

OPTISWITCH 5200 C, 5250 C Handbook

Vibrating Level Switch
Contactless electronic switch

KRDHNE

Contents

1 About this document 4
1.1 Function 4
1.2 Target group 4
1.3 Symbols used 4
2 For your safety 5
2.1 Authorised personnel 5
2.2 Appropriate use 5
2.3 Warning about incorrect use 5
2.4 General safety instructions 5
2.5 Safety label on the instrument 6
2.6 EU conformity 6
2.7 SIL conformity 6
2.8 Installation and operation in the USA and Canada 6
2.9 Safety instructions for Ex areas 6
3 Product description 7
3.1 Configuration 7
3.2 Principle of operation. 8
3.3 Adjustment 8
3.4 Storage and transport 9
3.5 Accessories 9
4 Mounting 11
4.1 General instructions 11
4.2 Mounting instructions 15
5 Connecting to power supply 18
5.1 Preparing the connection 18
5.2 Connection procedure 19
5.3 Wiring plan, single chamber housing 19
6 Setup 22
6.1 General information 22
6.2 Adjustment elements. 22
6.3 Function table 23
7 Maintenance and fault rectification 25
7.1 Maintenance 25
7.2 Rectify faults 25
7.3 Exchanging the electronics 26
7.4 How to proceed if a repair is necessary 26
8 Dismount 27
8.1 Dismounting steps 27
8.2 Disposal 27
9 Supplement 28
9.1 Technical data 28
9.2 Dimensions 35
9.3 Trademark 38

1 About this document

1．1 Function

This operating instructions manual provides all the information you need for mounting，connection and setup as well as important instructions for maintenance，fault rectification，the exchange of parts and the safety of the user．Please read this information before putting the instrument into operation and keep this manual accessible in the immediate vicinity of the device．

1．2 Target group

This operating instructions manual is directed to trained personnel． The contents of this manual must be made available to the qualified personnel and implemented．

1．3 Symbols used

Information，tip，note
This symbol indicates helpful additional information．
Caution：If this warning is ignored，faults or malfunctions can result．
Warning：If this warning is ignored，injury to persons and／or serious damage to the instrument can result．
Danger：If this warning is ignored，serious injury to persons and／or destruction of the instrument can result．

Ex applications

This symbol indicates special instructions for Ex applications．
－List
The dot set in front indicates a list with no implied sequence．
\rightarrow Action
This arrow indicates a single action．
1 Sequence of actions
Numbers set in front indicate successive steps in a procedure．

Battery disposal

This symbol indicates special information about the disposal of bat－ teries and accumulators．

2 For your safety

2.1 Authorised personnel

All operations described in this documentation must be carried out only by trained specialist personnel authorised by the plant operator.
During work on and with the device the required personal protective equipment must always be worn.

2.2 Appropriate use

The OPTISWITCH 5200 C, 5250 C is a sensor for point level detection.
You can find detailed information about the area of application in chapter "Product description".
Operational reliability is ensured only if the instrument is properly used according to the specifications in the operating instructions manual as well as possible supplementary instructions.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden.

2.3 Warning about incorrect use

Inappropriate or incorrect use of the instrument can give rise to application-specific hazards, e.g. vessel overfill or damage to system components through incorrect mounting or adjustment. Thus damage to property, to persons or environmental contamination can be caused. Also the protective characteristics of the instrument can be influenced.

2.4 General safety instructions

This is a state-of-the-art instrument complying with all prevailing regulations and directives. The instrument must only be operated in a technically flawless and reliable condition. The operator is responsible for the trouble-free operation of the instrument. When measuring aggressive or corrosive media that can cause a dangerous situation if the instrument malfunctions, the operator has to implement suitable measures to make sure the instrument is functioning properly.
During the entire duration of use, the user is obliged to determine the compliance of the necessary occupational safety measures with the current valid rules and regulations and also take note of new regulations.
The safety instructions in this operating instructions manual, the national installation standards as well as the valid safety regulations and accident prevention rules must be observed by the user.
For safety and warranty reasons, any invasive work on the device beyond that described in the operating instructions manual may be carried out only by personnel authorised by the manufacturer. Arbitrary conversions or modifications are explicitly forbidden. For safety
reasons，only the accessory specified by the manufacturer must be used．
To avoid any danger，the safety approval markings and safety tips on the device must also be observed and their meaning read in this oper－ ating instructions manual．

2．5 Safety label on the instrument

The safety approval markings and safety tips on the device must be observed．

2．6 EU conformity

The device fulfils the legal requirements of the applicable EU direc－ tives．By affixing the CE marking，we confirm the conformity of the instrument with these directives．

2．7 SIL conformity

OPTISWITCH 5200 C， 5250 C fulfills the requirements on functional safety according to IEC 61508 resp．IEC 61511．You can find further information in the Safety Manual＂OPTISWITCH 5XXX＂．

2．8 Installation and operation in the USA and Canada

This information is only valid for USA and Canada．Hence the follow－ ing text is only available in the English language．
Installations in the US shall comply with the relevant requirements of the National Electrical Code（ANSI／NFPA 70）．
Installations in Canada shall comply with the relevant requirements of the Canadian Electrical Code．

2．9 Safety instructions for Ex areas

Please note the Ex－specific safety information for installation and op－ eration in Ex areas．These safety instructions are part of the operating instructions manual and come with the Ex－approved instruments．

