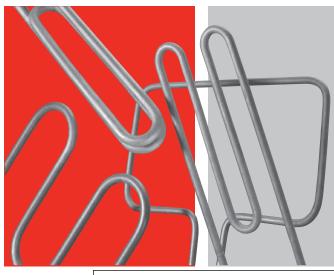
WATROD[™] Single/Double-Ended Heaters

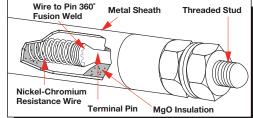
Available in single- or double-ended termination styles, the versatile and economical WATROD[™] tubular heating element from Watlow[®] lends itself to virtually the entire range of immersion and air heating applications.

The single-ended WATROD tubular design has both terminals at one end. The opposite end is sealed. Flexible lead wires are 12 in. (305 mm) crimp connected to the terminal pin and have silicone-impregnated fiberglass oversleeves.

The double-ended WATROD, with its round cross-sectional geometry, is highly adaptable for bending — especially when bending is performed in the field. Watlow's double-ended MULTICOIL[™] tubular elements offer various combinations of resistor coils and thermocouples inside one sheath. They have the ability to sense the heater's internal temperature accurately every time, or offer three-phase capability in one element.

Both single- and double-ended WATRODs share many construction features delivering long life—the resistance wire is centered in the heater sheath and electrically insulated with compacted, high-grade magnesium oxide for superior heating performance.


WATROD heating elements have a variety of mounting and termination options making them highly popular among industrial customers.


Single-Ended WATROD Performance Capabilities

- Watt densities up to 45 W/in² (6.9 W/cm²)
- UL® and CSA component recognition up to 240VAC
- Alloy 800/840 and stainless steel sheath temperatures up to 1200°F (650°C)

Double-Ended WATROD Performance Capabilities

- Watt densities up to 120 W/in² (18.6 W/cm²)
- UL® and CSA component recognition up to 600VAC
- Alloy 800/840 sheath temperatures up to 1600°F (870°C)
- Stainless steel sheath temperatures up to 1200°F (650°C)
- Steel sheath temperatures up to 750°F (400°C)
- Alloy 800 sheath temperatures up to 1800°F (982°C)

Features and Benefits

Precision wound nickel-chromium resistance wire

• Distributes heat evenly to the sheath for optimum heater performance

Silicone resin seals

 Protects against moisture contamination and is rated to 221°F (105°C)

MgO insulation filled sheath

• Maximizes dielectric strength, heat transfer and life

Standard sheath materials

• Steel, 304 and 316 stainless steel, alloy 800/840 and alloy 600

53 standard bend formations

 Allows forming the heating element to the application. Spirals, compound bends and multi-axis and multi-plane configurations

Stainless steel studs

• Fusion welded to terminal pins for mechanical strength

Popular termination, mounting and moisture seal options available

WATROD Single/Double-Ended Heaters

Specifications

		Dou	ble-Ended		Single-Ended					
		5				35				
Applications	Direct immersi	on	Vacuums		Platens					
	Hot runner mo	ld (manifold)	Semiconductor		Forced air					
	Forced air				Deicing ant	tennas				
	Ovens				Plastic wra	p cutting				
	Radiant				Seal bars					
	Clamp-on									
Watt Density	Catalog P/N:		up to 60	(9.3)	Catalog P/I	N:	up to 20	(3.1)		
W/in² (W/cm²)	Standard:		up to 120	(18.6)	Standard:		up to 45	(6.9)		
Element Diameters	Dia.	<u>in</u> ²	<u>Dia. (mm)</u>	<u>cm</u> ²	Dia.	<u>in</u> ²	<u>Dia. (mm)</u>	<u>cm</u> ²		
in. (mm)	0.210	0.660	(5.33)	(4.26)	0.375	1.178	(9.53)	(7.600)		
and Surface Area per Linear	0.260	0.817	(6.60)	(5.27)	0.430	1.351	(10.92)	(8.717)		
in² (cm²)	0.315	0.990	(8.00)	(6.38)	0.475	1.492	(12.07)	(9.626)		
Diameter Tolerance	0.375	1.178	(9.53)	(7.60)						
± 0.005 in. (0.13 mm)	0.430	1.351	(10.92)	(8.72)						
	0.475	1.492	(12.07)	(9.63)						
Sheath Materials	Standard:	Alloy 800/840	1600°F	(870°C)	Standard:	Alloy 800/840		(650°C)		
Max. Operating		316 SS	1200°F	(650°C)		316 SS	1200°F	(650°C)		
Temperature		Steel	750°F	(400°C)		304 SS	1200°F	(650°C)		
		304 SS	1200°F	(650°C)						
		Alloy 600	1800°F	(980°C)						
Sheath Length By Diameter		Sheath		Sheath		Sheath		Sheath		
in. (mm)	Dia.	Length (in.)	<u>Dia. (mm)</u>	Length (mm)	<u>Dia.</u>	Length (in.)	<u>Dia. (mm)</u>	Length (mm)		
	Standard:				Standard:					
	0.210	9 to 130	(5.33)	(230 to 3300)	0.375	11 to 125	(9.53)	(280 to 3175)		
	0.260	9 to 270	(6.60)	(230 to 6858)	0.430	11 to 106	(10.92)	(280 to 2690)		
	0.315	9 to 270	(8.00)	(230 to 6858)	0.475	11 to 125	(12.07)	(280 to 3175)		
	0.375	11 to 360	(9.53)	(280 to 9144)						
	0.430	11 to 360	(10.92)	(280 to 9144)						
	0.475	11 to 275	(12.07)	(280 to 6985)						
Min. No-Heat Length	Sheath	No-Heat	Sheath	No-Heat	Sheath	No-Heat	Sheath	No-Heat		
in. (mm)	Length	Length	Length	<u>Length</u>	Length	Length	Length	Length		
	11 to 20	1	(280 to 510)	(25)	11 to 20	1 ¹ /2	(280 to 5100)	(38)		
	21 to 50	1 ¹ /4	(535 to 1270)	(32)	21 to 50	1 ³ /4	(533 to 1270)	(44)		
	51 to 80	11/2	(1295 to 2030)	(38)	51 to 80	21/8	(1295 to 2030)	(54)		
	81 to 110	1 ⁵ /8	(2055 to 2795)	(42)	81 to 110	2 ³ /8	(2055 to 2795)	(60)		
	111 to 140	1 ³ /4	(2820 to 3555)	(44)	111 to 125	2 ⁵ /8	(2820 to 3175)	(67)		
	141 to 170	2	(3580 to 4320)	(51)						
	171 to 200	21/4	(4345 to 5080)	(57)						
	201 & up	21/2	(5105 & up)	(64)		•	gth on all blunt e			
Max. Voltage/Amperage	Dia.	Volts	Amperes		<u>Dia.</u>		<u>lts</u>	Ampere		
By Dia.	0.260 (6.6)	250VAC	15			. ,	OVAC	30		
in. (mm)	0.315 (8.0)	480VAC	30			,	OVAC	30		
	0.375 (9.53)	480VAC	30		0.475 (12.07) 48	OVAC	30		
	0.430 (10.92)	600VAC	40							
	0.475 (12.07)	600VAC	40							

WATROD Single/Double-Ended Heaters

Specifications (Continued)


Double-Ended Single-Ended Q Ъ **Ohms Per Heated Inch** Dia. Min. Dia. Min. Max. Max. 0.375 0.150Ω Bv Dia. 0.210 0.130Ω 25Ω 14Ω 0.260 0.080Ω 0.430 0.150Ω 24Ω in. 16Ω 0.315 0.050Ω 25Ω 0.475 0.150Ω 22Ω 0.375 0.030Ω 20Ω 0.430 0.030Ω 25Ω 0.475 0.035Ω 25Ω Terminations Standard: Threaded stud Standard: Flexible lead wires Rubber overmolds Screw lug (plate) Quick connect (spade) Flexible lead wires Seals Standard: Silicone resin 221°F (105°C) Standard: Silicone resin 221°F (105°C) Ceramic base 2800°F (1535°C) Silicone rubber (RTV) 500°F (260°C) Ceramic-to-metal 482°F (250°C) Epoxy resin 194/356°F (90/180°C) Silicone rubber (RTV) 392°F (200°C) 392°F Silicone resin (200°C) 194/356°F (90/180°C) Epoxy resin **Mounting Options** Threaded bulkheads Threaded bulkhead Mounting brackets Locator washers Mounting collars Locator washers Mounting collars Surface Finish Options Oxide anneal Oxide anneal Bright anneal Bright anneal Passivation Passivation UL® Component to 480VAC (File # E52951/E56488) UL® Component to 240VAC (File # E52951) Agency Recognition CSA Component to 600VAC (File # 31388) CSA Component to 240VAC (File # 31388) ①

① Not applicable to 0.375 inch diameter single-ended WATROD.

WATROD Single/Double-Ended Heaters

Options

Moisture Resistant Seals

WATROD's MgO insulating material is hygroscopic. To control the rate of moisture entering the heater, an appropriate moisture seal must be used. Choosing the correct seal is important to the life and performance of the heater. All materials have varying rates of gas vapor transmission. Be sure the maximum continuous use temperature is not exceeded at the seal location. Most end seals are applied with a small cavity in the end of the heater. The seal will also help prevent arcing at the terminal ends

Zoned Heaters

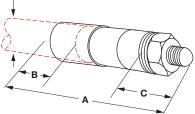
Single zone heaters are only available.

External Finishes

Bright Annealing

Bright annealing is a process that produces a smooth, metallic finish. It is a special annealed finish created in a non-oxidizing atmosphere. This finish is popular in the pharmaceutical and food and beverage markets.

To order, specify bright annealing.


