

OPTIFLUX 1000 Technical Datasheet

Electromagnetic flow sensor in sandwich design

- Lightweight and compact
- Excellent price performance ratio
- Quick and easy to install

The documentation is only complete when used in combination with the relevant documentation for the signal converter.

1	Product features	
	1.1 Cost efficient and reliable flow sensor	2
	1.2 Options	
	1.3 Measuring principle	C
2	Technical data	7
	2.1 Technical data	7
	2.2 Measuring accuracy	11
	2.3 Dimensions and weights	12
3	Installation	15
	3.1 Intended use	
	3.2 General notes on installation	
	3.2.1 Vibrations	
	3.2.2 Magnetic field	
	3.3 Installation conditions	
	3.3.1 Inlet and outlet	
	3.3.2 Bends in 2 or 3 dimensions	
	3.3.3 Bends	
	3.3.5 Open feed or discharge	
	3.3.6 Control valve	
	3.3.7 Pump	
	3.3.8 Air venting and vacuum forces	
	3.3.9 Flange deviation	
	3.3.10 Mounting position	
4	Electrical connections	22
_		
	4.1 Safety instructions	
	4.2 Grounding	
	4.3 Virtual reference option	24
	4.4 Connection diagrams	24
5	Notes	25

1.1 Cost efficient and reliable flow sensor

The flangeless **OPTIFLUX 1000** electromagnetic flow sensor is compact and lightweight. The design is robust with the highly resistant, reinforced PFA liner and Hastelloy[®] electrodes. This offers an excellent chemical resistance.

The device is a cost-efficient and reliable solution for a wide range of applications. For industries varying from water and wastewater, agriculture, utilities and from fire-fighting to machine building.

- ① Sandwich design
- ② PFA liner
- 3 Hastelloy® electrodes

Highlights

- Sandwich (wafer) design
- Lightweight and compact for easy handling and space saving installation
- Affordable price
- Excellent chemical resistance
- Bi-directional measurements
- No pressure loss
- Insensitive to vibrations
- No internal moving parts, no maintenance

Industries

- · Machine building
- Energy, HVAC
- Water & wastewater
- Agriculture
- · Process industries

Applications

- · Mixing, batching and dosing systems, filtration systems, pump control
- · Water flow monitoring
- Water circulation and treatment systems
- · Fire-fighting systems, foam mixing, control of sprinkler systems
- Heat transfer and cooling systems
- Water including; raw water, process water, wastewater, salt water, heated and cooled water
- Mud, slurry, sludge, manure

1.2 Options

The **OPTIFLUX 1000** flow sensor is available in a diameter range from DN10 up to DN150 / 3/8...6". The compact flangeless flow sensor meets all applicable process connections: EN 1092, DIN, ANSI and JIS.

Signal converters

The **OPTIFLUX 1000** flow sensor is compatible with the IFC 050, IFC 100, IFC 300 and IFC 400 signal converter.

The flangeless flowmeter is suitable for compact and remote (field) mounting.

1.3 Measuring principle

An electrically conductive fluid flows inside an electrically insulated pipe through a magnetic field. This magnetic field is generated by a current, flowing through a pair of field coils. Inside of the fluid, a voltage U is generated:

U = v * k * B * D

in which:

v = mean flow velocity

k = factor correcting for geometry

B = magnetic field strength

D = inner diameter of flowmeter

The signal voltage U is picked off by electrodes and is proportional to the mean flow velocity v and thus the flow rate Q. A signal converter is used to amplify the signal voltage, filter it and convert it into signals for totalizing, recording and output processing.

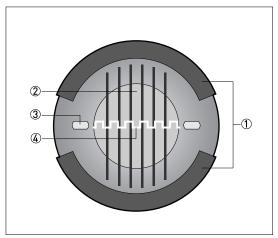


Figure 1-1: Measuring principle

- ① Field coils
- Magnetic field
- 3 Electrodes
- 4 Induced voltage (proportional to flow velocity)

2.1 Technical data

- The following data is provided for general applications. If you require data that is more relevant to your specific application, please contact us or your local sales office.
- Additional information (certificates, special tools, software,...) and complete product documentation can be downloaded free of charge from the website (Downloadcenter).