3 Product description

3.1 Configuration

Scope of delivery

Constituent parts

The scope of delivery encompasses:

- OPTISWITCH 5200 C, 5250 C point level switch
- Documentation
- This operating instructions manual
- Safety Manual "Functional safety (SIL)" (optional)
- Ex-specific "Safety instructions" (with Ex versions)
- If necessary, further certificates

The OPTISWITCH 5200 C, 5250 C consists of the components:

- Housing lid
- Housing with electronics
- Process fitting with tuning fork

Fig. 1: OPTISWITCH 5200 C, 5250 C
1 Housing lid
2 Housing with electronics
3 Process fitting

Type label

The type label contains the most important data for identification and use of the instrument:

- Article number
- Serial number
- Technical data
- Article numbers, documentation
- SIL identification (with SIL rating ex works)

In addition to the type label outside on the instrument, you find the serial number also inside the instrument.

Application area

Functional principle

Voltage supply

3．2 Principle of operation

OPTISWITCH 5200 C， 5250 C is a point level sensor with tuning fork for point level detection．
It is designed for industrial use in all areas of process technology and can be used in liquids．
Typical applications are overfill and dry run protection．The small tuning fork allows use in all kinds of tanks and vessels．Thanks to its simple and rugged measuring system，OPTISWITCH 5200 C， 5250 C is virtually unaffected by the chemical and physical properties of the liquid．
It functions even under difficult conditions such as turbulence，air bub－ bles，foam generation，buildup，strong external vibration or changing products．

Function monitoring

The electronics module of OPTISWITCH 5200 C， 5250 C continu－ ously monitors the following criteria via frequency evaluation：
－Strong corrosion or damage on the tuning fork
－Loss of vibration
－Line break to the piezo drive
If a malfunction is detected or in case of power failure，the electronics takes on a defined switching condition，i．e．the contactless electronic switch opens（safe state）．

The tuning fork is piezoelectrically energised and vibrates at its mechanical resonance frequency of approx． 1200 Hz ．The piezos are fixed mechanically and are hence not subject to temperature shock limitations．The frequency changes when the tuning fork is covered by the medium．This change is detected by the integrated electronics module and converted into a switching command．

OPTISWITCH 5200 C， 5250 C is a compact instrument，i．e．it can be operated without external evaluation system．The integrated electron－ ics evaluates the level signal and outputs a switching signal．With this switching signal，a connected device can be operated directly（e．g．a warning system，a pump etc．）．
The data for power supply are specified in chapter＂Technical data＂．

3．3 Adjustment

The switching condition of OPTISWITCH 5200 C， 5250 C with plastic housing can be checked when the housing is closed（signal lamp）．
With the basic setting，products with a density $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}(0.025 \mathrm{lbs} /$ in^{3} ）can be detected．The instrument can be adapted if products with lower density are to be measured．
On the electronics module you will find the following display and adjustment elements：
－Signal lamp for indication of the switching condition（green／red）
－DIL switch for sensitivity adjustment
－Mode adjustment for selection of the switching condition（A／B）

Packaging

Transport

Transport inspection

Storage

Storage and transport temperature

Lifting and carrying

Flanges

Electronics module

3.4 Storage and transport

Your instrument was protected by packaging during transport. Its capacity to handle normal loads during transport is assured by a test based on ISO 4180.
The packaging of standard instruments consists of environmentfriendly, recyclable carton material. The sensing element is additionally protected with a cardboard cover. For special versions, PE foam or PE foil is also used. Please dispose of the packaging material through specialised recycling companies.

Transport must be carried out in due consideration of the notes on the transport packaging. Nonobservance of these instructions can cause damage to the device.

The delivery must be checked for completeness and possible transit damage immediately at receipt. Ascertained transit damage or concealed defects must be appropriately dealt with.

Up to the time of installation, the packages must be left closed and stored according to the orientation and storage markings on the outside.
Unless otherwise indicated, the packages must be stored only under the following conditions:

- Not in the open
- Dry and dust free
- Not exposed to corrosive media
- Protected against solar radiation
- Avoiding mechanical shock and vibration
- Storage and transport temperature see chapter "Supplement Technical data - Ambient conditions"
- Relative humidity 20 ... 85%

With instrument weights of more than 18 kg (39.68 lbs) suitable and approved equipment must be used for lifting and carrying.

3.5 Accessories

Screwed flanges are available in different versions according to the following standards: DIN 2501, EN 1092-1, BS 10, ASME B 16.5, JIS B 2210-1984, GOST 12821-80.
You can find additional information in the supplementary instructions manual "Flanges according to DIN-EN-ASME-JIS".

The electronics module SW E60 is a replacement part for level switches OPTISWITCH 5200 C, 5250 C.
You can find information in the operating instructions manual of the electronics module.

For connecting the sensors with a separator to voltage supply or signal processing, the sensors are also available with plug connectors.

The following plug connectors are available：
－M12 x 1
－ISO 4400
－Harting HAN 7D
－Harting HAN 8D
－Amphenol－Tuchel

4 Mounting

4.1 General instructions

Suitability for the process Make sure that all parts of the instrument coming in direct contact conditions with the process, especially the sensor element, process seal and process fitting, are suitable for the existing process conditions, such as process pressure, process temperature as well as the chemical properties of the medium.
You can find the specifications in chapter "Technical data" and on the nameplate.

Suitability for the ambient The instrument is suitable for standard and extended ambient condiconditions tions acc. to DIN/EN/IEC/ANSI/ISA/UL/CSA 61010-1.

