1. OUTLINE DIMENSIONS (mm)

1.1 INSTRUMENT DIMENSIONS

1.2 PANEL CUT-OUT

1.3 MOUNTING REQUIREMENTS

This instrument is intended for permanent installation, for indoor use only, in an electrical panel which encloses the rear housing, exposed terminals and wiring on the back. Select a mounting location having the following characteristics:

1. It should be easily accessible;
2. There is minimum vibrations and no impact;
3. There are no corrosive gases;
4. There are no water or other fluids (i.e. condensation);
5. The ambient temperature is in accordance with the operative temperature (0 to 50°C);
6. The relative humidity is in accordance with the instrument specifications (20 to 90%);

The instrument can be mounted on panel with a maximum thickness of 8 mm.

When the maximum front protection (IP65) is desired, the optional gasket must be mounted.

This is mandatory for FM approval.

2. CONNECTION DIAGRAM

2.1 GENERAL NOTES ABOUT WIRING

1. Do not run input wires together with power cables.
2. External components (like zener barriers, etc.) connected between sensor and input terminals may cause errors in measurement due to excessive and/or not balanced line resistance or possible leakage currents.
3. When a shielded cable is used, it should be connected at one point only.
4. Pay attention to the line resistance; a high line resistance may cause measurement errors.

2.2 INPUTS

2.2.1 Thermocouple Input

External resistance: 100Ω max., maximum error 25 µV.
Continuity detection current: 250 nA.
Cold junction: automatic compensation between 0 to 55°C.
Cold junction accuracy: 0.04°C/°C after a warm-up of 20 minutes.
Input impedance: > 1 MΩ.
Burn out: full scale
Calibration: According to EN 60584-1.
Note: For TC wiring use proper compensating cable preferable shielded.

2.2.2 RTD Pt 100 Input

Input circuit: Current injection (135 μA).
Line resistance: Automatic compensation up to 20Ω/wire with maximum error ±0.1% of the input span.
Calibration: According to EN 60751/A2.
Note: The resistance of the 3 wires must be the same.

2.2.3 RTD Pt 1000 Input

Line resistance: Not compensated.
Pt 1000 input circuit: Current injection (15.5 μA).
Pt 1000 calibration: According to EN 60751/A2.

2.2.4 V and mV Input

Input impedance: > 1 MΩ for mV Input
500 kΩ for Volt Input.

2.2.5 mA Input

0/4 to 20 mA input wiring for passive transmitter using the auxiliary pws

Input impedance: < 53Ω.
Internal auxiliary PWS: 12 VDC (±10%), 20 mA max..

0/4 to 20 mA input wiring for passive transmitter using an external pws

0/4 to 20 mA input wiring for active transmitter

2.2.6 Logic Input

Safety notes:
- Do not run logic input wiring together with power cables;
- The instrument needs 150 ms to recognize a contact status variation;
- Logic inputs are NOT isolated by the measuring input.
 A double or reinforced isolation between logic inputs and power line must be assured by the external elements.

Logic inputs driven by dry contact

Maximum contact resistance: 100Ω.
Contact rating: Di1 = 10 V, 6 mA;

2.3 OUTPUTS

Safety notes:
- To avoid electrical shocks, connect power line at last.
- For supply connections use No. 16 AWG or larger wires rated for at last 75°C.
- Use copper conductors only.
- SSR outputs are not isolated. A reinforced isolation must be assured by the external solid state relays.
- For SSR, mA and V outputs if the line length is longer than 30 m use a shielded wire.
- Do not short-circuit the terminals of the SSR output.

WARNING! Before connecting the output actuators, we recommend to configure the parameters to
suit your application (e.g.: input type, Control strategy, alarms, etc.).

2.3.1 Output 1 (OP1)
Function: retransmission
Output type: isolated output

Current Analog Output

mA output: 0/4... 20 mA, galvanically isolated, RL max. 600Ω.

Voltage Analog Output

V output: 0/2... 10 V, galvanically isolated, RL min.: 500Ω.