Measuring system

Measuring principle Faraday's law of induction		
Application range This electromagnetic flowmeter is designed exclusively to meas flow of electrically conductive, liquid media.		
Measured value		
Primary measured value Flow velocity		
Secondary measured value Volume flow		

Design

Features	Sandwich design		
	PFA liner and Hastelloy® electrodes		
	Lightweight and compact		
Modular construction The measurement system consists of a flow sensor and a signal of the signal of the signal converter. The measurement system consists of a flow sensor and a signal of the signal converter.			
Compact version	With signal converter IFC 050: OPTIFLUX 1050 C		
	With signal converter IFC 100: OPTIFLUX 1100 C		
	With signal converter IFC 300: OPTIFLUX 1300 C		
	With signal converter IFC 400: OPTIFLUX 1400 C		
Remote version	In wall (W) mount version with signal converter IFC 050: OPTIFLUX 1050 W		
	In wall (W) mount version with signal converter IFC 100: OPTIFLUX 1100 W		
	In field (F), wall (W) or rack (R) mount version with signal converter IFC 300: OPTIFLUX 1300 F, W or R.		
	In field (F), wall (W) or rack (R) mount version with signal converter IFC 400: OPTIFLUX 1400 F, W or R.		
Nominal diameter	DN10150/ 3/86"		

Measuring accuracy

Maximum measuring error	IFC 050: down to 0.5% of the measured value ± 1 mm/s	
	IFC 100: down to 0.4% of the measured value ± 1 mm/s	
	IFC 300 and IFC 400: down to 0.3% of the measured value ± 2 mm/s	
	The maximum measuring error depends on the installation conditions	
	For detailed information refer to <i>Measuring accuracy</i> on page 11.	
Repeatability	± 0.1% of the measured value (mv); minimum 1 mm/s	
Calibration	2 point calibration by direct volume comparison Optional: special calibration on request	

Operating conditions

Temperature			
Process temperature	-25+120°C/ -13+248°F		
Ambient temperature	-25+65°C/ -13+149°F		
Protect the electronics agai	nst self-heating at ambient temperatures above +55°C/ +131°F		
Storage temperature	perature -50+70°C/ -58+158°F		
Measuring range	-12+12 m/s / -40+40 ft/s		
Pressure			
Ambient pressure	Atmospheric		
Operating pressure	Up to 16 bar/230 psi		
Vacuum load	0 mbar/psi absolute		
Pressure loss Negligible			
Pressure ranges for	Pressure resistant up to 40 bar/580 psi		
secondary containment	Burst pressure up to approximately 160 bar/2320 psi		
Chemical properties			
Physical condition	Electrically conductive liquids		
Electrical conductivity	Standard measurement		
	For detailed information refer to the relevant signal converter document.		
Permissible gas content	IFC 050: ≤ 3%		
(voturne)	IFC 100: ≤ 3%		
	IFC 300 / IFC 400: ≤ 5%		
Permissible solid content (volume)	IFC 050: ≤ 10%		
(votaine)	IFC 100: ≤ 10%		
	IFC 300 / IFC 400: ≤ 70%		

Installation conditions

Installation	Assure that the flow sensor is always fully filled	
	For detailed information refer to <i>Installation</i> on page 15.	
Flow direction	Forward and reverse	
	Arrow on the flow sensor indicates positive flow direction	
Inlet run	≥ 5 DN	
Outlet run	≥ 2 DN	
Dimensions and weights	For detailed information refer to <i>Dimensions and weights</i> on page 12.	

Materials

Flow sensor housing	DN1040 / 3/81 1/2": malleable iron (GTW-S-38-12)		
	DN50150 / 26": sheet steel		
Measuring tube	Austenitic stainless steel		
Liner	PFA		
Protective coating	On exterior of the meter: housing, signal converter (compact version) and/or connection box (field version).		
	Standard coating		
Connection box	Only for remote versions		
	Standard: die-cast aluminium		
	Option: stainless steel		
Measuring electrodes	Hastelloy [®] C		
Grounding rings	Standard: for DN1015 / 3/81/2": integrated in flow sensor construction		
	Optional: for DN25150 / 16"		
	Stainless steel 316L / 1.4404		
	Grounding rings can be omitted with virtual reference option for the signal converter IFC 300 / IFC 400		
Mounting material	DN40150 / 1 1/26"		
	Standard: rubber centering sleeves		
	Option: galvanised steel or stainless steel stud bolts and nuts		