Switching point
In general, OPTISWITCH 5200 C, 5250 C can be installed in any position. The instrument only has to be mounted in such a way that the tuning fork is at the height of the desired switching point.
The tuning fork has lateral markings (notches) that indicate the switching point with vertical mounting. The switching point applies to water in conjunction with the basic setting of the density switch $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \mathrm{lbs} / \mathrm{in}^{3}\right)$. When mounting OPTISWITCH 5200 C , 5250 C , make sure that this marking is at the height of the requested switching point. Keep in mind that the switching point of the instrument will shift if the medium has a density other than water - water is $1 \mathrm{~g} / \mathrm{cm}^{3}\left(0.036 \mathrm{lbs} / \mathrm{in}^{3}\right)$. For products $\leq 0.7 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \mathrm{lbs} / \mathrm{in}^{3}\right)$ and $\geq 0.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \mathrm{lbs} / \mathrm{in}^{3}\right)$ the density switch must be set to $\geq 0.5 \mathrm{~g} /$ cm^{3}.
Keep in mind that foams with a density $\geq 0.45 \mathrm{~g} / \mathrm{cm}^{3}\left(0.016 \mathrm{lbs} / \mathrm{in}^{3}\right)$ are detected by the sensor. This can lead to erroneous switchings, particulary when the sensor is used for dry run protection.

Fig. 2: Vertical mounting
1 Switching point approx. 13 mm (0.51 in)
2 Switching point with lower density
3 Switching point with higher density
4 Switching point approx. 27 mm (1.06 in)

Fig. 3: Horizontal mounting
1 Switching point
2 Marking with screwed version, facing up

Fig. 4: Horizontal installation (recommended mounting position, particularly for adhesive products)
1 Switching point
2 Marking with screwed version, facing up
In the case of flange versions, the fork is aligned as follows.

Fig. 5: Fork position with flange versions
1 Marking with flange version, facing up

Moisture
Use the recommended cables (see chapter "Connecting to power supply") and tighten the cable gland.
You can give your instrument additional protection against moisture penetration by leading the connection cable downward in front of the cable entry. Rain and condensation water can thus drain off. This applies mainly to outdoor mounting as well as installation in areas where high humidity is expected (e.g. through cleaning processes) or on cooled or heated vessels.
To maintain the housing protection, make sure that the housing lid is closed during operation and locked, if necessary.
Make sure that the degree of contamination specified in chapter "Technical data" meets the existing ambient conditions.

Fig. 6: Measures against moisture ingress

Fig．7：Housing position（self－emptying acc．to 3A）
1 Stainless steel housing（electropolished）
2 Aluminium die－cast housing

Transport

Pressure／Vacuum

Handling
The vibrating level switch is a measuring instrument and must be treated accordingly．Bending the vibrating element will destroy the instrument．

Warning：

The housing must not be used to screw the instrument in！Applying tightening force can damage internal parts of the housing．
Use the hexagon above the thread for screwing in．

Metric threads

In the case of instrument housings with metric thread，the cable glands are screwed in at the factory．They are sealed with plastic plugs as transport protection．
You have to remove these plugs before electrical connection．

NPT thread

In the case of instrument housings with self－sealing NPT threads，it is not possible to have the cable entries screwed in at the factory．The free openings for the cable glands are therefore covered with red dust protection caps as transport protection．
Prior to setup you have to replace these protective caps with ap－ proved cable glands or close the openings with suitable blind plugs．

Welded socket

4.2 Mounting instructions

OPTISWITCH 5200 C, 5250 C has a defined thread starting point. This means that every OPTISWITCH 5200 C, 5250 C is in the same fork position after being screwed in. Remove therefore the supplied seal from the thread of OPTISWITCH 5200 C, 5250 C. This seal is not required when using a welded socket with O-ring in front.

Keep in mind that this welded socket is not suitable for coated instrument versions.
Screw OPTISWITCH 5200 C, 5250 C completely into the welded socket. The later position can be determined already before welding. Mark the appropriate position of the welded socket. Before welding, unscrew OPTISWITCH 5200 C, 5250 C and remove the rubber ring from the welded socket. The welded socket has a marking (notch). Weld the socket with the notch facing upward, or in case of pipelines (DN 32 up to DN 50), aligned with the direction of flow.

Fig. 8: Marking on the welded socket

1 Marking

Adhesive products

Inflowing medium

In case of horizontal mounting in adhesive and viscous products, the surfaces of the tuning fork should be vertical in order to reduce buildup on the tuning fork. On the screwed version you will find a marking on the hexagon. With this you can check the position of the tuning fork when screwing it in. When the hexagon touches the seal, the thread can still be turned by approx. half a turn. This is sufficient to reach the recommended installation position.
In the case of flange versions, the fork is aligned with the flange holes.
When used in adhesive and viscous products, the tuning fork should protrude into the vessel to avoid buildup. For that reason, sockets for flanges and mounting bosses should be avoided when mounting horizontally.

If OPTISWITCH $5200 \mathrm{C}, 5250 \mathrm{C}$ is mounted in the filling stream, unwanted false measurement signals can be generated. For this reason, mount OPTISWITCH 5200 C, 5250 C at a position in the vessel where no disturbances, e.g. from filling openings, agitators, etc., can occur.
This applies particularly to instrument types with long extension tube.

