Flanged	DWG
Flange	110	79.5	14,5	16	//	1" ANSI 150 RF	
Flange	124	50,8	17,5	19	//	1" ANSI 300 RF	GAS NPT FLANGE NPT TA50
Flange	115	85	16	14	//	DN25 PN40 B1	
Flange	150	110	18	18	//	DN40 PN40 B1	
Flange	165	125	20	18	//	DN50 PN40 B1	
Thread	//	//	//	//	15	G1"	Ø D2
Thread	//	//	//	//	15	G1/2"	
Thread	//	//	//	//	15	G3/4"	
Thread	//	//	//	//	8	1/2" NPT	
Thread	//	//	//	//	8	3/4" NPT	

Probe

In the TR61 the measuring probe is made up of a mineral insulated insert (MgO) positioned inside the thermowell. The insert length is available in the standard dimensions DIN 43772 and in the most commonly used ones, or it can be personalized by the client within a range of values (refer to "Sales Structure" at the end of the document).

For replacement, the length of the insert (IL) must be chosen in compliance with the immersion length (L) of the thermowell (see fig. 6). If spare parts are required, refer to the following table.

Although the wiring diagram of single Pt 100s is always supplied with 4 wires configuration, the connection of a transmitter can be executed with 3 wires as well, by avoiding to connect whichever of the terminals (see fig. 6). The configuration Pt100 double with 2 wires and Pt100 single with 2, 3 and 4 wires are available for the ATEX certified inserts.

6

With regards to the thermowell, the surface roughness (Ra) of the wetted parts is 0.8 mm, while the various kinds of tips (reduced or tapered) are described in fig. 6;

Thermowell type	Tip of the sensor	Insert type	Insert	(E) Neck	Insert Length (mm)
	Straight		Ø = 6 mm		
TW 10	Reduced on Ø 9 and Ø 11			E = 80/82 mm	
TW 13	Tapered on Ø 9	TPR100/TPR	Ø = 3 mm	E = 145/147mm	IL = L + E + 33
	Tapered on Ø 12	300			
	Straight		Ø = 6 mm		
TW 12	Reduced on Ø 9 and Ø 11			E = 80/82 mm	
	Tapered on Ø 9	TPR100/TPR	$\emptyset = 3 \text{ mm}$	E = 145/147mm	IL = L + 63
	Tapered on Ø 12	300			
	Straight		Ø = 6 mm		
TW 11	Reduced on Ø 9 and Ø 11				
(GAS)	Tapered on Ø 9	TPR100/TPR	$\emptyset = 3 \text{ mm}$	//	IL = L + 70
	Tapered on Ø 12	300			
	Straight		Ø = 6 mm		
TW 11	Reduced on Ø 9 and Ø 11				
(NPT)	Tapered on Ø 9	TPR100/TPR	Ø = 3 mm	//	IL = L + 75
	Tapered on Ø 12	300			

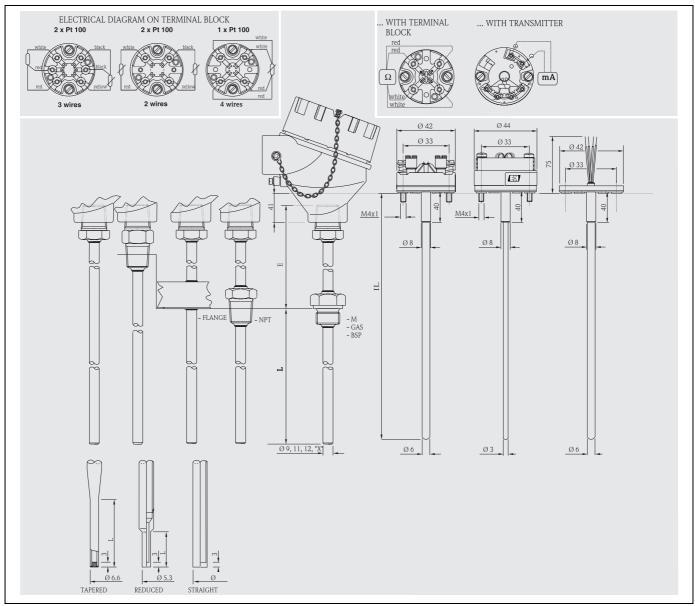


Fig. 6: Functional components, standard electrical diagrams (ceramic terminal block), Tip on the end of the probe