Process connections

Counter flanges		
EN 1092-1	DN1080: PN 16 or PN 40 DN100150: PN 16 (standard); PN 40 on request	
ASME	3/86": 150 lb / RF 3/84": 300 lb / RF	
JIS	DN10100: JIS 20K (≤ 16 bar); DN150: JIS 10K (≤ 10 bar)	

Electrical connections

	For full detail refer to the relevant documentation of the signal converter.		
Signal cable (for remote systems only)			
Type A (DS)	In combination with the signal converter IFC 050, IFC 100, IFC 300 and IFC 400		
	Standard cable, double shielded. Max. length: 600 meter / 1968 feet (depends on electrical conductivity and flow sensor)		
Type B (BTS)	Only in combination with the signal converter IFC 300 and IFC 400		
	Optional cable, triple shielded. Max. length: 600 meter / 1968 feet (depends on electrical conductivity and flow sensor).		
1/0	For full details of I/O options, including data streams and protocols, see technical datasheet of the relevant signal converter.		

Approvals and certifications

CE			
This device fulfils the statute successful testing of the pro	ory requirements of the relevant directives.The manufacturer certifies duct by applying the conformity mark on the device.		
	For more information on the directives, standards and the approved certifications, please refer to the declaration of conformity supplied with the device or downloadable from the manufacturer's website.		
Hazardous areas			
Non-Ex	Standard		
ATEX	In combination with signal converter IFC 300 C/F		
	Zone 2 - II 3G Ex ic nA IIC T4T3 Gc		
UKCA	TBD		
FM	In combination with signal converter IFC 300 C/F		
	Class I, Division 2, Groups A, B, C and D		
	Class II, Division 2, Groups F and G		
	Class III, Division 2		
CSA	In combination with signal converter IFC 300 C/F		
	Class I, Division 2, Groups A, B, C and D		
	Class II, Division 2, Groups F and G		
cCSAus OL	In combination with signal converter IFC 100 C/W and IFC 300 C/F/W		
Other approvals and standar	rds		
Custody transfer	Only in combination with signal converter IFC 300		
	Cold water		
	OIML R49 Certificate		
	MID Annex MI-001 type examination certificate		
	Liquids other than water		
	Suitable component in measuring systems in accordance with MID Annex MI-005		
	OIML R117-1 Certificate		
Protection category acc. to	Standard: IP66/67, NEMA 4/4X/6.		
IEC 60529	IP67/69 with IFC 100 (stainless steel) signal converter		
Shock test	IEC 60068-2-27		
	30 g for 18 ms		
Vibration test	IEC 60068-2-24		
	f = 202000 Hz, rms = 4.5 g, t = 30 min		

2.2 Measuring accuracy

Every electromagnetic flowmeter is calibrated by direct volume comparison. The wet calibration validates the performance of the flowmeter under reference conditions against accuracy limits.

The accuracy limits of electromagnetic flowmeters are typically the result of the combined effect of linearity, zero point stability and calibration uncertainty.