Fig．9：Inflowing medium

Product flow

Agitators

To make sure the tuning fork of OPTISWITCH 5200 C， 5250 C gener－ ate as little resistance as possible to product flow，mount the sensor so that the surfaces are parallel to the product movement．

Due to the effects of agitators，equipment vibration or similar，the level switch can be subjected to strong lateral forces．For this reason，do not use an overly long extension tube for OPTISWITCH 5200 C， 5250 C，but check if you can mount a level switch on the side of the vessel in horizontal position．
Extreme vibration caused by the process or the equipment，egg． agitators or turbulence in the vessel，can cause the extension tube of OPTISWITCH 5200 C， 5250 C to vibrate in resonance．This leads to increased stress on the upper weld joint．Should a longer tube version be necessary，you can provide a suitable support directly above the tuning fork to secure the extension tube．

This measure applies mainly to applications in Ex areas category 1G or WHG．Make sure that the tube is not subject to bending stress due to this measure．

Fig．10：Lateral suppot of OPTISWITCH 5200 C， 5250 C

Gas-tight leadthrough The second seal of the gas-tight leadthrough (option) prevents an uncontrolled leakage of the medium. The service life of the gas-tight leadthrough depends on the chemical resistance of the materials. See "Technical data".

Caution:

If it is determined (e.g. via an error message from OPTISWITCH 5200 C, 5250 C) that medium has already penetrated into the vibrating element, the instrument must be exchanged immediately.

	5 Connecting to power supply
	5.1 Preparing the connection
Note safety instruction	Always keep in mind the following safety instructions:
	Warning: Connect only in the complete absence of line voltage. - The electrical connection must only be carried out by trained personnel authorised by the plant operator. - Always switch off power supply, before connecting or disconnecting the instrument.
	Note: Install a disconnecting device for the instrument which is easy to access. The disconnecting device must be marked for the instrument (IEC/EN 61010).
Take note of safety instructions for Ex applications	In hazardous areas you must take note of the respective regulations, conformity and type approval certificates of the sensors and power supply units.
Voltage supply	Connect the voltage supply according to the connection diagrams. The electronics module SWE60C is designed in protection class I. To maintain this protection class, it is absolutely necessary that the earth conductor be connected to the inner earth conductor terminal. Keep the general installation regulations in mind. Take note of the corresponding installation regulations for hazardous areas with Ex applications.
	The data for power supply are specified in chapter "Technical data".
Connection cable	The instrument is connected with standard three-wire cable without screen. If electromagnetic interference is expected which is above the test values of EN 61326 for industrial areas, screened cable should be used.
	Make sure that the cable used has the required temperature resistance and fire safety for max. occurring ambient temperature
	Use cable with round cross-section. A cable outer diameter of $5 \ldots 9 \mathrm{~mm}(0.2 \ldots 0.35 \mathrm{in})$ ensures the seal effect of the cable gland. If you are using cable with a different diameter or cross-section, exchange the seal or use a suitable cable gland.
	In hazardous areas, use only approved cable connections for OPTISWITCH 5200 C, 5250 C.
Connection cable for Ex applications	Take note of the corresponding installation regulations for Ex applications.
	Cover all housing openings conforming to standard according to EN 60079-1.

5.2 Connection procedure

With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

Proceed as follows:

1. Unscrew the housing lid
2. Loosen compression nut of the cable gland and remove blind plug
3. Remove approx. $10 \mathrm{~cm}(4 \mathrm{in})$ of the cable mantle, strip approx. $1 \mathrm{~cm}(0.4 \mathrm{in})$ of insulation from the ends of the individual wires
4. Insert the cable into the sensor through the cable entry
5. Open the terminals with a screwdriver
6. Insert the wire ends into the open terminals according to the wiring plan
7. Tighten the terminals with a screwdriver
8. Check the hold of the wires in the terminals by lightly pulling on them
9. Tighten the compression nut of the cable entry gland. The seal ring must completely encircle the cable
10. Screw the housing lid back on

The electrical connection is finished.

5.3 Wiring plan, single chamber housing

Housing overview

The following illustrations apply to the non-Ex as well as to the Ex-d version.

Fig. 11: Material versions, single chamber housing
1 Plastic (not with Ex d)
2 Aluminium
3 Stainless steel, precision casting
4 Stainless steel, electropolished (not with Ex d)
5 Filter element for pressure compensation (not with Ex d)

Electronics and terminal compartment

Fig．12：Electronics and terminal compartment，single chamber housing
1 Control lamp
2 DIL switch for mode adjustment
3 DIL switch for switching point adaptation
4 Ground terminal
5 Connection terminals

Wiring plan

We recommend connecting OPTISWITCH 5200 C， 5250 C in such a way that the switching circuit is open when there is a level signal，line break or failure（safe state）．

－Information

The contactless electronic switch is always shown in non－operative condition．

Warning：

The instrument must not be operated without an intermediately connected load，because the electronics would be destroyed if con－ nected directly to the mains．It is not suitable for connection to low voltage PLC inputs．

Examples for typical applications：
－Load resistance at 24 V DC： 88 ．．． 1800Ω
－Rated power，relay $253 \mathrm{~V} \mathrm{AC}:>2.5 \mathrm{VA}$
－Rated power，relay $24 \mathrm{~V} \mathrm{AC}:>0.5 \mathrm{VA}$
For direct control of relays，contactors，magnet valves，warning lights， horns etc．

Domestic current is temporarily lowered below 1 mA after switching off the load so that contactors，whose holding current is lower than the constant domestic current of the electronics，are reliably switched off．

When OPTISWITCH 5200 C, 5250 C is used as part of an overfill protection system according to WHG, also note the regulations of the general type approval.