Passivation

During the manufacturing process, particles of iron or tool steel may become embedded in the stainless steel or alloy sheath. If not removed, these particles may corrode, produce rust spots and/or contaminate the process. For critical sheath applications, passivation will remove free iron from the sheath.

To order, specify **passivation**.

Ceramic-to-Metal End-Seal

Sheath Diameter

Ceramic-to-metal end-seals with threaded stud terminations provide an air-tight seal for continuous terminal temperatures up to 500°F (260°C). Watlow does not recommend this seal if terminations are exposed to temperatures exceeding 500°F (260°C).

She Diam in.		A in. (mm)	B in. (mm)	C in. (mm)	Thread Size
0.260	(6.6)	1 ¹¹ /16 (42.9)	¹ /2 (13)	¹³ /32 (10.32)	#8-32
0.315	(8.0)	1 ⁷ /8 (47.6)	¹ / ₂ (13)	¹³ /32 (10.32)	#10-32
0.430	(10.9)	21/8 (54.0)	¹ / ₂ (13)	¹³ /32 (10.32)	#¼-28

Options (Continued)

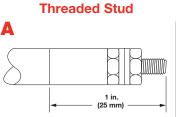
End-Seal Options

	Part		UL®	Max. Cont. Use	
End-Seal	Number	Color	Recognition	Temperature	Typical or General Usage/Application
Standard Epoxy	EC	Cream	Yes	194°F (90°C)	Long term stable insulation resistance
Intermediate Epoxy	EB	Gray	Yes	356°F (180°C)	Long term stable insulation resistance
High-Temp. Epoxy	HTE	Amber	No	450°F (232°C)	Long term stable insulation resistance
Silicone Resin	SR	Clear	Yes	221°F (105°C)	General usage on tubular products - porous
Silicone Fluid	SF	Clear	No	392°F (200°C)	Moisture resistance of the MgO, or high temperature
					ceramic seal (storage only) - porous
Lavacone	LC	Dark Brown	Yes	221°F (105°C)	Porous seal for the FIREBAR
Silicone Rubber RTV	RTV	Red-Orange	Yes	392°F (200°C)	General usage on FIREBAR applications - porous
High-Temperature	HTC	White	Yes	2800°F (1538°C)	Very high-temperature applications - for extremely low vapor
Ceramic					transmission rate

Terminations

Double-ended WATROD elements are available with a variety of terminations. Single-ended WATROD elements are available with only flexible lead wires.

The following table and illustrations detail the terminations available with double- or single-ended WATRODs—for each available sheath diameter.


Flexible lead wires are 12 in. (305 mm), Sil-A-Blend[™] 390°F (200°C) unless otherwise specified. Insulation options include TGGT 480°F (250°C) plus other temperature ratings. Contact your Watlow representative.

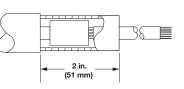
Overmolds are available for flexible lead wires only. Available in silicone rubber 390°F (200°C) and neoprene 212°F (90°C). Contact your Watlow representative.

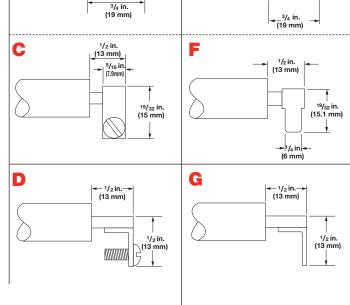
н

1/₄ in. (6 mm)

WATROD	Shea Diame		ThreadedScrew LugStud ^① (Plate)					ck Conne (Spade)	ct	Flexible Lead Wires	
Element	in.	(mm)	Α	В	С	D	E	F	G	н	
Double-Ended	0.260	(6.6)	#6-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	0.315	(8.0)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	0.335	(8.5)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	0.375	(9.5)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	0.430	(10.9)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	0.475	(12.1)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
	0.490	(12.5)	#10-32	Yes	Yes	Yes	Yes	Yes	Yes	Yes	
Single-Ended	0.375	(9.53)	No	No	No	No	No	No	No	Yes	
	0.430	(10.9)	No	No	No	No	No	No	No	Yes	
	0.475	(12.1)	No	No	No	No	No	No	No	Yes	
	0.490	(12.5)	No	No	No	No	No	No	No	Yes	

① Optional #8-32, ¼ in. and 4 or 5 mm studs available. Consult factory for details.


¹⁹/₃₂ in. (15.1 mm)


B

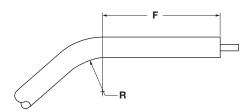
4_1/2 in.___ (13 mm)

Flexible Lead Wires

Ε

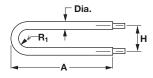
⁵/₁₆ in. (7.9 mm

A


Bend Formations

Double-Ended WATROD Bend Formations

Double-ended WATROD heating elements can be formed into spirals, compounds, multi-axis and multi-planes from 36 common bend configurations. Custom bending with tighter tolerances can be made to meet specific application needs.


Formation is limited by the minimum bend radius (R) and the straight length (F) required beyond the bend. In order to locate the end of a heated length within a bend, the radius must be 3 in. (76 mm) or larger. Additionally, overall length tolerance (T) must be included in one or more of the straight lengths.

Minimum radius for various sheath diameters and lengths are shown in the *Bend Formations* chart below. Illustrated on pages 67 to 76 are the 51 common bend configurations available on both stock and made-to-order WATROD heating elements.

	WATROD Leng	th Tolerance (T))
Sheat	h Length	Length T	olerance
in.	(mm)	in.	(mm)
11-50	(280-1270)	±1/8	(±3)
51-110	(1295-2795)	± ³ /16	(±5)
111-170	(2820-4320)	±1/4	(±6)
171-200	(4345-5080)	± ³ /8	(±10)
201 & up	(5105 & up)	±1/2	(±13)

Figure 1

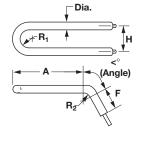
SL = 2A + 1.14R₁ - 0.43 Dia. (For pricing, use 1 bend)

Single-Ended WATROD Bend Formations

Watlow does not recommend field bending single-ended WATROD elements. Formation is limited by the minimum radius of a bend (R) and the straight length (F) beyond the bend. The radius must be 3 in. (75 mm) or more for the heated length's end to be inside a bend.

Additionally, the overall length tolerance (T) must be provided for in one or more of the specified lengths.

The four common bend configurations available for standard and made-to-order single-ended WATROD elements are Figures 1, 6, 22 and 28.

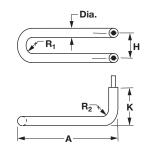

To order a common bend formation, specify the **bend figure number**, dimensions and critical tolerances.

	WATROD Minimum Radius											
Sheath	Diameter	Field E	Bend R $^{(1)}$	Facto	ory R $^{ extsf{1}}$	F ^② Dimension						
in.	(mm)	in.	()		(mm)	in.	(mm)					
0.260	(6.6)	³ /4	(19.0)	³ /8	(9.5)	1/2	(13.0)					
0.315	(8.0)	3/4	3/4 (19.0)		(13.0)	1/2	(13.0)					
0.375	(9.52)	1	(25.0)	1/2	(13.0)	1/2	(13.0)					
0.430	(10.92)	1	(25.0)	1/2	(13.0)	3/4	(19.0)					
0.475	(12.07)	1	(25.0)	⁵ /8	(15.9)	1	(25.0)					
0.490	(12.45)	1	(25.0)	⁵ /8	(15.9)	1	(25.0)					

① R is the inside radius of a bend.

② F is the distance from the sheath's end to the start of the first bend.

Figure 2


SL = 2A + 2F + 1.14R₁ + 0.0175 (<°) (2R₂ + Dia.) - 0.43 Dia. (For pricing, use 3 bends)

WATLOW®

WATROD Single/Double-Ended Heaters

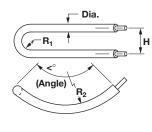

Bend Formations (Continued)

Figure 3

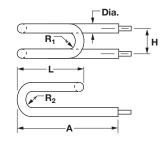

 $[\]begin{split} SL &= 2K - 0.86R_2 - 2.86 \text{ Dia.} + 2A + 1.14R_1 \\ (& \text{For pricing, use 3 bends}) \end{split}$

Figure 5

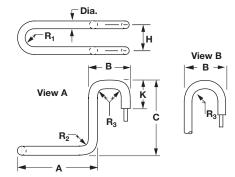

SL = 0.0175(<°) (2R₂ + Dia.) +1.14R₁ + 0.43 Dia. (For pricing, use 3 bends)

Figure 7

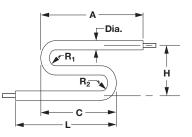

$$\begin{split} SL &= 2A + 2.28R_2\text{-} 1.29 \text{ Dia.} + 2L + 1.14R_1 \\ (\text{For pricing, use 3 bends}) \end{split}$$

Figure 4

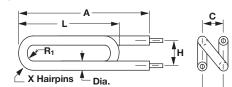

 $\begin{array}{l} \mbox{View A: SL} = 2 \mbox{K-} 1.72 \mbox{R}_3 - 7.72 \mbox{Dia.} + 2 \mbox{C} \\ - 0.86 \mbox{R}_2 + 2 \mbox{A} + 1.14 \mbox{R}_1 \\ \mbox{View B: SL} = 2 \mbox{K-} 2.28 \mbox{R}_3 - 3.72 \mbox{Dia.} + 2 \mbox{C} \\ - 0.86 \mbox{R}_2 + 2 \mbox{A} + 1.14 \mbox{R}_1 \\ \mbox{(For pricing, use 5 bends)} \end{array}$