Reference conditions

• Medium: water

• Temperature: +5...+35°C / +41...+95°F

• Operating pressure: 0.1...5 barg / 1.5...72.5 psig

Inlet section: ≥ 5 DN
 Outlet section: ≥ 2 DN

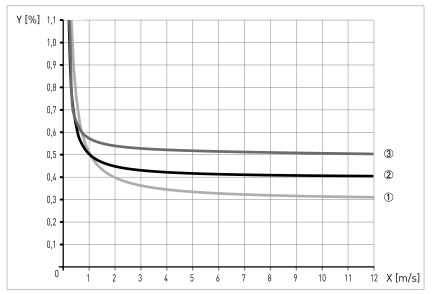
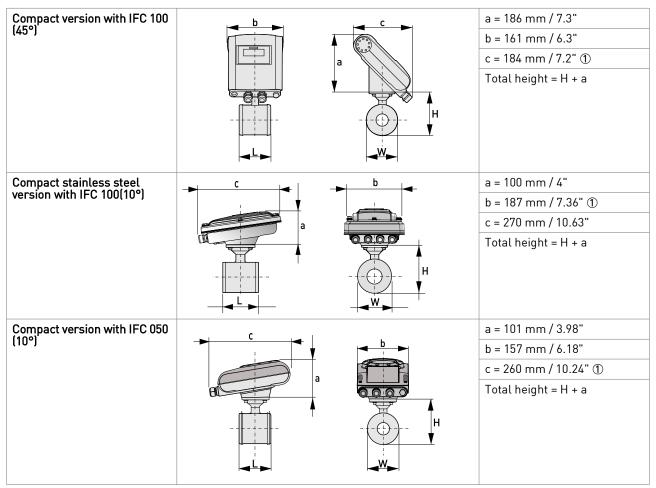


Figure 2-1: Flow velocity vs. accuracy

X [m/s]: flow velocity


Y [%]: deviation from the actual measured value (mv)

Accuracy

Flow sensor diameter	Signal converter type	Accuracy	Curve
DN10150 (3/86")	IFC 050	0.5% of mv + 1 mm/s	3
DN10150 (3/86")	IFC 100	0.4% of mv + 1 mm/s	2
DN10150 (3/86")	IFC 300/ IFC 400	0.3% of mv + 2 mm/s	1

2.3 Dimensions and weights

Remote version: DN1040 / 3/811/2"	C	b	a = 88 mm / 3.5" b = 139 mm / 5.5" ① c = 106 mm / 4.2" Total height = H + a
Remote version: DN50150 / 26"	b b H	c W W	a = 88 mm / 3.5" b = 139 mm / 5.5" ① c = 106 mm / 4.2" Total height = H + a
Compact version with IFC 300	b a a	c W	a = 155 mm / 6.1" b = 230 mm / 9.1" ① c = 260 mm / 10.2" Total height = H + a
Compact version with IFC 400	b a a	c W	a = 160 mm / 6.3" b = 240 mm / 9.5" ① c = 260 mm / 10.2" Total height = H + a
Compact version with IFC 100 (0°)	C a	b W W	a = 82 mm / 3.2" b = 161 mm / 6.3" c = 257 mm / 10.1" ① Total height = H + a

① The value may vary depending on the used cable glands.

- All data given in the following tables are based on standard versions of the flow sensor only.
- Especially for smaller nominal sizes of the flow sensor, the signal converter can be bigger than the flow sensor.
- Note that for other pressure ratings than mentioned, the dimensions may be different.
- For full information on signal converter dimensions see relevant documentation.

EN 1092-1

Nominal size	Dimensions [mm]			Approx. weight [kg]
DN	L	Н	W	[Kg]
10	68	137	47	1.7
15	68	137	47	1.7
25	54	147	66	1.7
40	78	162	82	2.6
50	100	151	101	4.2
80	150	180	130	5.7
100	200	207	156	10.5
150	200	271	219	15.0

ASME B16.5

Nominal size	Dimensions [inch]			Approx. weight
ASME	L	Н	W	[lb]
3/8"	2.68	5.39	1.85	3.7
1/2"	2.68	5.39	1.85	3.7
1"	2.13	5.79	2.6	3.7
1 1/2"	3.07	6.38	3.23	5.7
2"	3.94	5.94	3.98	9.3
3"	5.91	7.08	5.12	12.6
4"	7.87	8.15	6.14	23.1
6"	7.87	10.67	8.62	33.1

3.1 Intended use

Responsibility for the use of the measuring devices with regard to suitability, intended use and corrosion resistance of the used materials against the measured fluid lies solely with the operator.

The manufacturer is not liable for any damage resulting from improper use or use for other than the intended purpose.

This electromagnetic flowmeter is designed exclusively to measure the flow of electrically conductive, liquid media.

3.2 General notes on installation

Inspect the packaging carefully for damages or signs of rough handling. Report damage to the carrier and to the local office of the manufacturer.

Do a check of the packing list to make sure that you have all the elements given in the order.

Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

3.2.1 Vibrations

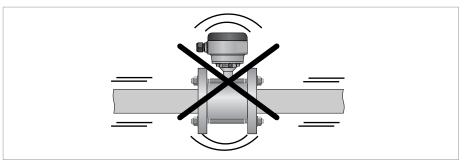


Figure 3-1: Avoid vibrations

3.2.2 Magnetic field

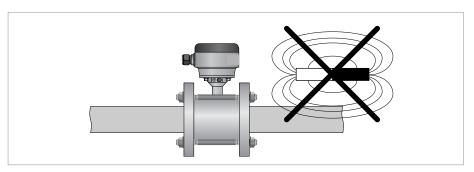


Figure 3-2: Avoid magnetic fields

3.3 Installation conditions

For the highest measuring accuracy, respect the recommended inlet and outlet lengths in the following paragraphs. The flow sensor in combination with the IFC 300 signal converter, can be installed in a 0D/0D configuration (no inlet and no outlet length). For installation conditions and accuracies see section OIML and MID in this manual and the OIML R49 /MID MI-001 certificates at the manufacturer's website.

3.3.1 Inlet and outlet

Use straight inlet and outlet pipe sections to prevent flow distortion or swirl, caused by bends and T- sections

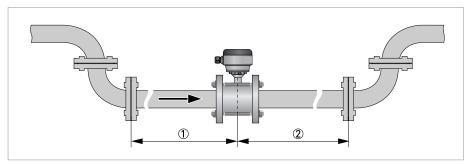


Figure 3-3: Recommended inlet and outlet section

- ① Refer to chapter "Bends in 2 or 3 dimensions"
- ② ≥ 2 DN

3.3.2 Bends in 2 or 3 dimensions

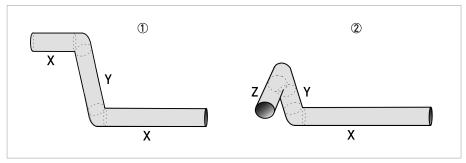


Figure 3-4: 2 and/or 3 dimensional bends upstream of the flowmeter

- ① 2 dimensions = X/Y
- 2 3 dimensions = X/Y/Z

Inlet length: using bends in 2 dimensions: \geq 5 DN; when having bends in 3 dimensions: \geq 10 DN

2 dimensional bends occur in a vertical **or** horizontal plane (X/Y) only, while 3 dimensional bends occur in both vertical **and** horizontal plane (X/Y/Z).

3.3.3 Bends

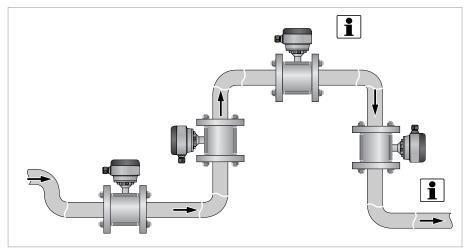


Figure 3-5: Installation in bending pipes (90°)

NOTE

Recommended installation positions are at a lowered or ascending section of the pipeline installation. Installation at the highest point will enlarge the risk of flowmeter malfunction, because of air/gas bubbles.

Vertical installation in combination with an open discharge has to be avoided. Vertical installation with a controlled back-pressure is possible.

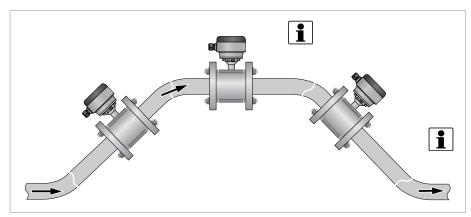


Figure 3-6: Installation in bending pipes (45°)

NOTE!

Vertical installation on a descending slope in the pipeline is only recommended when the back-pressure is controlled.

Avoid draining or partial filling of the flow sensor.