2.3.2 Output 2 (OP2)
Function: limiter output

Relay Output

Contact rating: • 2 A /250 V cosφ = 1;
• 1 A /250 V cosφ = 0.4.
Operation: 1×10^5.

2.3.3 Output 3 (OP3)

Relay Output

Contact rating: • 2 A /250 V cosφ = 1;
• 1 A /250 V cosφ = 0.4.
Operation: 1×10^5.

2.3.4 Output 4 (OP4)

SSR Output

Logic level 0: Vout < 0.5 VDC;
Logic level 1: 12 V ±20%, 20 mA max..
Note: Overload protected.

2.4 SERIAL INTERFACE

RS-485

Interface type: Isolated (50 V) RS-485;
Voltage levels: According to EIA standard;
Protocol type: Modbus RTU;
Byte format: 8 bit with no parity;
Stop bit: 1 (one);
Baud rate: Programmable between 1200 to 38400 baud;
Address: Programmable between 1 to 254.
Notes: 1. RS-485 interface allows to connect up to 30 devices with one remote master unit.
2. The cable length must not exceed 1.5 km at 9600 baud.

2.5 POWER SUPPLY

Power Supply

Supply Voltage: 100 to 240 VAC (-15 to +10%).
Notes: 1. Before connecting the instrument to the power line, make sure that line voltage is equal to the voltage shown on the identification label;
2. The polarity of the power supply has no importance;
3. The power supply input is NOT fuse protected. Please, provide a T type 1A, 250 V fuse externally.
3. TECHNICAL CHARACTERISTICS

3.1 TECHNICAL SPECIFICATION

Case: Plastic, self-extinguishing degree: V-0 according to UL 94;

Front protection: IP 65 (when the optional panel gasket is mounted) for indoor locations according to EN 60070-1;

Terminals protection: IP 20 according to EN 60070-1;

Installation: Panel mounting;

Terminal block: 16 screw terminals for cables of 0.25 to 2.5 mm² (AWG22 to AWG14) with connection diagram, tightening torque 0.5 Nm;

Dimensions: 48 x 48, depth 73 mm, (1.89 x 1.89 x 2.87 in.)

Panel cutout: 45[-0, +0.6] x 45[-0, +0.6] mm

(1.78[- 0.000, +0.023] x 1.78[- 0.000, +0.023] in.)

Weight: 180 g max.

Power supply: 100 to 240 VAC (-15 to +10% of the nominal value);

Power consumption: 6.0 VA max. (100 to 240 VAC);

Insulation voltage: 2300 V rms according to EN 61010-1;

Display updating time: 500 ms;

Sampling time: 130 ms;

Resolution: 30000 counts;

Total Accuracy: ±0.5% F.S.V. ±1 digit @ 25°C of room temperature;

Electromagnetic compatibility and safety requirements

Compliance: directive EMC 2004/108/CE (EN 61326-1), directive LV 2006/95/CE (EN 61010-1), UL 61010-1 CSA 61010-1;

Note: During the test, the instrument continues to operate at the measurement accuracy within specification.

Installation category: II;

Pollution category: 2;

Temperature drift: It is part of the global accuracy;

Operating temperature: 0 to 50°C (32 to 122°F);

Storage temperature: -20 to +70°C (-4 to +158°F);

Humidity: 20 to 95% RH, not condensing.

4. MODEL AND SUFFIX CODES

<table>
<thead>
<tr>
<th>Model Code</th>
<th>Suffix codes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC10</td>
<td>-L C D F</td>
<td>Temperature Controller</td>
</tr>
<tr>
<td>Fixed code</td>
<td>-L</td>
<td>Always “L”</td>
</tr>
<tr>
<td>Power supply</td>
<td>H</td>
<td>100 to 240 VAC</td>
</tr>
<tr>
<td>Fixed code</td>
<td>C</td>
<td>Always “C”</td>
</tr>
<tr>
<td>Retransmission</td>
<td>N</td>
<td>None</td>
</tr>
<tr>
<td>Limit control output</td>
<td>R</td>
<td>limit control relay output</td>
</tr>
<tr>
<td>Alarm output 1 - 2</td>
<td>N</td>
<td>None</td>
</tr>
<tr>
<td>Serial communication</td>
<td>S</td>
<td>RS485 Modbus</td>
</tr>
<tr>
<td>Alarm output:2 Points (OT3 relay + OT4 SSR drive)</td>
<td>N</td>
<td>None</td>
</tr>
<tr>
<td>Fixed code</td>
<td>D</td>
<td>Always “D”</td>
</tr>
<tr>
<td>Option Code</td>
<td>GK</td>
<td>Panel gasket for IP65</td>
</tr>
</tbody>
</table>
5. CONFIGURATION PROCEDURE