Figure 6

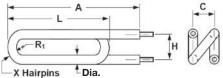
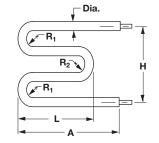
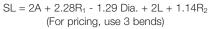

$$\label{eq:sl} \begin{split} SL = L + 1.14R_2 &- 0.86 \text{ Dia.} + C + 1.14R_1 + A \\ (\text{For pricing, use 2 bends}) \end{split}$$

Figure 8

X = number of outside hairpins SL = 2A + 3.42R₁ - 1.29 Dia. + 2L (For pricing, use 5 bends)


Figure 8 Reverse



X = number of outside hairpins SL = 2A + 3.42R₁ - 1.29 Dia. + 2L (For pricing, use 5 bends)

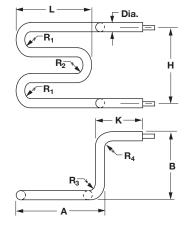

Bend Formations (Continued)

Figure 9

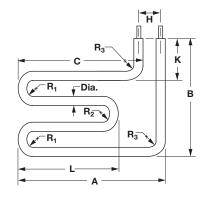
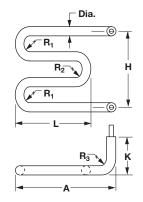
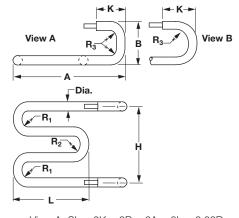


Figure 11



$$\begin{split} SL &= 2K - 086R_3 - 0.86R_4 - 6.15 \text{ Dia.} + 2B + 2A \\ &+ 2L + 2.28R_1 + 1.14R_2 \\ (\text{For pricing, use 7 bends}) \end{split}$$

Figure 13



SL = 2B + 2A + 2L - 6.717 Dia. - 1.717R₁ - H - 0.858R₂ - 0.858R₃ (For pricing, use 5 bends) Figure 10

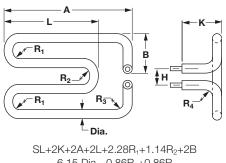
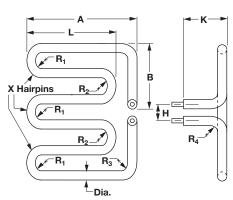

 $\begin{array}{l} SL = 2K - 0.86R_3 - 3.72 \mbox{ Dia.} + 2A + 2L \\ + 2.28R_1 + 1.14R_2 \\ \mbox{(For pricing, use 5 bends)} \end{array}$

Figure 12

 $\begin{array}{l} \mbox{View A: } SL = 2K + 2B + 2A + 2L + 2.28R_1 \\ + 1.14R_2 - 1.72R_3 - 6.15 \mbox{ Dia.} \\ \mbox{View B: } SL = 2K + 2A + 2L + 2.28R_1 + 1.14R_2 \\ - 2.28R_3 - 2.15 \mbox{ Dia.} \\ \mbox{(For pricing, use 5 bends)} \end{array}$

Figure 14


-6.15 Dia. -0.86R₃+0.86R₄ (For pricing use 7 bends)

WATROD Single/Double-Ended Heaters

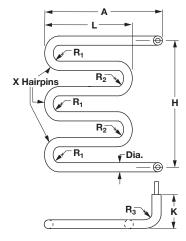

Bend Formations (Continued)

Figure 15

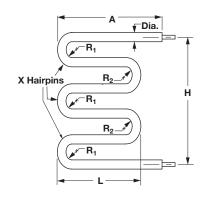

 $\begin{array}{l} X = number \ of \ outside \ hairpins \\ SL = 2K + 2A + 2K(X - 1) + 2B - 0.86R_3 - \\ 0.86R_4 + 1.14R_1 \ (X) + 1.14R_2 \ (X - 1) - \\ 4.86 \ Dia. \ - (2X - 1) \ 0.43 \ Dia. \\ (For \ pricing, \ use \ 9 \ bends \ if \ X = 3 \ hairpins) \end{array}$

Figure 17

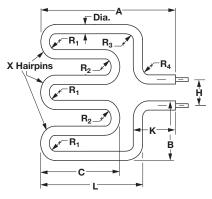
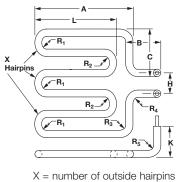

 $\label{eq:scalar} \begin{array}{l} X = number \mbox{ of outside hairpins} \\ SL = 1.14R_2X - 0.88 \mbox{ Dia. } X - 1.14R_2 - 2 \mbox{ Dia.} \\ + 1.14R_1X - 0.86R_3 + 2LX - 2L + 2A + 2K \\ \mbox{ (For pricing, use 7 bends if } X = 3 \mbox{ hairpins}) \end{array}$

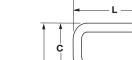
Figure 16

 $\begin{array}{l} X = \text{number of outside hairpins} \\ \text{SL} = 2\text{A} + 0.43 \text{ Dia.} \left(1 - 2\text{X}\right) + 2\text{L} \left(\text{X} - 1\right) + 1.14\text{R}_1 \\ & + 1.14\text{R}_2 \left(\text{X} - 1\right) \\ \text{(For pricing, use 5 bends if X = 3 hairpins)} \end{array}$

Figure 18



 $\begin{array}{l} X = number \ of \ outside \ hairpins \\ SL = 2L + 2K + 2B + 2C \ (X - 1) - 0.86R_3 \\ - 0.86R_4 - 4.86 \ Dia. + 1.14R_1 \ (X) \\ + 1.14R_2 \ (X - 1) - (2X - 1) \ 0.43 \ Dia. \\ (For \ pricing, use 9 \ bends \ if \ X = 3 \ hairpins) \end{array}$


WATROD Single/Double-Ended Heaters

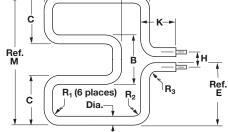
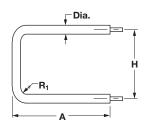

Bend Formations (Continued)

Figure 19

 $SL = 2K + 2A + 2B + 2C + 2L (X - 1) + 1.14R_1$ (X) + 1.14R₂ (X - 1) - 0.86R₃ - 0.86R₄ - 0.86R₅ - 7.29 Dia. - (2X - 1) 0.43 Dia. (For pricing, use 11 bends if X = 3 hairpins)



$$\begin{split} SL &= 2K + 2C + B + 2A + 2L - 2.58R_1 - 0.86R_2 - \\ & 0.86R_3 - 12.15 \text{ Dia.} \\ & (\text{For pricing, use 10 bends}) \end{split}$$

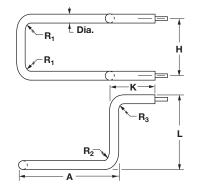

Figure 22

Figure 20

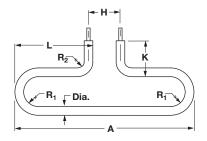

$$\label{eq:sl} \begin{split} SL &= 2A - 0.86R_1 - 1.43 \text{ Dia.} + H \\ (\text{For pricing, use 2 bends}) \end{split}$$

Figure 24

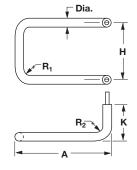
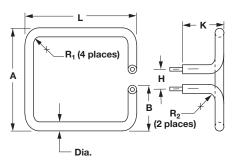
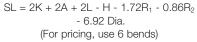

 $\begin{array}{l} SL = 2K + 2L + H - 0.86R_1 - 0.86R_2 - 0.86R_3 \\ & - 7.29 \mbox{ Dia.} \\ (\mbox{For pricing, use 6 bends}) \end{array}$

Figure 21

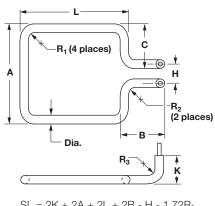
SL = 2A + 2K - H - 2.28R₁ - 0.86R₂ - 3.29 Dia. (For pricing, use 4 bends)

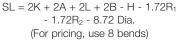
Figure 23




 $SL = 2K - 0.86R_2 - 3.86 Dia. + 2A - 0.86R_1 + H$ (For pricing, use 4 bends)

WATROD Single/Double-Ended Heaters


Bend Formations (Continued)


Figure 25

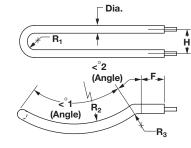


Figure 29

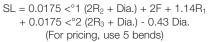
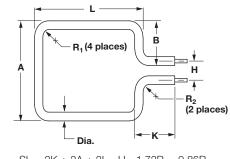
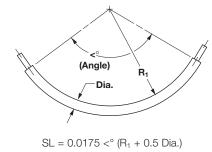
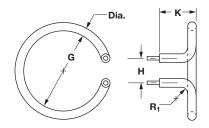
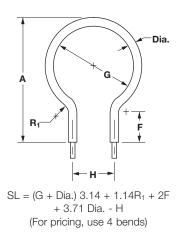




Figure 26


SL = 2K + 2A + 2L - H - 1.72R₁ - 0.86R₂ - 6.29 Dia. (For pricing, use 6 bends)

(For pricing, use 1 bend)

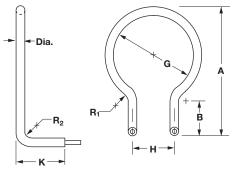
Figure 30



SL = (G + Dia.) 3.14 + 1.14R₁ + 2K + 3.28 Dia. - H (For pricing, use 4 bends)

WATROD Single/Double-Ended Heaters

Bend Formations (Continued)


Figure 31

R₁ (2) Places

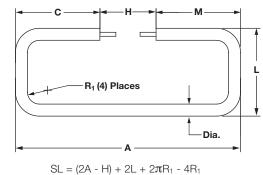

Dia.