3.3.4 T-section

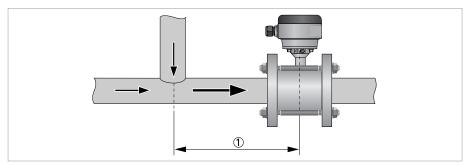


Figure 3-7: Distance behind a T-section

① ≥ 10 DN

3.3.5 Open feed or discharge

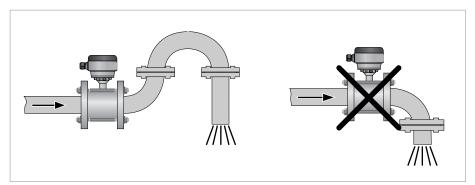


Figure 3-8: Installation in front of an open discharge

3.3.6 Control valve

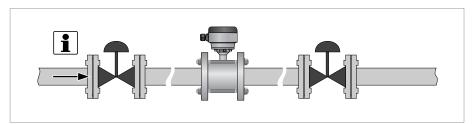


Figure 3-9: Installation in front of a control valve

NOTE!

Recommended position to install a flowmeter is upstream a control valve. An electromagnetic flowmeter can be installed downstream of the control valve if there is no cavitation in the pipeline system (e.g. flow profile disturbances are resolved).

3.3.7 Pump

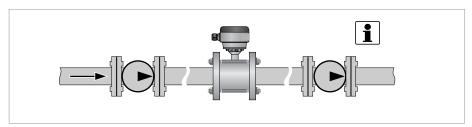


Figure 3-10: Installation behind a pump

NOTE!

Recommended position to install a flowmeter is downstream a pump (on a position where the flow disturbances of the pump are resolved).

An electromagnetic flowmeter can be installed in the suction line of a pump if there is no cavitation in the pipeline system.

3.3.8 Air venting and vacuum forces

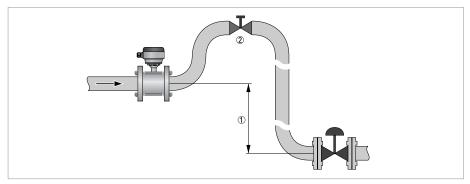


Figure 3-11: Air venting

- ① ≥ 5 m / 17 ft ② Air ventilation point

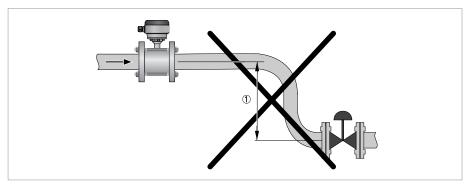


Figure 3-12: Vacuum

① $\geq 5 \, \text{m} / 17 \, \text{ft}$

3.3.9 Flange deviation

Max. permissible deviation of pipe flange faces: $L_{max} - L_{min} \le 0.5 \, \text{mm} / 0.02$ "

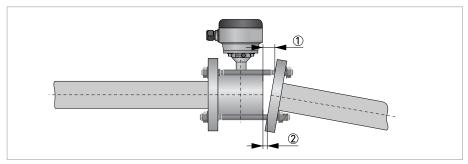


Figure 3-13: Flange deviation

- $\begin{array}{cc} \textcircled{1} & \mathsf{L}_{\mathsf{max}} \\ \textcircled{2} & \mathsf{L}_{\mathsf{min}} \end{array}$

3.3.10 Mounting position

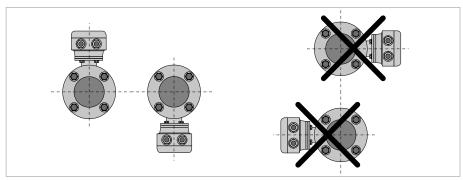


Figure 3-14: Mounting position

4.1 Safety instructions

All work on the electrical connections may only be carried out with the power disconnected. Take note of the voltage data on the nameplate!

Observe the national regulations for electrical installations!

For devices used in hazardous areas, additional safety notes apply; please refer to the Ex documentation.

Observe without fail the local occupational health and safety regulations.

Any work done on the electrical components of the measuring device may only be carried out by properly trained specialists.

Look at the device nameplate to ensure that the device is delivered according to your order. Check for the correct supply voltage printed on the nameplate.

4.2 Grounding

The device must be grounded in accordance with regulations in order to protect personnel against electric shocks.