5.1 INTRODUCTION

When the instrument is powered, it starts immediately to work according to the parameters values loaded in its memory.

The instrument behaviour and its performance are governed by the value of the stored parameters.

At the first start up the instrument will use a “default” parameter set (factory parameter set); this set is a generic one (e.g. a TC J input is programmed).

WARNING! Before connecting the output actuators, we recommend to configure the parameters to suit your application (e.g.: input type, Control strategy, alarms, etc.).

To change these parameters you need to enter the “Configuration mode”.

5.2 INSTRUMENT BEHAVIOUR AT POWER ON

At power ON the instrument can operate in two different mode according to the value assigned to \(r.md \) parameter [34] \(r.md \) equal to 0 (Limit output is de-energized at power on in any cases.)

The output relay is always de-energized (opened) at power-on, even if PV does not exceed SP(A). The output (OUT) display lamp is lit. If the PV does not exceed SP, after the confirming operation, output relay will be energized (closed) and the output (OUT) display lamp turns off.

\[r.md \] equal to 1 (Limit output is de-energized at power on in any cases.) The state of output relay is energized (closed) and the output (OUT) display lamp turns off if the PV does not exceed SP at power-on.

5.3 HOW TO ENTER THE “CONFIGURATION MODES”

The configuration procedure allows to take advantage of all instrument features.

The instrument have one complete parameter set. We call this set “configuration parameter set” (or “configuration parameters”).

The access to the configuration parameters is protected by a password.

5.3.1 Complete configuration procedure

The configuration parameters are collected in various groups. Every group defines all parameters related with a specific function (e.g.: control, alarms, output functions).

1. Push the \(\text{button} \) for more than 3 seconds. The upper display will show \(\text{PASS} \) while the lower display will show \(0 \).

2. Using \(\text{and} \) \(\text{buttons} \) set the programmed password. Notes: 1. The factory default password for configuration parameters is equal to 30.

3. Push the \(\text{button} \)

 If the password is correct the display will show the acronym of the first parameter group preceded by the symbol: \(\text{inp} \).

 In other words the upper display will show: \(\text{inp} \) (group of the Input parameters).

The instrument is in configuration mode.

5.4 HOW TO EXIT THE “CONFIGURATION MODE”

Push \(\text{button} \) for more than 3 seconds, the instrument will come back to the “standard display”.

5.5 KEYBOARD FUNCTIONS DURING PARAMETER CHANGING

\(\text{A} \) A short press allows to exit from the current parameter group and select a new parameter group.

\(\text{A} \) A long press allows you to close the configuration parameter procedure (the instrument will come back to the “standard display”).

\(\text{A} \) When the upper display is showing a group and the lower display is blank, this key allows to enter in the selected group.

When the upper display is showing a parameter and...
the lower display is showing its value, this key allows to store the selected value for the current parameter and access the next parameter within the same group.

• Allows to increase the value of the selected parameter.

+ Allows to decrease the value of the selected parameter.

These two keys allow to return to the previous group. Proceed as follows:

Push the < button and maintaining the pressure, then push the > button; release both the buttons.

Note: The group selection is cyclic as well as the selection of the parameters in a group.

5.6 FACTORY RESET - DEFAULT PARAMETERS LOADING PROCEDURE

Sometimes, e.g. when you re-configure an instrument previously used for other works or from other people or when you have made too many errors during configuration and you decided to re-configure the instrument, it is possible to restore the factory configuration.