Figure 32

$$\begin{split} SL &= (G + Dia.) \ 3.14 + 1.14R_1 + 2B + 1.14R_2 + \\ & 2K + 3.28 \ Dia. - H \\ (For \ pricing, \ use \ 6 \ bends) \end{split}$$

Figure 38

(For pricing, use 4 bends)

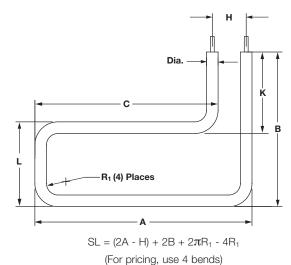
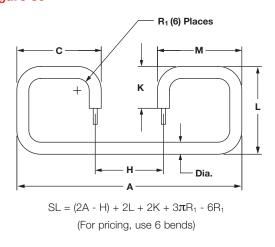
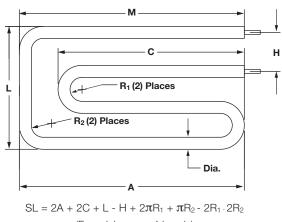



Figure 37



(For pricing, use 2 bends)

WATROD Single/Double-Ended Heaters

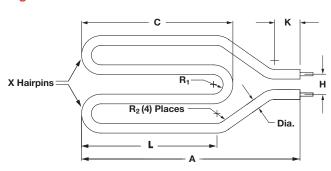

Bend Formations (Continued)

Figure 41

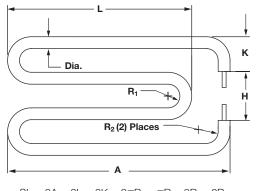


Figure 43

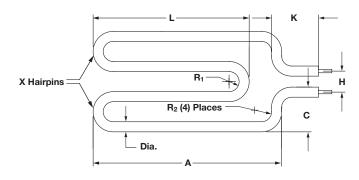

 $SL = 2A + (\#)C + (\# \text{ of } R_1) \pi + 2\pi R_2 - (\# \text{ of } R_1) R_1 - 4R_2$ (For pricing, use 7 bends if X = 2)

Figure 45

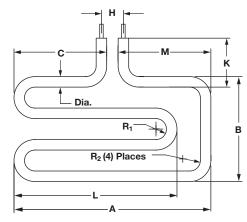

 $SL = 2A + 2L + 2K + 3\pi R_1 + \pi R_2 - 3R_1 - 2R_2 \label{eq:slap}$ (For pricing, use 5 bends)

Figure 42

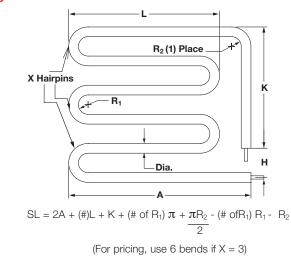

 $SL = 2A + (\#)L + 2K + 2C + 2\pi R_2 + (\# \text{ of } R_1) \pi R_1 - (\# \text{ of } R_1) R_1$ (For pricing, use 7 bends if X = 2)

Figure 44

$$\label{eq:sl} \begin{split} \text{SL} &= 2\text{A} + 2\text{L} + \text{B} + 2\text{K} + 2\pi\text{R}_2 + 3\pi\text{R}_1 - 4\text{R}_2 - 3\text{R}_1 \\ (\text{For pricing, use 7 bends}) \end{split}$$


Figure 46

WATROD Single/Double-Ended Heaters

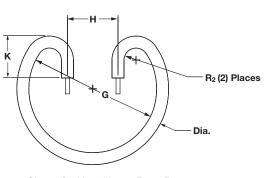

Bend Formations (Continued)

Figure 47

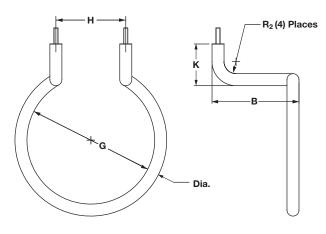

(For pricing, use 7 bends if X = 3)

Figure 49

 $SL = \pi G - H + 2K + 2\pi R_2 - 2R_2$ (For pricing, use 4 bends)

Figure 51

 $SL = \pi G - H + 2B + 2K + 2\pi R_2 - 4R_2$ (For pricing, use 6 bends) Figure 48

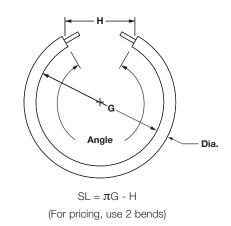
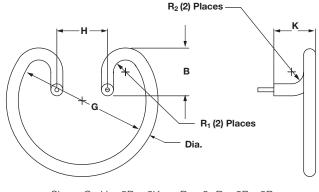
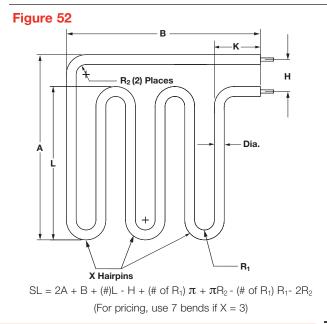




Figure 50

$$\label{eq:sl} \begin{split} SL = \pi G \text{-} H + 2B + 2K + \pi R_2 + 2\pi R_1 \text{-} 2R_1 \text{-} 2R_2 \\ (\text{For pricing, use 6 bends}) \end{split}$$

WATLOW®

WATROD Single/Double-Ended Heaters

Bend Formations (Continued)

Figure 53

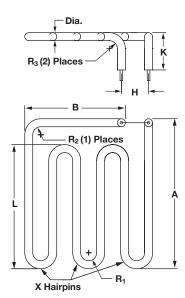
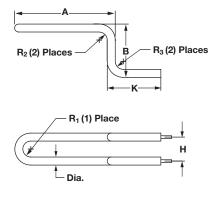
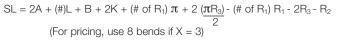
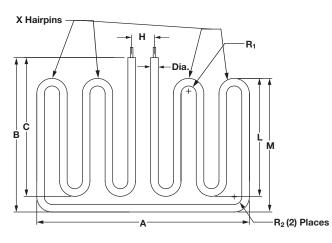




Figure 54


Figure 56



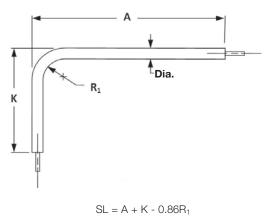
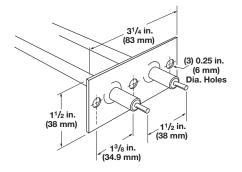

$$\label{eq:sl} \begin{split} SL &= 2A + 2B + 2K + \pi R_1 + 2\pi R_2 \text{-} R_1 \text{-} 4R_2 \\ (\mbox{For pricing, use 5 bends}) \end{split}$$

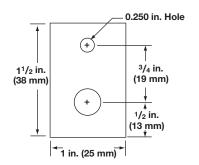
Figure 55



(For pricing, use 1 bend)

WATROD Single/Double-Ended Heaters

Mounting Methods


Brackets

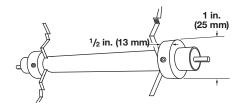
A 0.065 in. (1.7 mm) thick stainless steel bracket provides element mounting in non-pressurized applications. Attached to the heater sheath, these brackets are not suited for liquid-tight mountings. The bracket is located ¹/₂ in. (13 mm) from the sheath's end, unless otherwise specified.

To order, specify mounting bracket.

Single Leg Bracket

A $1^{1}/_{2}$ in. (38 mm) x 1 in. (25 mm) wide x 16 gauge stainless steel bracket with one element hole and one mounting hole $1/_{2}$ in. (13 mm) from end.

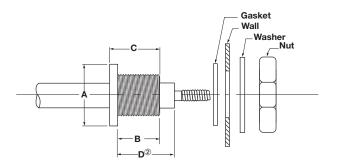
To order, specify single leg bracket.


Locator Washers

Stainless steel locator washers retain the heated area of the sheath in the work zone, while allowing for expansion and contraction during cycling.

To order, specify **locator washer**, along with dimension from the heater's end.

Mounting Collars


Plated steel mounting collars secure the heater sheath with set screws to serve as adjustable stops for through-the-wall mounting. Collars are shipped in bulk. To order, specify **mounting collars**.

Mounting Methods (Continued)

Threaded Bulkheads

A threaded bushing with flange on the heater sheath provides rigid, leak-proof mounting through the walls of tanks. A gasket, plated steel washer and hex nut are included. The threaded end of the bushing is flush with the sheath's end unless otherwise specified. Threaded bulkheads are available in brass, steel or stainless steel as indicated in the table.

To order, specify **threaded bulkheads** and the specifications from the table.