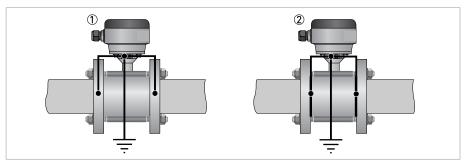


Figure 4-1: Grounding

- ① Metal pipelines, not internally coated. Grounding without grounding rings!
- $\textcircled{2} \quad \text{Metal pipelines with internal coating and non-conductive pipelines. Grounding with grounding rings!}$

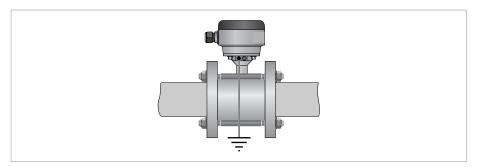


Figure 4-2: Build-in grounding rings for DN10-15 / 3/8 - 1/2 "

For diameter DN10/3/8" and DN15/1/2", grounding rings are integrated as standard in the flow sensor construction.

Grounding rings

Figure 4-3: Grounding ring number 1

Grounding ring number 1 (optional for DN25...150 / 1...6"): Thickness: 3 mm / 0.1"

4.3 Virtual reference option

CAUTION!

Only in combination with the IFC 300 and IFC 400 signal converter (C, W and F version)

Benefits of virtual reference:

- Grounding rings or grounding electrodes can be omitted.
- Safety increases by reducing the number of potential leakage points.
- The installation of the flowmeters is much easier.
- Compliant with OIML-R49 and MID MI-001 certification (IFC 300).

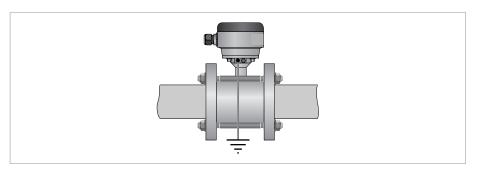
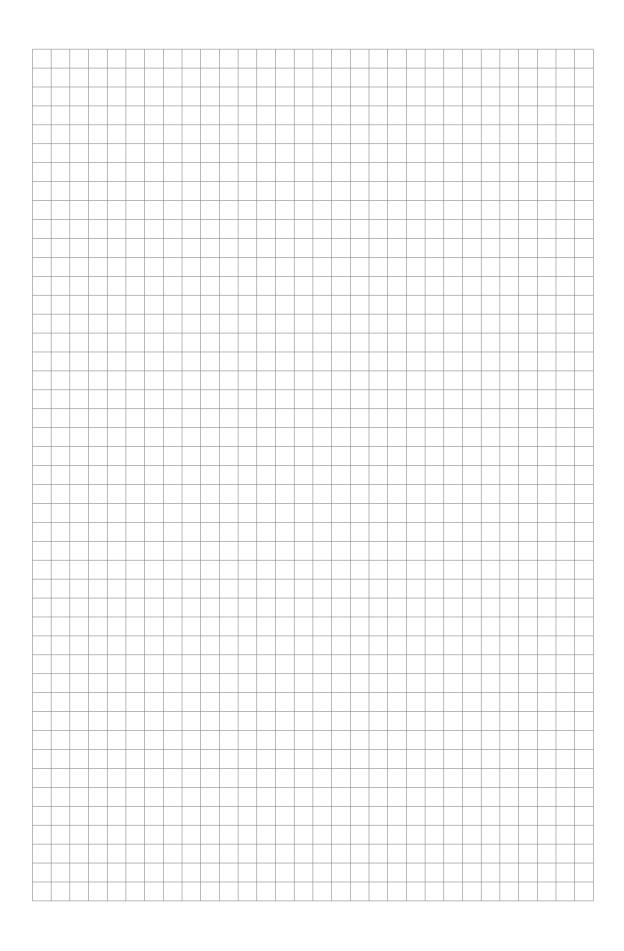