Fig. 13: Wiring plan, single chamber housing

6 Setup

6．1 General information

The figures in brackets refer to the following illustrations．

Function／Configuration
With plastic housings，the switching condition of the electronics can be checked when the housing cover is closed（control lamp）．With the basic setting，products with a density $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \mathrm{lbs} / \mathrm{in}^{3}\right)$ can be detected．For products with lower density，the switch must be set to $\geq 0.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \mathrm{lbs} / \mathrm{in}^{3}\right)$ ．
On the electronics module you will find the following display and adjustment elements：
－Signal lamp（1）
－DIL switch for mode adjustment－A／B（2）
－DIL switch for adjustment of the density range（3）

－Note：

1 Always immerse the tuning fork of OPTISWITCH 5200 C， 5250 C in a liquid to test its function．Do not test the function of OPTISWITCH 5200 C， 5250 C with your hand．This can damage the sensor．

6．2 Adjustment elements

Fig．14：Oscillator SWE60C－Contactless electronic switch
1 Control lamp（LED）
2 DIL switch for mode adjustment
3 DIL switch for adjustment of the density range

Signal lamp（1）

Control lamp for indication of the switching status
－Green＝Output closed
－Red＝Output open
－red（flashing）＝failure
Mode adjustment（2）
With the mode adjustment（A／B）you can change the switching condition of the relay．You can set the required mode according to the
"Function table" (A - max. detection or overflow protection, B - min. detection or dry run protection).

Adjustment of the density With this DIL switch (3) you can set the switching point to liquids range (3) having a density between 0.5 and $0.7 \mathrm{~g} / \mathrm{cm}^{3}(0.018$ and $0.025 \mathrm{lbs} /$ $\left.\mathrm{in}^{3}\right)$. With the basic setting, liquids with a density of $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}(0.025$ $\mathrm{lbs} / \mathrm{in}^{3}$) can be detected. In liquids with lower density, you must set the switch to $\geq 0.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \mathrm{lbs} / \mathrm{in}^{3}\right)$. The specifications for the position of the switching point relate to water - density value $1 \mathrm{~g} / \mathrm{cm}^{3}$ ($0.036 \mathrm{lbs} / \mathrm{in}^{3}$). In products with a different density, the switching point will shift in the direction of the housing or tuning fork end depending on the density and type of installation.

i

Note:
Keep in mind that foams with a density $\geq 0.45 \mathrm{~g} / \mathrm{cm}^{3}\left(0.016 \mathrm{lbs} / \mathrm{in}^{3}\right)$ are detected by the sensor. This can lead to erroneous switchings, particulary when the sensor is used for dry run protection.

6.3 Function table

The following table provides an overview of the switching conditions depending on the set mode and the level.

	Level	Switching status	Control lamp
Mode A Overflow protec- tion			Switch closed

	Level	Switching status	Control lamp
Fault	any		
		Switch open	flashes red

7 Maintenance and fault rectification

7.1 Maintenance

If the device is used properly, no special maintenance is required in normal operation.

7.2 Rectify faults

Reaction when malfunction occurs

Causes of malfunction

The operator of the system is responsible for taking suitable measures to rectify faults.

OPTISWITCH 5200 C, 5250 C offers maximum reliability. Nevertheless, faults can occur during operation. These may be caused by the following, e.g.:

- Sensor
- Process
- Voltage supply
- Signal processing

The first measure to take is to check the output signal. In many cases, the causes can be determined this way and the faults quickly rectified.

Fault rectification
Checking the switching signal

Error	Cause	Rectification
OPTISWITCH 5200 C, 5250 C signals "covered" without being submerged (overfill protection) OPTISWITCH 5200 C, 5250 C signals "uncovered" when being submerged (dry run protection)	Operating voltage too low	Check operating voltage
	Electronics defective	
		vibrating element may be covered with buildup or mechanically damaged. Should the switching function in the correct mode still be faulty, return the instrument for repair.
		Press the mode switch. If the instrument then does not change the mode, the electronics module may be defective. Exchange the electronics module.
	Unfavourable installation location	Mount the instrument at a location in the vessel where no dead zones or air bubbles can form.
	Buildup on the vibrating element	Check the vibrating element and the sensor for buildup and remove the buildup if there is any.
	Wrong mode selected	Set the correct mode with the mode switch (overflow protection, dry run protection). Wiring should be carried out according to the closed-circuit principle.

Error	Cause	Rectification
Signal lamp flashes red	Error on the vibrating element	Check if the vibrating element is damaged or extremely corroded．
	Interference on the electronics mod－ ule	Exchanging the electronics module
	instrument defective	Exchange the instrument or send it in for repair

Reaction after fault recti－ fication

Depending on the reason for the fault and the measures taken，the steps described in chapter＂Set up＂may have to be carried out again．

7．3 Exchanging the electronics

If the electronics module is defective，it can be replaced by the user．
In Ex applications only an electronics module with respective Ex ap－ proval may be used．

You can find all the information you need to carry out an electronics exchange in the handbook of the new electronics module．
In general，all electronics modules of series SW60 can be inter－ changed．If you want to use an electronics module with a different signal output，you carry out the complete setup．You find the neces－ sary，suitable operating instruction on our homepage．
i
Note：
Keep in mind that enamelled instrument versions need special electronics modules．These electronics modules are called SW60E or SW60E1．

7．4 How to proceed if a repair is necessary

If it is necessary to repair the instrument，please contact the responsi－ ble Krohne agency．

8 Dismount

8.1 Dismounting steps

Warning:

Before dismounting, be aware of dangerous process conditions such as e.g. pressure in the vessel, high temperatures, corrosive or toxic products etc.