Threaded Bulkhead Specifications

Elemei Diame			Thread	A ① Flange Size/Style	B Threaded Length	C Overall Length
in.	(mm)	Material	Size	in. (mm)	in. (mm)	in. (mm)
0.260	(6.6)	Brass	¹ /2 - 20 UNF	³ /4 Round (19.0)	⁵ /8 (15.9)	³ /4 (19.0)
0.260	(6.6)	SS	¹ /2 - 20 UNF	³ /4 Round (19.0)	⁵ /8 (15.9)	³ /4 (19.0)
0.315	(8.0)	Brass	¹ /2 - 20 UNF	³ /4 Round (19.0)	⁵ /8 (15.9)	³ /4 (19.0)
0.315	(8.0)	Steel	¹ /2 - 20 UNF	³ / ₄ Hex (19.0)	³ /4 (19.0)	¹⁵ /16 (23.8)
0.315	(8.0)	SS	¹ /2 - 20 UNF	³ /4 Round (19.0)	³ /4 (19.0)	²⁷ / ₃₂ (21.4)
0.375	(9.5)	Brass	¹ /2 - 20 UNF	³ /4 Round (19.0)	⁵ /8 (15.9)	³ /4 (19.0)
0.375	(9.5)	Steel	¹ /2 - 20 UNF	³ /4 Hex (19.0)	³ /4 (19.0)	¹⁵ /16 (23.8)
0.375	(9.5)	SS	¹ /2 - 20 UNF	³ /4 Round (19.0)	³ /4 (19.0)	²⁷ /32 (21.4)
0.430	(10.9)	Brass	⁵ /8 - 18 UNF	⁷ /8 Hex (22.2)	³ /4 (19.0)	¹⁵ /16 (23.8)
0.430	(10.9)	Steel	⁵ /8 - 18 UNF	⁷ /8 Round (22.2)	³ /4 (19.0)	¹⁵ /16 (23.8)
0.430	(10.9)	SS	⁵ /8 - 18 UNF	1 Round (25.0)	³ /4 (19.0)	¹⁵ /16 (23.8)
0.475	(12.1)	Brass	⁵ /8 - 18 UNF	⁷ /8 Round (22.2)	³ /4 (19.0)	¹⁵ /16 (23.8)
0.475	(12.1)	Steel	⁵ /8 - 18 UNF	1 Round (25.0)	1 (25.0)	1 ¹ /8 (28.6)
0.475	(12.1)	SS	⁵ /8 - 18 UNF	1 Round (25.0)	³ /4 (19.0)	¹⁵ /16 (23.8)

① Designates the dimension across flats for hex flange style and outside diameter for round flange style.

2 Equal to "B" dimension unless otherwise specified.

EXTENDED CAPABILITY

Extended Capabilities For WATROD Single/Double-Ended Heaters

Options

Terminal Enclosures

General purpose terminal enclosures, without thermostats, are standard on all screw plug immersion heaters. To meet specific application requirements, Watlow offers the following optional terminal enclosures:

- General purpose with single or double pole thermostat
- Moisture-resistant or corrosion resistant—available with optional single or double pole thermostat
- Explosion-resistant class 1, groups B, C and D explosion resistant—available with optional single or double-pole thermostat.
- Explosion and moisture-resistant combination available with optional single- or double-pole thermostat

Zoned Heaters

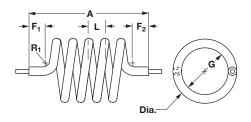
Multiple zone heaters with up to (5) zones are available.

Features and Benefits

Standard sheath materials

 Optional materials available which include titanium, alloy 20, Hastelloy C276, 321 SS and alloy 400

Specifications


		Do	ouble-Ended		Single-Ended					
			88		(38				
Element Diameters	Dia.	in ²	<u>Dia. (mm)</u>	<u>cm</u> ²	Dia.	in ²	<u>Dia. (mm)</u>			
in. (mm) and Surface Area per Linear in ² (cm ²) Diameter Tolerance ± 0.005 in. (0.13 mm)	0.490	1.539	(12.45)	(9.93)	0.490	1.539	(12.45)	(9.930)		
Sheath Materials Max. Operating Temperature	Extended:	Alloy 400 Titanium	Contact Wa Contact Wa			Extended: Steel	Alloy 600 750°F	1800°F (980°C) (400°C)		
Sheath Length By Diameter		Sheath		Sheath		Sheath		Sheath		
in. (mm)	Dia. Extended:	<u>Length (in.)</u>	<u>Dia. (mm)</u>	<u>Length (mm)</u>	<u>Dia.</u> Extended:	Length (in.)	<u>Dia. (mm)</u>	<u>Length (mm)</u>		
	0.490	11 to 265	(12.45)	(280 to 6731)	0.490	11 to 125	(12.45)	(280 to 3175)		
Max. Voltage/Amperage By Dia. in. (mm)	<u>Dia.</u> 0.490 (12.45)	<u>Volts</u> 600VAC	Ampere 40		<u>Dia.</u> 0.490 (12.45)	<u>Volts</u> 480VAC	<u>Ampere</u> 30			
Ohms Per Heated Inch By Dia.	<u>Dia.</u> 0.490	<u>Min.</u> 0.035Ω	<u>Μах.</u> 21Ω		<u>Dia.</u> 0.490	<u>Min.</u> 0.150Ω	<mark>Μах.</mark> 24Ω			

Extended Capabilities For WATROD Single/Double-Ended Heaters

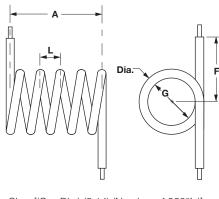

Bend Formations

Figure 33

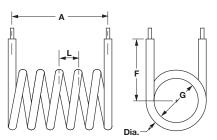

 $\begin{aligned} SL &= [(G + Dia.) \ (3.14) \ (Number of \ 360^{\circ\prime}s)] \\ &+ F1 + F2 \\ (For pricing, \ contact \ Watlow) \end{aligned}$

Figure 35

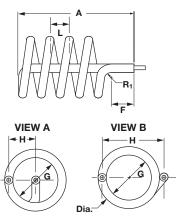
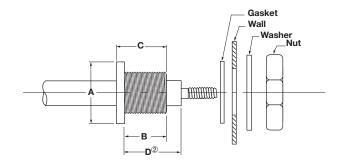

$$\begin{split} SL &= [(G + Dia.) \; (3.14) \; (Number \; of \; 360^\circ`s)] \\ &+ \; 2F \\ (For \; pricing, \; contact \; Watlow) \end{split}$$

Figure 34

$$\begin{split} SL &= [(G + Dia.) \; (3.14) \; (Number \; of \; 360^{\circ\prime}s)] + 2F \\ (For \; pricing, \; contact \; Watlow) \end{split}$$

Figure 36

$$\begin{split} \text{SL} &= [(\text{G} + \text{Dia.}) \; (3.14) \; (\text{Number of } 360^\circ\text{'s})] \\ &+ (\text{G} \div 2) + \text{A} + \text{F} \\ (\text{For pricing, contact Watlow}) \end{split}$$

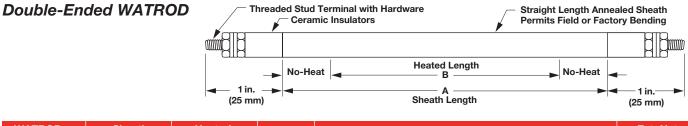

Extended Capabilities For WATROD Single/Double-Ended Heaters

Mounting Methods

Threaded Bulkheads

A threaded bushing with flange on the heater sheath provides rigid, leak-proof mounting through the walls of tanks. A gasket, plated steel washer and hex nut are included. The threaded end of the bushing is flush with the sheath's end unless otherwise specified. Threaded bulkheads are available in brass, steel or stainless steel as indicated in the table.

To order, specify **threaded bulkheads** and the specifications from the table.


Threaded Bulkhead Specifications

Elerr Diam			Thread	A ① Flange Size/Styl			B eaded ngth		C verall ength
in.	(mm)	Material	Size	in.	(mm)	in.	(mm)	in.	(mm)
0.260	(6.6)	Steel	¹ /2 - 20 UNF	³ /4 Hex	(19.0)	⁵ /8	(15.9)	3/4	(19.0)
0.430	(10.9)	Titanium	⁵ /8 - 18 UNF	1 Round	(25.0)	3/4	(19.0)	¹⁵ /16	(23.8)
0.490	(12.5)	Brass	³ /4 - 16 UNF	1 Round	(25.0)	3/4	(19.0)	1	(25.0)
0.490	(12.5)	Steel	³ /4 - 16 UNF	1 Hex	(25.0)	3/4	(19.0)	1	(25.0)
0.490	(12.5)	SS	³ /4 - 16 UNF	1 Round	(25.0)	3/4	(19.0)	1	(25.0)

① Designates the dimension across flats for hex flange style and outside diameter for round flange style.

2 Equal to "B" dimension unless otherwise specified.

WATROD Single/Double-Ended Heaters

WATROD Description		leath nension		eated nension	Watts	Part Number				Net 't.
	in.	(mm)	in.	(mm)		120VAC	240VAC	480VAC	lbs	(kg)

Applications: Medium-Weight, Non-Circulating Oil, Heat-Transfer Oil

			J, -		3	,				
15 W/in ²	29 ⁷ /8	(758.8)	22 ³ /8	(568.4)	500		RGSS29R10S		1.0	(0.5)
0.475 in. Dia.	38 ³ /8	(974.7)	29 ⁷ /8	(758.8)	667		RGSS38G10S	RGSS38G11S	1.3	(0.6)
Steel	44 ³ /4	(1137.0)	37 ¹ /4	(946.0)	833		RGSS44G10S	RGSS44G11S	1.7	(0.8)
(2.3 W/cm ²)	53 ³ /8	(1355.7)	44 ³ /4	(1137.0)	1000		RGSS53G10S	RGSS53G11S	1.9	(0.9)
(12 mm)	68 ³ /8	(1736.7)	59 ⁵ /8	(1514.4)	1333		RGSS68G10S	RGSS68G11S	2.1	(1.0)
	83 ³ /8	(2117.7)	74 ¹ /2	(1892.0)	1667		RGSS83G10S	RGSS83G11S	2.5	(1.1)
	98 ³ /8	(2498.7)	89 ¹ /2	(2273.0)	2000		RGSS98G10S	RGSS98G11S	3.0	(1.4)
	120 ³ /8	(3057.5)	111 ⁷ /8	(2841.6)	2500		RGSS120G10S 1	RGSS120G11S 1	3.9	(1.8)
	142 ⁷ /8	(3629.1)	134 ¹ /4	(3410.0)	3000		RGSS142R10S 1	RGSS142R11S 1	4.1	(1.9)
Application:	Air He	eating								
20 W/in ²	48 ³ /4	(1238.0)	38 ³ /4	(984.0)	1000		RCN48N10S	RCN48N11S	1.0	(0.5)
0.430 in. Dia.	58 ³ /4	(1492.0)	48 ³ /4	(1238.0)	1250		RCN58N10S	RCN58N11S	1.1	(0.5)
Alloy 840	73 ³ /4	(1873.0)	63 ³ /4	(1619.0)	1667			RCN73N11S	1.4	(0.7)
(3.1 W/cm ²)	91 ³ /4	(2330.0)	81 ³ /4	(2076.0)	2083			RCN91N11S	1.7	(0.8)
	1		1							