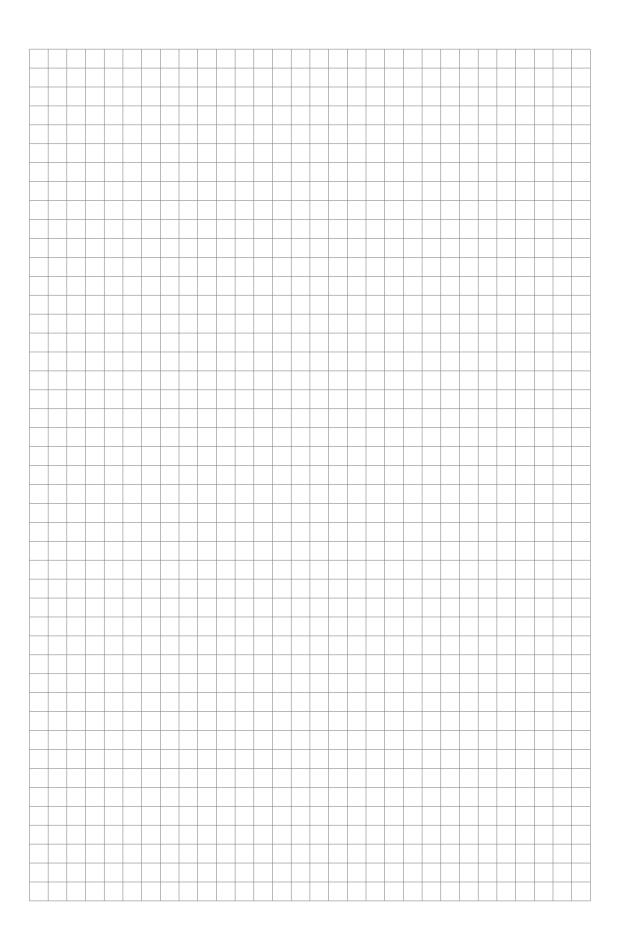
Figure 4-4: Virtual reference

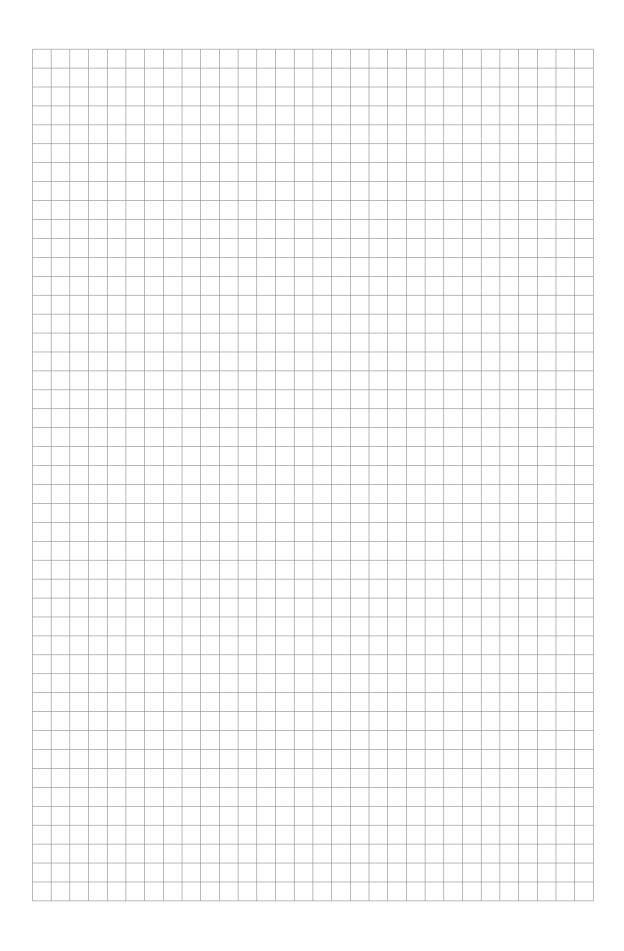
Minimum requirements:

- Electrical conductivity: ≥ 200 µS/cm
- Signal cable: max. 50 m / 164 ft, type DS

INFORMATION!


Virtual reference cannot be activated when the IFC 400 is in the SIL mode.


4.4 Connection diagrams



INFORMATION!

For the connection diagrams, please refer to the documentation of the applicable signal converter.

KROHNE - Products, Solutions and Services

- Process instrumentation for flow, level, temperature, pressure measurement and process analytics
- Flow metering, monitoring, wireless and remote metering solutions
- Engineering, commissioning, calibration, maintenance and training services

Head Office KROHNE Messtechnik GmbH Ludwig-Krohne-Str. 5 47058 Duisburg (Germany) Tel.: +49 203 301 0

Fax: +49 203 301 10389

info@krohne.de

The current list of all KROHNE contacts and addresses can be found at: www.krohne.com