Certificates & approvals

Ex approval

- ATEX Certificate CESI 05ATEX038 for explosion proof type of protection: ATEX II 2 GD EEx-d IIC T6..T5 T85°...T100°C. The TR61 is **C** € marked.
- ATEX Certificate KEMA 01ATEX1169 X for intrinsecaly safe type of protection: 1GD or 1/2 GD EEx-ia IIC T6...T1 T85...450°C. The TR61 is **C** € marked.

With regards to the NAMUR NE 24 certificate and the Manufacturer's Declaration according to the standard EN 50018, EN 50020, EN 50281-1-1, EN 50281-1-2, E+H Customer Service will be able to provide further detailed information.

PED approval

The Pressure Equipment Directive (97/23/CE) is respected. As paragraph 2.1 of article 1 is not applicable to these types of instruments. The $\mathbf{C} \in \mathbf{C}$ mark according to PED Directive is not requested.

Material certification

The material certificate EN 10204 3.1 can be directly selected from the sale structure of the product and refers to the parts of the sensor in contact with the process fluid.

Other types of certificates related to materials can be requested separately.

The "short form" certificate includes a simplified declaration with no enclosures of documents related to the materials used in the construction of the single sensor and guarantees the traceability of the materials through the identification number of the thermometer.

The data related to the origin of the materials can subsequently be requested by the client if necessary.

Test on thermowell

The pressure tests are carried out at ambient temperature in order to verify the resistance of the thermowell to the specifications indicated by the norm DIN 43772.

With regards to the thermowells that do not comply with this norm (with a reduced tip, a tapered tip on a 9 mm tube, special dimensions, ...), the pressure of the corresponding straight tube with similar dimensions is verified. The sensors certified for use in Ex Zones, are always tested to pressure according to the same criterions.

Further details

Maintenance

The Omnigrad S TR61 thermometers do not require any specific maintenance.

In the case of ATEX certified components (transmitter, insert or thermowell) please refer to the corresponding specific relevant documentation (at the end of the document).

Ordering information

Sales structure

	Omnigrad S TR61. RTD thermometer
	Thermometer complete of DIN style pipe thermowell. Replaceable mineral insulated inset, spring loaded in terminal head,
	IP66 connection with epoxy coating.
	Two operating and measurement ranges: from -50 to 400°C (with TF); -200 to 600°C (with WW)

Approval:					
Α	Non-harzarus area				
С	*ATEX II 1/2 GD EEx ia IIC				
E	*ATEX II 2 GD EEx d IIC				
M	*ATEX II 1/2 GD EEx d IIC				

Head, material, IP grade						
1	Α	TA21H Alu. epoxy coating, , IP66				
1	Y	Special version, to be specified				

	C	Cable entry									
	Α	1 x 1/2 NPT									
	В	2 x 1/2 NPT									
	С	1 x 3/4 NPT									
	D	2 x 3/4 NPT									
	Е	1 x M20 x1,5									
	F	2 x M20 x1,5									
	Y	Special version, to be specified									

Pipe	Pipe Diameter; Material: (price for 100 mm of L)									
Α	9 mm; 316L									
В	11 mm; 316L									
D	9 mm; 316Ti									
E	11 mm; 316Ti									
F	12 mm; 316Ti									
G	9 mm; Alloy C276									
Н	11 mm; Alloy C276									
Y	Special version, to be specified									