Applications: Caustic Solutions, Air Heating

(10.9 mm)

applieditolie				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
23 W/in ²	29	(737.0)	22	(559.0)	500	RBN291S			0.4	(0.2)
0.315 in. Dia.	40	(1016.0)	33	(839.0)	750	RBN401S			0.5	(0.3)
Alloy 800	51	(1296.0)	44	(1118.0)	1000	RBN511S			0.7	(0.4)
(3.6 W/cm ²)										
(8 mm)										
23 W/in ²	39	(991.0)	27	(686.0)	1000	RGNA391S	RGNA3910S	RGNA3911S	1.2	(0.6)
0.475 in. Dia.	54	(1372.0)	42	(1067.0)	1500		RGNA5410S	RGNA5411S	1.6	(0.8)
Alloy 800	69	(1753.0)	57	(1448.0)	2000		RGNA6910S	RGNA6911S	2.1	(1.0)
(3.6 W/cm ²)	84	(2134.0)	72	(1829.0)	2500		RGNA8410S	RGNA8411S	2.5	(1.2)
(12 mm)	99	(2515.0)	87	(2210.0)	3000		RGNA9910S	RGNA9911S	3.0	(1.4)
	106	(2692.0)	94	(2388.0)	2778			RGNA10611S 1	3.2	(1.5)
	132	(3353.0)	120	(3048.0)	4167		RGNA13210S 1	RGNA13211S 1	4.0	(1.8)
	157	(3988.0)	145	(3683.0)	5000		RGNA15710S 1	RGNA15711S 1	4.7	(2.2)
Applications	: Ligh	nt Oils, G	ireas	es, Heat-	Transfer	Oils		•		
23 W/in ²	16	(406.0)	12	(305.0)	250	BBS161S	BBS1610S		0.2	(0 1)

23 W/in ²	16	(406.0)	12	(305.0)	250	RBS161S	RBS1610S	0.2	(0.1)
0.315 in. Dia.	18	(457.0)	14	(356.0)	250	RBS181S		0.3	(0.2)
Steel	21	(533.0)	17	(432.0)	350	RBS211S	RBS2110S	0.3	(0.2)
(3.6 W/cm ²)	23 ³ /8	(593.7)	19 ³ /8	(492.1)	375	RBS23G1S		0.3	(0.2)
(8 mm)	28 ⁷ /8	(733.4)	24 ⁷ /8	(631.8)	500	RBS28R1S		0.4	(0.2)
	29	(737.0)	24	(610.0)	500	RBS291S	RBS2910S	0.4	(0.2)
	42	(1067.0)	37	(940.0)	750	RBS421S	RBS4210S	0.6	(0.3)
	54	(1372.0)	49	(1245.0)	1000	RBS541S	RBS5410S	0.7	(0.4)
	77	(1956.0)	72	(1829.0)	1500	RBS771S	RBS7710S	1.0	(0.5)
								CON	TINUED

RAPID SHIP

Truck Shipment only

• ① - Manufacturing lead times

Double-Ended WATROD (Continued)

WATROD Description	Sheath A Dimension		Heated B Dimension		Watts		Part Number			t. Net Wt.
	in.	(mm)	in.	(mm)		120VAC	240VAC	480VAC	lbs	(kg)
pplications	: Light	Oils, G	reases	s, Heat-	Fransfer	Oils				
23 W/in ² 0.475 in. Dia. Steel (3.6 W/cm ²)	23 31 39 45	(584) (787) (991) (1143)	14 22 27 36	(356) (559) (686) (914)	500 750 1000 1250	RGS231S RGS311S RGS391S RGS451S	RGS2310S RGS3110S RGS3910S RGS4510S	RGS3911S	0.7 1.0 1.2 1.4	(0.4) (0.5) (0.6) (0.7)
(12 mm)	54 69 84 99 106	(1372) (1753) (2134) (2515) (2692)	42 57 72 87 90	(1067) (1448) (1829) (2210) (2286)	1500 2000 2500 3000 2778	RGS541S RGS691S RGS841S	RGS5410S RGS6910S RGS8410S RGS9910S	RGS5411S RGS6911S RGS8411S RGS9911S RGS10611S ^①	1.6 2.1 2.5 3.0 3.2	(0.8) (1.0) (1.2) (1.4) (1.5)
	132 144 157	(3353) (3658) (3988)	120 128 145	(3048) (3251) (3683)	4167 3889 5000		RGS13210S ^① RGS15710S ^①	RGS13211S ^① RGS14411S ^① RGS15711S ^①	4.0 4.3 4.7	(1.8) (2.0) (2.2)
pplication:	Air He	ating								
30 W/in ² 0.260 in. Dia. Alloy 840 (4.7 W/cm ²) (6.6 mm)	20 25 30 35 40 45	(508) (635) (762) (889) (1016) (1143)	15 20 25 30 35 40	(381) (508) (635) (762) (889) (1016)	400 500 600 800 900 1000		RAN2010S RAN2510S RAN3010S RAN3510S RAN4010S RAN4510S		0.2 0.3 0.3 0.4 0.4 0.5	(0.1) (0.2) (0.2) (0.2) (0.2) (0.2) (0.3)
	50 55 60 65	(1270) (1397) (1524) (1651)	45 50 55 60	(1143) (1270) (1397) (1524)	1200 1200 1400 1600		RAN5010S RAN5510S RAN6010S RAN6510S		0.5 0.6 0.6 0.7	(0.3) (0.3) (0.3) (0.4)
	70 75 80	(1778) (1905) (2032)	65 70 75	(1651) (1778) (1905)	1800 1800 2000		RAN7010S RAN7510S RAN8010S		0.7 0.8 0.8	(0.4) (0.4) (0.4)
30 W/in ² 0.315 in. Dia. Alloy 840 (4.7 W/cm ²) (8 mm)	15 20 25 30 35	(381) (508) (635) (762) (889)	10 15 20 25 30	(254) (381) (508) (635) (762)	300 400 600 800 900		RBN1510S RBN2010S RBN2510S RBN3010S RBN3510S		0.2 0.3 0.4 0.4 0.5	(0.1) (0.2) (0.2) (0.2) (0.3)
	40 45 50 55 60 65	(1016) (1143) (1270) (1397) (1524) (1651)	35 40 45 50 55 60	(889) (1016) (1143) (1270) (1397) (1524)	1000 1200 1400 1600 1800 1800		RBN4010S RBN4510S RBN5010S RBN5510S RBN6010S RBN6510S		0.5 0.6 0.7 0.7 0.8 0.8	(0.3) (0.3) (0.4) (0.4) (0.4) (0.4)
	70 75 80 90 100	(1778) (1905) (2032) (2286) (2540)	65 70 75 85 95	(1651) (1778) (1905) (2159) (2413)	2000 2200 2400 2600 3000		RBN7010S RBN7510S RBN8010S RBN9010S RBN10010S		0.9 1.0 1.0 1.2 1.3	(0.5) (0.5) (0.5) (0.6) (0.6)

Truck Shipment only

Next day shipment up to 15 pieces
① - Manufacturing lead times

Double-Ended WATROD (Continued)