Take note of chapters "Mounting" and "Connecting to power supply" and carry out the listed steps in reverse order.
With Ex instruments, the housing cover may only be opened if there is no explosive atmosphere present.

8.2 Disposal

The instrument consists of materials which can be recycled by specialised recycling companies. We use recyclable materials and have designed the electronics to be easily separable.

WEEE directive 2002/96/EG

This instrument is not subject to the WEEE directive 2002/96/EG and the respective national laws. Pass the instrument directly on to a specialised recycling company and do not use the municipal collecting points. These may be used only for privately used products according to the WEEE directive.
Correct disposal avoids negative effects on humans and the environment and ensures recycling of useful raw materials.
Materials: see chapter "Technical data"
If you have no way to dispose of the old instrument properly, please contact us concerning return and disposal.

9 Supplement

9.1 Technical data

Note for approved instruments

The technical data in the respective safety instructions are valid for approved instruments (e.g. with Ex approval). These data can differ from the data listed herein - for example regarding the process conditions or the voltage supply.

General data

Material 316L corresponds to 1.4404 or 1.4435
Materials, wetted parts

- Process fitting - thread 316L, Alloy C22 (2.4602)
- Process fitting - flange 316L, 316L with Alloy C22 (2.4602) plated, 316L with ECTFE coated, 316L with PFA coating
- Process seal

Klingersil C-4400

- Tuning fork

316L, Alloy C22 (2.4602), 316L with ECTFE coating, 316 L with PFA coating

- Extension tube: ø $21.3 \mathrm{~mm}(0.839 \mathrm{in}) \quad 316 \mathrm{~L}$, Alloy C22 (2.4602), 316L with ECTFE coating, 316L with PFA coating
Materials, non-wetted parts
- Plastic housing Plastic PBT (Polyester)
- Aluminium die-cast housing Aluminium die-casting AISi10Mg, powder-coated (Basis: Polyester)
- Stainless steel housing (precision 316L casting)
- Stainless steel housing (electropol- 316L ished)
- Seal between housing and housing lid Silicone SI 850 R
- Seal between housing and housing EPDM cover (lacquer-compatible version)
- Light guide in housing cover (plastic) PMMA (Makrolon)
- Ground terminal 316L
- Cable gland
- Sealing, cable gland PA, stainless steel, brass
- Blind plug, cable gland NBR
- Temperature adapter (optional) PA

Second Line of Defense resp. gas-tight leadthrough (optional)

- The Second Line of Defense (SLOD) is a second level of the process separation in the form of a gas-tight feedthrough in the lower part of the housing, preventing product from penetrating into the housing.
- Supporting material 316L
- Glass potting
- Contacts
- Helium leak rate
- Pressure resistance

Sensor length (L)

- 316L, Alloy C22 (2.4602)
- 316L, ECTFE coated
- 316L, PFA coated
- Sensor lengths - accuracy

Tube diameter
Weight

- Instrument weight (depending on process fitting)
- Tube extension

Layer thickness

- ECTFE
- PFA

Surface quality

- Standard
- Hygienic version (3A)
- Hygienic version (3A)

Process fittings

- Pipe thread, cylindrical (DIN 3852-A)
- Pipe thread, conical (ASME B1.20.1)
- Flanges
- hygienic fittings

Borosilicate glass (Schott no. 8421)
1.4101
$<10^{-6} \mathrm{mbar}$ I/s
PN 64
$80 \ldots 6000 \mathrm{~mm}(3.15 \ldots 236.22 \mathrm{in})$
$80 \ldots 3000 \mathrm{~mm}$ (3.15 ... 118.11 in)
$80 \ldots 4000 \mathrm{~mm}$ ($3.15 \ldots 157.48 \mathrm{in}$)
$\pm 2 \mathrm{~mm}(\pm 0.079 \mathrm{in})$
$\varnothing 21.3 \mathrm{~mm}$ (0.839 in)
approx. $0.8 \ldots 4 \mathrm{~kg}$ ($0.18 \ldots 8.82 \mathrm{lbs}$)
approx. $920 \mathrm{~g} / \mathrm{m}(9.9 \mathrm{oz} / \mathrm{ft})$
$500 \mu \mathrm{~m}+500 /-200 \mu \mathrm{~m}(0.02$ in $+0.02 /-0.008 \mathrm{in})$
$600 \mu \mathrm{~m}+500 /-300 \mu \mathrm{~m}$ ($0.024 \mathrm{in}+0.02 /-0.012 \mathrm{in}$)
R_{a} approx. $3 \mu \mathrm{~m}$ (1.18-4 in)
$R_{a}<0.8 \mu \mathrm{~m}\left(3.15^{-5} \mathrm{in}\right)$
$R_{a}<0.3 \mu \mathrm{~m}\left(1.18^{-5} \mathrm{in}\right)$