		Nec	k length E:
		0	Not needed
		1	80 mm
		2	82 mm
		3	145 mm
		4	147 mm
		X	mm
		Y	Special version, to be specified

Process connection:							
AA	Special version, to be specified						
11	TA50, G1/2", 316L						
12	TA50, G1/2", PTFE						
13	TA50, G1", 316L						
14	TA50, G1", PTFEL						
BH	Thread G1/2" A DIN 43772; 316Ti						
BJ	Thread G1" A DIN 43772; 316Ti						
CA	Thread G1/2"; 316L						
CB	Thread G3/4"; 316L						
CC	Thread G1"; 316L						
CD	Thread 1/2" NPT; 316L						
CE	Thread 3/4" NPT; 316L						
HD	Thread G1/2" A DIN 43772; HAST. C 276						
НН	Thread 1/2" NPT; HAST. C 276						
AB	Flange 1" ANSI 150 RF B16.5; 316L						
AD	Flange 1" ANSI 300 RF B16.5; 316L						
EA	Flange DN25 PN40 B1 EN1092-1; 316L						
EB	Flange DN40 PN40 B1 EN1092-1; 316L						
EC	Flange DN50 PN40 B1 EN1092-1; 316L						
FA	Flange DN25 PN40 B1 EN1092-1; 316Ti						
FB	Flange DN40 PN40 B1 EN1092-1; 316Ti						

			FC HA HC YY							
					Imn X	nersi mr	on le	ength	n L	
					Y			sion,	to be specified	
·		1				Hea	d tra	nsm	itter; Range:	
						F C 2 3 4 5 P Q R T S V 1	TMT	inal I 180 180 180 180 181 181 182 182 184 1 sepa	olock A21 fix; 0.2K, fromto°C, span limit -200/650°C A22 fix; 0.1K, fromto°C, span limit -50/250°C A11 prog.; 0.2K, fromto°C, span limit -200/650°C A12 prog.; 0.1K, fromto°C, span limit -50/250°C A, PCP, fromto°C, 2-wire, isolated B, PCP ATEX, fromto°C, 2-wire, isolated A, HART, fromto°C, 2-wire, isolated B, HART ATEX, fromto°C, 2-wire, isolated A, Profibus PA, fromto°C, 2-wire, isolated A, Profibus PA ATEX, fromto°C, 2-wire, isolated A, Profibus PA ATEX, fromto°C, 2-wire, isolated A, Profibus PA ATEX, fromto°C, 2-wire, isolated	
							3 7 B C D F G Y	1 x l 1 x l 2 x l 1 x l 2 x l 1 x l 2 x l 1 x l	Pt100 TF, cl. A, range: -50/400°C; 4-wire Pt100 TF, cl. 1/3 DIN B, range: -50/400°C; 4-wire Pt100 WW, cl. A, range: -200/600°C; 3-wire Pt100 WW, cl. A, range: -200/600°C; 4-wire Pt100 WW, cl. A, range: -200/600°C; 2-wire Pt100 WW, cl. 1/3 DIN B, range: -200/600°C; 3-wire Pt100 WW, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 WW, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire pt100 ww, cl. 1/3 DIN B, range: -200/600°C; 4-wire	
TR61-								Add A B C D Y	Itional options TW10, Assembly TW11, Assembly TW12, Assembly TW13, Assembly Special version, to be specified Not needed Corder code (complete)	