					No	-Heat	Heated Length	No-Heat		_ <u> </u> 	
					in. — > -		A ————————————————————————————————————			1 in.——	
WATROD	S	heath	Heated B Dimension		,				(25 mm) Est. Net		
Description		mension			Watts	120VAC	Part Number 240VAC	480VAC		Wt.	
11 II	in.	(mm)	in.	(mm)		120VAC	240VAC	400VAC	lbs	(kg)	
pplication:		-						1			
30 W/in ²	15	(381.0)	10	(254.0)	400		RCN1510S		0.3	(0.2)	
0.430 in. Dia.	20 25	(508.0)	15	(381.0)	600 800		RCN2010S RCN2510S		0.4	(0.2)	
Alloy 840 (4.7 W/cm ²)	25 30	(635.0) (762.0)	20 25	(508.0) (635.0)	1000		RCN2010S RCN3010S		0.5 0.6	(0.3) (0.3)	
(10.9 mm)	35	(889.0)	30	(762.0)	1200		RCN3510S		0.0	(0.4)	
(,	40	(1016.0)	35	(889.0)	1400		RCN4010S		0.8	(0.4)	
	-	(1238.0)	38 ³ /4	(984.0)	1500		RCNX48N10S	RCNX48N11S	1.0	(0.5)	
	45	(1143.0)	40	(1016.0)	1600		RCN4510S		0.9	(0.5)	
	50	(1270.0)	45	(1143.0)	1800		RCN5010S		1.0	(0.5)	
	58 ³ /4	(1492.0)	48 ³ /4	(1238.0)	1917		RCNX58N10S	RCNX58N11S	1.1	(0.5)	
	55	(1397.0)	50	(1270.0)	2000		RCN5510S		1.0	(0.5)	
	60	(1524.0)	55	(1397.0)	2200		RCN6010S		1.1	(0.5)	
	65	(1651.0)	60	(1524.0)	2400		RCN6510S		1.2	(0.6)	
		(1873.0)		(1619.0)	2500			RCNX73N11S	1.4	(0.7)	
	70	(1778.0)	65	(1651.0)	2600		RCN7010S		1.3	(0.6)	
	75	(1905.0)	70	(1778.0)	2800		RCN7510S		1.4	(0.7)	
	80	(2032.0)	75	(1905.0)	3000		RCN8010S		1.5	(0.7)	
		(2331.0)		(2077.0)	3167		DOMOGIOO	RCNX91N11S	1.7	(0.8)	
	90	(2286.0)	85	(2159.0)	3500		RCN9010S		1.7	(0.8)	
	100	(2540.0)	95	(2413.0)	4000		RCN10010S ①		1.9	(0.9)	
	110	(2794.0)	105	(2667.0)	4500		RCN11010S 1		2.1	(1.0)	
	120	(3048.0)	115	(2921.0)	5000		RCN12010S 1		2.3	(1.1)	
pplication:	Radia	nt Heati	ng					1			
40 W/in ²	10 ¹ /4	(260.0)	7 ¹ /4	(184.0)	400	RDN10E1S			0.2	(0.1)	
0.375 in. Dia.	16 ⁵ /8	(422.1)	13 ⁵ /8		650	RDN16L1S			0.3	(0.2)	
Alloy 800	21 ¹ /16	()		16 (427.0)	800	RDN21B1S	RDN21B10S		0.4	(0.2)	
(6.2 W/cm ²) (9.5 mm)	27 ¹ /8	(689.0)	22 ⁷ /8		1100 1300	RDN27C1S	RDN27C10S	DDN200146	0.5	(0.3)	
(9.5 mm)	32 1/8	(816.0)	27 ⁷ /8	(708.0)			RDN32C10S	RDN32C11S	0.6	(0.3)	
		(1089.0)		(981.1)	1800		RDN42R10S	RDN42R11S	0.8	(0.4)	
		(1461.0) (1759.0)	65 ¹ /4	(1353.0) (1651.0)	2500 3000		RDN57J10S RDN69E10S	RDN57J11S RDN69E11S	1.1 1.3	(0.5) (0.6)	
		(1759.0) (2064.0)	77	(1051.0) (1956.0)	3600		RDN81E10S	RDN81E11S	1.5 1.6	(0.8)	
		(2775.0)	105	(1000.0)	4000		RDN109E10S ¹		2.1		
		(2775.0) (3416.0)		(2007.0)	4000 5000		RDN109E105®		2.1 2.6	(1.0) (1.2)	
		(3410.0) (3895.7)		(3245.0)	5500 5500		RDN153R10S ¹		2.0 2.9	(1.2)	
		(3695.7) (4553.0)		(3705.2) (4350.0)	6500		RDN179E10S ¹		2.9 3.4	(1.4)	

RAPID SHIP

Truck Shipment only

• Next day shipment up to 15 pieces

• ① - Manufacturing lead times

Double-Ended WATROD (Continued)

Special 208VAC and 277VAC Voltages

WATROD Description		eath Iension	Heated B Dimension		Watts	Part I	Number	Est. Net Wt.		
	in.	(mm)	in.	(mm)		208VAC	277VAC	lbs	(kg)	
Application:	Radian	t Heati	ng							
40 W/in ²	21 ¹ /16	(535)	16 ¹³ /16	(427)	800	RDN21B2S ¹	RDN21B4S ¹	0.4	(0.2)	
0.375 in. Dia.	27 ¹ /8	(689)	22 ⁷ /8	(581)	1100	RDN27C2S ¹	RDN27C4S ¹	0.5	(0.3)	
Alloy 800	42 ⁷ /8	(1089)	38 ⁵ /8	(981)	1800	RDN42R2S ¹	RDN42R4S ¹	0.8	(0.4)	
(6.2 W/cm ²)	57 ¹ /2	(1461)	53 ¹ /4	(1353)	2500	RDN57J2S ¹	RDN57J4S ¹	1.1	(0.5)	
(9.5 mm)	69 ¹ /4	(1759)	65	(1651)	3000	RDN69E2S ¹	RDN69E4S ¹	1.3	(0.6)	
-	81 ¹ /4	(2064)	77	(1956)	3600	RDN81E2S ¹	RDN81E4S ¹	1.6	(0.8)	

WATROD Description	Sheath A Dimension		Heated B Dimension		Watts	Part Number				st. Net Wt.	
	in.	(mm)	in.	(mm)		120VAC	240VAC	480VAC	lbs	(kg)	
Application:	Proce	ss Wate	er					·			
48 W/in ²	23	(584)	14	(356)	1000	RGN231S	RGN2310S	RGN2311S	0.7	(0.4)	
0.475 in. Dia.	30	(762)	21	(533)	1500	RGN301S	RGN3010S	RGN3011S	0.9	(0.5)	
Alloy 800	39	(991)	27	(686)	2000	RGN391S	RGN3910S	RGN3911S	1.2	(0.6)	
(7.4 W/cm ²)	44	(1118)	35	(889)	2500	RGN441S	RGN4410S	RGN4411S	1.3	(0.6)	
(12 mm)	54	(1372)	42	(1067)	3000		RGN5410S	RGN5411S	1.6	(0.8)	
	69	(1753)	57	(1448)	4000		RGN6910S	RGN6911S	2.1	(1.0)	
	84	(2134)	72	(1829)	5000		RGN8410S	RGN8411S	2.5	(1.2)	
	92	(2337)	76	(1930)	5556			RGN9211S	2.8	(1.3)	
	99	(2515)	87	(2210)	6000		RGN9910S	RGN9911S	3.0	(1.4)	
	149	(3785)	133	(3378)	9722			RGN14911S 1	4.5	(2.1)	
Application:	Hot R	unner N	lolds (Manifol	ds)						
60 W/in ²	35	(889)	25	(635)	1500		RBR3510S		0.2	(0.1)	
0.315 in. Dia.	44	(1118)	34	(864)	2000		RBR4410S		0.3	(0.2)	
316 SS	52	(1321)	42	(1067)	2500		RBR5210S		0.3	(0.2)	
(9.3 W/cm²)	60	(1524)	50	(1270)	3000		RBR6010S		0.4	(0.2)	
(8 mm)	69	(1753)	59	(1499)	3500		RBR6910S		0.4	(0.2)	
	77	(1956)	67	(1702)	4000		RBR7710S		0.5	(0.3)	
	85	(2159)	75	(1905)	4500		RBR8510S		0.6	(0.3)	
pplications	Deio	nized W	ater, I	Deminer	alized W	ater				. /	
60 W/in ²	20	(508)	11	(279)	1000	RGR201S	RGR2010S	RGR2011S	0.6	(0.3)	
0.475 in. Dia.	26	(660)	17	(432)	1500	RGR261S	RGR2610S	RGR2611S	0.8	(0.4)	
316 SS	34	(864)	22	(559)	2000		RGR3410S	RGR3411S	1.0	(0.5)	

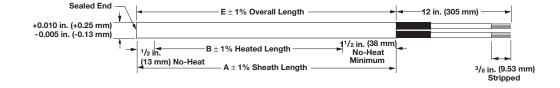
0.475 in. Dia.	26	(660)	17	(432)	1500	RGR261S	RGR2610S	RGR2611S	0.8	(0.4)
316 SS	34	(864)	22	(559)	2000		RGR3410S	RGR3411S	1.0	(0.5)
(9.3 W/cm ²)	40	(1016)	28	(711)	2500		RGR4010S	RGR4011S	1.2	(0.6)
(12 mm)	47	(1194)	31	(787)	2778			RGR4711S	1.4	(0.7)
	46	(1168)	34	(864)	3000		RGR4610S	RGR4611S	1.4	(0.7)
	57	(1448)	45	(1143)	4000		RGR5710S	RGR5711S	1.7	(0.8)
	68	(1727)	56	(1422)	5000		RGR6810S	RGR6811S	2.1	(1.0)
	79	(2007)	67	(1702)	6000		RGR7910S	RGR7911S	2.4	(1.1)
	105	(2667)	93	(2362)	8333			RGR10511S 1	3.2	(1.5)
									CON	

RAPID SHIP

Truck Shipment only

• Next day shipment up to 15 pieces

• 1 - Manufacturing lead times


WATROD Single/Double-Ended Heaters

Single-Ended WATROD

Application Hints

The single-ended WATROD heater's construction limits its usefulness in some applications. The following are some guides to follow when considering a single-ended WATROD.

- When single-ended termination simplifies application wiring.
- The application requires lower wattage or a smaller package.
- Do not locate the end of the heated length within a bend, unless the radius is 3 in. (75 mm) or more. Field bending is not recommended.
- Bending is limited to bend Figures 1, 6, 22 and 28 (see pages 67 to 72 for details).
- Ensure termination temperatures do not exceed 390°F (200°C) or the seal's maximum rating.
- Keep terminations clean, dry and tight.

WATROD Double-Ended Heaters

High-Temperature Tubular Heaters

Watlow manufactures high-temperature tubular heaters to bridge the gap between standard tubular heaters and Watlow MULTICELL[™] heaters. This tubular is well suited for process air heating applications in excess of 1300°F (704°C), resulting in a maximum sheath temperature of 1800°F (983°C). Controlled lab testing between the new design and current tubular designs show an increase in life of approximately 50 percent.

The high-temperature tubular consists of an engineered tubing with an outer sheath of alloy 600 and a special internal construction. The outer sheath offers high temperature capabilities, reduced oxidation as well as corrosion resistance.

The tubular offering is available in 0.430 and 0.375 inch diameters that are configurable either as formed tubulars or process heaters. The heaters can also be welded to flanges and plates for mounting purposes. Maximum sheath length available is 275 inches for the 0.430 inch and 0.375 inch diameters. The factory should be contacted for longer sheath lengths.