G $3 / 4, \mathrm{G} 1$
$3 / 4$ NPT or 1 NPT
DIN from DN 25, ASME from 1"
Slotted nut DN 40 PN 40, Clamp 1" DIN 32676
ISO 2852/316L, Clamp 2" DIN 32676 ISO 2852/316L, conus DN 25 PN 40, Tuchenhagen Varivent DN 50 PN 10
Max. torque - process fitting

- Thread G $3 / 4,3 / 4$ NPT 75 Nm ($55 \mathrm{lbf} f \mathrm{f}$)
- Thread G1, 1 NPT

Torque for NPT cable glands and Conduit tubes

- Plastic housing
- Aluminium/Stainless steel housing

Gas-tight leadthrough (optional)

- Leakage rate
- Pressure resistance

Output variable

max. 10 Nm (7.376 lbf ft)
max. 50 Nm (36.88 lbf ft)
$<10^{-6} \mathrm{mbar} / \mathrm{s}$
PN 64

Modes（switchable）
－A
－B
Max．detection or overflow／overfill protection
Min．detection or dry run protection

Accuracy（according to DIN EN 60770－1）

Reference conditions and influencing variables（according to DIN EN 61298－1）
－Ambient temperature
－Relative humidity
－Air pressure
－Product temperature
－Product density
－Product viscosity
－Superimposed pressure
－Sensor installation
－Density selection switch
$+18 \ldots+30^{\circ} \mathrm{C}\left(+64 \ldots+86^{\circ} \mathrm{F}\right)$
45 ．．． 75 \％
860 ．．． $1060 \mathrm{mbar} / 86 \ldots 106 \mathrm{kPa}(12.5 \ldots 15.4 \mathrm{psig})$
$+18 \ldots+30^{\circ} \mathrm{C}\left(+64 \ldots+86^{\circ} \mathrm{F}\right)$
$1 \mathrm{~g} / \mathrm{cm}^{3}$（ $0.036 \mathrm{lbs} / \mathrm{in}^{3}$ ）（water）
1 mPa s
0 kPa
Vertically from top
$\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$

Measuring accuracy
Deviation $\pm 1 \mathrm{~mm}(0.04 \mathrm{in})$

Influence of the process temperature on the switching point

Fig．31：Influence of the process temperature on the switching point
1 Shifting of the switching point in mm （in）
2 Process temperature in ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
3 Switching point at reference conditions（notch）
4 Tuning fork

Influence of the product density on the switching point

Fig. 32: Influence of the product density on the switching point
1 Shifting of the switching point in mm (in)
2 Product density in $\mathrm{g} / \mathrm{cm}^{3}\left(\mathrm{lb} / \mathrm{in}^{3}\right)$
3 Switch position $\geq 0.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \mathrm{lb} / \mathrm{in}^{3}\right)$
4 Switch position $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \mathrm{lb} / \mathrm{in}^{3}\right)$
5 Switching point at reference conditions (notch)
6 Tuning fork

Influence of the process pressure to the switching point

Fig. 33: Influence of the process pressure to the switching point
1 Shifting of the switching point in mm (in)
2 Process pressure in bar (psig)
3 Switching point at reference conditions (notch)
4 Tuning fork

Repeatability
Hysteresis
Switching delay
Measuring frequency
0.1 mm (0.004 in)
approx. 2 mm (0.08 in) with vertical installation
approx. 500 ms (on/off)
approx. 1200 Hz

Ambient conditions

Ambient temperature on the housing	$-40 \ldots+70^{\circ} \mathrm{C}\left(-40 \ldots+158^{\circ} \mathrm{F}\right)$
Storage and transport temperature	$-40 \ldots+80^{\circ} \mathrm{C}\left(-40 \ldots+176{ }^{\circ} \mathrm{F}\right)$

Process conditions

Measured variable
Process pressure

Limit level of liquids
-1 ．．． 64 bar／－100 ．．． 6400 kPa （－14．5 ．．． 928 psig）
The process pressure is dependent on the process fitting，for example Clam p or flange（see the following diagrams）
Maximum allowable operating pressure
$100 \mathrm{bar} / 10000 \mathrm{kPa}(1450 \mathrm{psig})$ or 1.5 times process pressure
The function of the instrument is ensured up to an operating pressure of $100 \mathrm{bar} / 10000 \mathrm{kPa}(1450 \mathrm{psig})$ at a maximum process temperature of $+50^{\circ} \mathrm{C}\left(+122^{\circ} \mathrm{F}\right)$ （only with threaded versions）．

Process temperature（thread or flange
temperature）
－OPTISWITCH $5200 \mathrm{C}, 5250 \mathrm{C}$ of $-50 \ldots+150^{\circ} \mathrm{C}\left(-58 \ldots+302^{\circ} \mathrm{F}\right)$ 316L／Alloy C22（2．4602）
Process temperature（thread or flange temperature）with temperature adapter（option）
－OPTISWITCH 5200 C， 5250 C of
$-50 \ldots+250^{\circ} \mathrm{C}\left(-58 \ldots+482^{\circ} \mathrm{F}\right)$ 316L／Alloy C22（2．4602）
－OPTISWITCH 5200 C， 5250 C with ECTFE coating
－OPTISWITCH $5200 \mathrm{C}, 5250 \mathrm{C}$ with $-50 \ldots+250{ }^{\circ} \mathrm{C}\left(-58 \ldots+482^{\circ} \mathrm{F}\right)$ PFA coating