Sales structure

THT1	Mode	and version of the head transmitter									
	A11	TMT180-A11 programmable fromto°C, accuracy 0.2 K, span limit -200650°C									
	A12	TMT180-A12 programmable fromto°C, accuracy 0.1 K, span limit -50250°C									
	A13	TMT180-A21AA fixed range, accuracy 0.2 K, span 050°C									
	A14	TMT180-A21AB fixed range, accuracy 0.2 K, span 0100°C									
	A15	T180-A21AC fixed range, accuracy 0.2 K, span 0150°C									
	A16	TMT180-A21AD fixed range, accuracy 0.2 K, span 0250°C									
	A17	TMT180-A22AA fixed range, accuracy 0.1 K, span 050°C									
	A18	TMT180-A22AB fixed range, accuracy 0.1 K, span 0100°C									
	A19	TMT180-A22AC fixed range, accuracy 0.1 K, span 0150°C									
	A20	TMT180-A22AD fixed range, accuracy 0.1 K, span 0250°C									
	A21	TMT180-A21 fixed range, accuracy 0.2 K, span limit -200650°C, fromto°C									
	A22	TMT180-A22 fixed range, accuracy 0.1 K, span limit -50250°C, fromto°C									
	F11	TMT181-A PCP, 2-wire, isolated, programmable fromto°C									
	F21	TMT181-B PCP ATEX, 2-wire, isolated, programmable fromto°C									
	F22	TMT181-C PCP FM IS, 2-wire, isolated, programmable fromto°C									
	F23	TMT181-D PCP CSA, 2-wire, isolated, programmable fromto°C									
	F24	TMT181-E PCP ATEX II3D, 2-wire, isolated, programmable fromto°C									
	F25	TMT181-F PCP ATEX II3D, 2-wire, isolated, programmable fromto°C									
	L11	TMT182-A HART®, 2-wire, isolated, programmable fromto°C									
	L21	T182-B HART® ATEX, 2-wire, isolated, programmable fromto°C									
	L22	TMT182-C HART® FM IS, 2-wire, isolated, programmable fromto°C									
	L23	TMT182-D HART® CSA, 2-wire, isolated, programmable fromto°C									
	L24	TMT182-E HART® ATEX II3D, 2-wire, isolated, programmable fromto°C									
	L25	TMT182-F HART® ATEX II3D, 2-wire, isolated, programmable fromto°C									
	K11	TMT184-A PROFIBUS-PA®, 2-wire, programmable fromto°C									
	K21	TMT184-B PROFIBUS-PA® ATEX, 2-wire, programmable fromto°C									
	K22	TMT184-C PROFIBUS-PA® FM IS, 2-wire, programmable fromto°C									
	K23	TMT184-D PROFIBUS-PA® CSA, 2-wire, programmable fromto°C									
	K24	Γ184-E PROFIBUS-PA® CSA, 2-wire, programmable fromto°C									
	K25	[184-F PROFIBUS-PA® ATEX II3D, 2-wire, isolated, programmable fromto°C									
	YYY	Special transmitter									
		Application and services									
		1 Assembled into position									
		9 Special version									
THT1-		← Order code (complete)									

Supplementary documentation

☐ Brochure Field of activities – Temperature measurement	FA006T/09/en
☐ Temperature head transmitter iTEMP® Pt TMT180	TI088R/09/en
☐ Temperature head transmitter iTEMP® PCP TMT181	TI070R/09/en
☐ Temperature head transmitter iTEMP® HART® TMT182	TI078R/09/en
☐ Temperature head transmitter iTEMP® PA TMT184	TI079R/09/en
☐ RTD insert for temperature sensors – Omniset TPR100	TI268T/02/en
☐ RTD insert for temperature sensors – Omniset TPR300	TI290T/02/en
☐ Safety instructions for use in hazardous areas (TPR100)	XA003T/02/z1
☐ Industrial thermometers, RTD and thermocouples	TI236T/02/en
☐ Safety instructions for use in hazardous areas (TPR300 to be relais)	XA015T/02/z1
☐ TA fittings & sockets Omnigrad TA50, TA55, TA60, TA70, TA75	TI091T/02/en

International Head Quarter

Endress+Hauser GmbH+Co. KG Instruments International Colmarer Str. 6 79576 Weil am Rhein Germany

Tel. +49 76 21 9 75 02 Fax +49 76 21 9 75 34 5 www.endress.com info@ii.endress.com

People for Process Automation