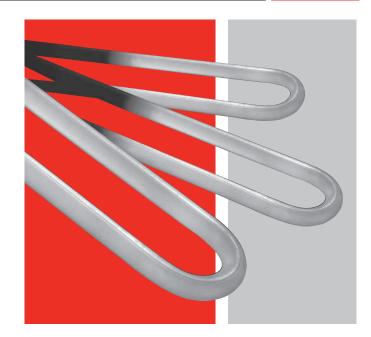
Features and Benefits

Alloy 600 sheath material and a special internal construction

 Assures high temperature performance and corrosion protection in tough applications

0.430 inch diameters*

 Allows heater to be configured to existing tubular designs that may be experiencing short life


*Note: 0.375 diameters are available in Watlow's extended capabilities, contact your Watlow representative for details.

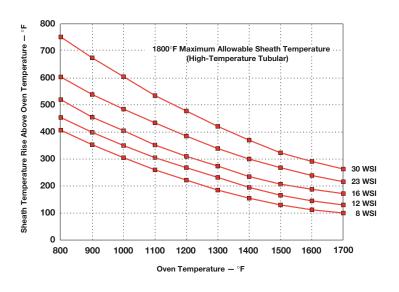
Dual-ended termination

 Installs into flanges and screw plugs similarly to standard product configurations

Bendable in standard formations

 Makes the heater easy to apply in a wide variety of applications

Typical Applications


- · High temperature ovens and furnaces
- Radiant heating
- Drying
- Environmental-VOC abatement
- Process air heating: duct heaters, circulation heaters
- Vacuum applications
- Flue gas cleaning (desulphurization)
- Fluidized beds

WATROD Double-Ended Heaters

High-Temperature Tubular Heaters

Sheath Temperature Versus Oven Temperature at Various Watt Densities

This chart is used to verify the correct watt density for an oven application assuming no air flow. To use the chart, first select the oven process temperature on the X axis, using the chosen watt density read the sheath temperature rise above oven temperature from the Y axis. This number should then be added to oven temperature. If this number is greater than 1800°F (982°C), a lower watt density should be chosen.

Heater Life Estimate Service

Watlow now provides an industry first service with the offering of the high-temperature tubular. By providing operating parameters, Watlow provides customers with the estimated life of the heater. To get this information, the following information should be provided:

- Heater voltage
- Heater wattage
- Heater diameter (0.430 or 0.375 in.)
- Heated length
- Bend configuration and dimensions (number of bends and radius)
- Application including process temperature
- Power switching device and cycle time (SCR, etc.)

High-Temperature Heater Comparisons

*Assuming normal design practices.

EXTENDED CAPABILITY

WATROD Single/Double-Ended Heaters

Extended Capabilities For MULTICOIL™ Tubular Heaters

The tubular element with multiple coils and/or thermocouples inside one sheath from Watlow answers the need for a versatile, innovative tubular heater. Watlow's patented method of packaging a thermocouple inside of a heater with one or more resistance coils, gives the ability to sense a heaters' internal temperature accurately, every time.

Moreover, this is the first tubular heater in the industry with three-phase capability. The three coil, three-phase heater will offer a compact package solution while delivering the full power required in a compact heater package. Previously three separate heaters would have been required to do the same job; therefore Watlow's MULTICOIL[™] heater capabilities save money.

Performance Capabilities

- Watt densities up to 60 W/in² (9.3 W/cm²)
- Sheath temperatures up to 1600°F (870°C)
- 304 and 316 stainless steel sheath temperatures up to 1200°F (650°C)

Features and Benefits

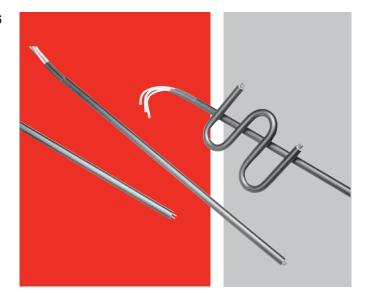
Three-phase capability

• Results in one element versus three, lower amperage, reduced installation time and lower overall cost

Single-ended

- Allows for mounting in a ¹/₂ inch NPT or ³/₄ inch NPT fitting with three-phase capability
- Sensor is not available

Multiple coil operations


• Reduces inventory by allowing dual voltage capability

Versatile forming capabilities

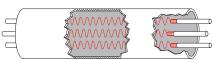
Forms into many configurations

Internal construction with sensor

 Allows space savings because drilling and tapping of flange is unnecessary; plus, the interior thermocouple eliminates contamination buildup around the external sensing tip, reducing the possibility of false readings

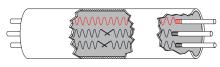
Typical Applications

- Foodservice
- Process
- Medical
- Milled groove
- Plastics
- Plating
- Oven heating
- Semiconductor

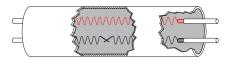


WATROD Single/Double-Ended Heaters

Extended Capabilities For MULTICOIL Tubular Heaters


Options

Option A


3-phase tubular, 0.475 and 0.490 inch diameter.

Option C

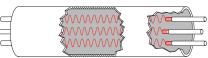
1-phase tubular with one resistance wire and two thermocouples, 0.475 and 0.490 inch diameter.

Option D

1-phase tubular with one resistance coil and one thermocouple, 0.375, 0.430, 0.475 and 0.490 inch diameter.

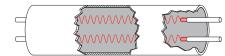
Specifications

Termination Styles


• Lead wires 392°F (200°C) Sil-A-Blend™ or 482°F (250°C) GGS.

Moisture Seals

Moisture seals are required, options include:


- Epoxy with temperature rating to 356°F (180°C). Typical applications include water/oil immersion.
- Lavacone with temperature rating to 221°F (105°C). Typical application includes air heating.
- High-temperature ceramic rated to 2800°F (1537.8°C).
- Contact your Watlow representative for other moisture seal options.

Option E

1-phase tubular with three different one phase circuits, 0.475 and 0.490 inch diameter.

Option F

1-phase tubular with two resistance coils, 0.375, 0.430, 0.475 and 0.490 inch diameter.

Mounting options

- Mounting brackets
- Locator washers
- Mounting collars
- Water-tight bulkheads

Maximum trim length

• 237 in. (6020 mm), heater designs with trim length greater than 120 in. (3048 mm) must be reviewed with your Watlow representative.

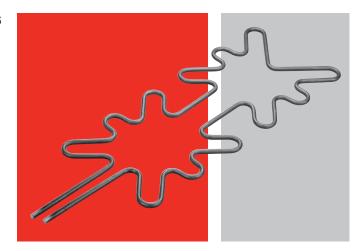
Sheath materials

• Alloy 600, 800, 840, 304 and 316 stainless steel, contact your Watlow representative for other sheath material options.

Internal thermocouple options

• Type K is used, contact your Watlow representative for Type J thermocouple options.

WATROD Single/Double-Ended Heaters


Extended Capabilities For Milled Groove Tubular Heaters

WATROD milled groove heaters are precision-formed and customized to your hot runner mold application. Even tight radius bends of 0.250 inch maintaining tolerances of ± 0.062 to ± 0.002 inch are possible. This capability not only allows you freedom to design for the optimum uniform heating pattern for your plastics process, but also guarantees quick and easy installation.

Simply send your groove dimensions in a detailed drawing or on CAD file. Depending on the formation requirements, the resulting CAD design will be transferred to either Watlow's CNC bending equipment or a highly skilled bending operator.

A variety of sheath materials are available including alloy 800, 304 stainless steel and 316 stainless steel; each offering unique advantages of long life in high temperature molds, rigidity to maintain shape during shipment and corrosion resistance.

Watlow not only delivers the heat fast to the process with efficient heat transfer, but guarantees the heater's fast delivery, too. While Watlow guarantees standard delivery within three to four weeks, tough delivery schedules are Watlow's specialty.

Features and Benefits

Precise conformity to customer specifications

• Ensures easy installation—bending tolerances as low as ± 0.002 in.

Common element diameters

 Includes 0.260, 0.315, 0.375 and 0.430 in. (6.6, 8, 9.5 and 10.9 mm) diameters

Alloy 800 sheath material

• Corrosion resistant, capable in high-temperature environments

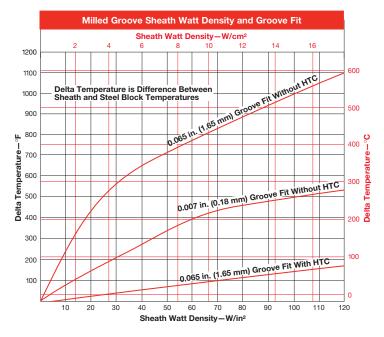
304 stainless steel

- Excellent pliability, best choice for small bend radii
- Superior resistance coil design
- Produces even heating

Threaded stud or lead wire termination as required

• Provides robust options for challenging environments

Typical Applications


- Hot runner molds
- Precise heat uniformity

Extended Capabilities For Milled Groove Tubular Heaters

Use the *Milled Groove Sheath Watt Density and Groove Fit* chart to find the recommended watt density or tightest groove fit. Optimum groove fit, without heat transfer cement, can be determined by plotting the intersect point between the required sheath watt density and the Delta temperature (T). If the Delta T is not known, simply subtract the mold temperature from the maximum 1000°F (540°C) sheath temperature. Any combination of watt density and groove fit which results in a Delta T below the recommended maximum will maximize heater life. Conversely, if the Delta T is greater, less heater life can be expected.

- Recommended maximum watt density = 40 to 70 W/in² (6.2 to 10.9 W/cm²)
- Recommended groove = 0.065 inch (1.65 mm) larger in diameter than sheath diameter and use heat transfer cement.
- Recommended heater sheath diameter = 0.315 in. (8 mm)
- Recommended maximum Delta T = 400°F (205°C)
- Maximum sheath temperature = 1000°F (540°C)
- Recommended sheath material = alloy 800