Fig．34：Ambient temperature－Process temperature
1 Process temperature in ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
2 Ambient temperature in ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
3 Temperature range with temperature adapter

Fig. 35: Process temperature - Process pressure with switch position $\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$ (sensitivity switch)
1 Process pressure in bar (psig)
2 Process temperature in ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$

Fig. 36: Process temperature - Process pressure with switch position $\geq 0.5 \mathrm{~g} / \mathrm{cm}^{3}$ (sensitivity switch)
1 Process pressure in bar (psig)
2 Process temperature in ${ }^{\circ} \mathrm{C}\left({ }^{\circ} \mathrm{F}\right)$
SIP process temperature (SIP = Sterilization in place)
PFA and ECTFE coatings are not suitable for SIP cleaning

Vapour stratification up to 2 h

Additional process conditions

Viscosity - dynamic
Flow velocity
Density

- Standard sensitivity
- High sensitivity

Vibration resistance

- Instrument housing
$+150^{\circ} \mathrm{C}(+302 \mathrm{~F})$
$0.1 \ldots 10000 \mathrm{mPa}$ (requirement: with density 1)
max. $6 \mathrm{~m} / \mathrm{s}$ (with a viscosity of 10000 mPa s)
$0.7 \ldots 2.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \ldots 0.09 \mathrm{lbs} / \mathrm{in}^{3}\right)$
$0.5 \ldots 2.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \ldots 0.09 \mathrm{lbs} / \mathrm{in}^{3}\right)$

1 g at $5 \ldots 200 \mathrm{~Hz}$ according to EN 60068-2-6 (vibration with resonance)

1 g with $5 \ldots 200 \mathrm{~Hz}$ according EN 60068－2－6（vibration at resonance）with sensor length up to 50 cm （19．69 in） With a sensor length $>50 \mathrm{~cm}$（19．69 in）you have to fix the extension tube with a suitable support．See mounting instructions．

Electromechanical data

Cable entry／plug（dependent on the version）
－Single chamber housing

Screw terminals
－ $1 \times$ cable entry M20 $\times 1.5$（cable：ø $5 \ldots 9 \mathrm{~mm}$ ）， $1 \times$ blind plug M20 x 1．5；attached $1 \times$ cable entry M20 $\times 1.5$
or：
－ 1 x cable entry $1 / 2$ NPT， $1 \times$ blind plug $1 / 2$ NPT， $1 \times$ cable entry $1 / 2$ NPT
or：
－ $1 \times$ plug M12 x $1 ; 1 \times$ blind plug M20 x 1.5
for wire cross－section up to $1.5 \mathrm{~mm}^{2}$（AWG 16）

Adjustment elements

Mode switch
－A
Max．detection or overflow／overfill protection
－B Min．detection or dry run protection
Density changeover switch
$-\geq 0.5 \mathrm{~g} / \mathrm{cm}^{3}$
$-\geq 0.7 \mathrm{~g} / \mathrm{cm}^{3}$
$0.5 \ldots 2.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.018 \ldots 0.09 \mathrm{lbs} / \mathrm{in}^{3}\right)$
$0.7 \ldots 2.5 \mathrm{~g} / \mathrm{cm}^{3}\left(0.025 \ldots 0.09 \mathrm{lbs} / \mathrm{in}^{3}\right)$

Voltage supply

Operating voltage
Domestic current requirement
Load current
－Min．
－Max．

20 ．．． 253 V AC， $50 / 60$ Hz， 20 ．．． 253 V DC
approximately 3 mA （via load circuit）

10 mA
400 mA （with l＞ 300 mA the ambient temperature can be max． $60^{\circ} \mathrm{C} / 140^{\circ} \mathrm{F}$ ）max． 4 A up to 40 ms （not WHG specified）

Electrical protective measures

Protection rating
Overvoltage category
Protection class

IP 66／IP 67 （NEMA Type 4X）
III
I

Approvals

Depending on the version，instruments with approvals can have different technical data．For these instruments，please note the corresponding approval documents．They are included in the scope of delivery．

9.2 Dimensions

OPTISWITCH 5200 C, 5250 C, housing

Fig. 37: Housing versions
1 Plastic housing
2 Stainless steel housing (electropolished)
3 Stainless steel housing (precision casting)
4 Aluminium housing

OPTISWITCH 5200 C, 5250 C

Fig. 38: OPTISWITCH 5200 C, 5250 C
1 Thread
2 Clamp
3 Cone DN 25
4 Slotted nut DN 40
5 Flange
6 Tuchenhagen Varivent
L = Sensor length, see chapter "Technical data"

OPTISWITCH 5200 C, 5250 C, options

Fig. 39: Options
1 Gas-tight leadthrough
2 Temperature adapter

9．3 Trademark

All the brands as well as trade and company names used are property of their lawful proprietor／ originator．

KROHNE product overview

- Electromagnetic flowmeters
- Variable area flowmeters
- Ultrasonic flowmeters
- Mass flowmeters
- Vortex flowmeters
- Flow controllers
- Level meters
- Temperature assemblies
- Pressure transmitters
- Analysis products
- Products and systems for the oil and gas industry

KROHNE Messtechnick GmbH \& Co. KG
Ludwig-Krohne-Straße 5
D-47058 Duisburg
Tel.: +49 (0) 2033010
Tel.: +49 (0) 20330110389
info@krohne.de
The current list of all KROHNE contacts and addresses can be found at: www.krohne.com