This action allows to put the instrument in a defined condition (the same it was at the first power ON). The default data are those typical values loaded in the instrument prior to ship it from factory.

To load the factory default parameter set, proceed as follows:

1. Press the P button for more than 5 seconds. The upper display will show PASS while the lower display shows 0;

2. Using < and > buttons set the value -481;

3. Push P button;

4. The instrument will turn OFF all LEDs for a few seconds, then the upper display will show dFLt (default) and then all LEDs are turned ON for 2 seconds. At this point the instrument restarts as for a new power ON.

The procedure is complete.

Note: The complete list of the default parameters is available in Appendix A.

5.7 CONFIGURING ALL THE PARAMETERS

In the following pages we will describe all the parameters of the instrument. However, the instrument will only show the parameters applicable to its hardware options in accordance with the specific instrument configuration (i.e. setting RL in [Alarm 1 type] to none [not used], all parameters related to alarm 1 will be skipped).

3inP Group - Main and auxiliary input configuration

[1] SEnS - Input type

Available: Always.

Range: • When the code of the input type is equal to c (see paragraph “How to order”)

J TC J (-50... +1000°C/58... +1832°F);

crAL TC K (-50... +1370°C/58... +2498°F);

S TC S (-50... 1760°C/58... +3200°F);

r TC R (-50... +1760°C/58... +3200°F);

T TC T (-70... +400°C/94... +752°F);

n TC N (-50...1300°C/58... +2372°F);

Pt1 RTD Pt 100 (-200... 850°C/328... 1562°F);

Pt10 RTD Pt 1000 (-200... 850°C/328... 1562°F);

0.60 0... 60 mV linear;

12.60 12... 60 mV linear;

0.20 0... 20 mA linear;

4.20 4... 20 mA linear;

0.5 0... 5 V linear;

1.5 1... 5 V linear;

0.10 0... 10 V linear;

2.10 2... 10 V linear.

Notes: 1. When a TC input is selected and a decimal figure is programmed (see the next parameter) the displayed value becomes 999.9°C or 999.9°F.

2. Every change of the SEnS parameter will produce a change of the related parameter and in particular:

• [7] bS (PV bias) will be forced to zero

• [11] Ao1L and [12] Ao1H (when the analog retransmission is present) will be forced to the Ex.Range limits.

• [13] AL1 and [30] AL2 will be forced to:

 – for an absolute maximum alarm, them will be forced to the maximum input span

 – for an absolute minimum alarm, them will be forced to the minimum input span

 – for all other alarm, them will be forced to zero

• [14] HAL1 and [31] HAL2 will be forced equal to the 0.5% of the input span

• [28] AL2L extended limit low

• [29] AL2H extended limit high

• [35] HYS will be forced equal to 0.05 % of the input span

• [37] SPLL and [38] SPHL

• [39] SP

[2] dP - Decimal point position

Available: Always.

Range: 0 to 3 when [1] SenS = Linear input;

0 or 1 when [1] SenS different from linear input.

Note: Every change of the dP parameter setting will produce a change of the parameters related with it (e.g.: set points, proportional band, etc.).

[3] SSc - Initial scale read-out for linear inputs

Available: When a linear input is selected by [1] SenS.

Range: -1999 to 9999.

Notes: 1. SSc allows the scaling of the analog input to set the minimum displayed/measured value.

 The instrument will show a measured value up to 5% less than SSc value and then it will show an underrange error.

2. It is possible to set a initial scale read-out higher than the full scale read-out in order to obtain a reverse read-out scaling.

E.g.:

0 mA = 0 mBar and 20 mA = -1000 mBar (vacuum).

[4] FSc - Full scale read-out for linear input

Available: When a linear input is selected by [1] SenS.

Range: -1999 to 9999.

Notes: 1. FSc allows the scaling of the analog input to set the maximum displayed/measured value.

 The instrument will show a measured value up to 5% higher than [4] FSc value and then it will show
an overrange error.
2. It is possible to set a full scale read-out lower than the initial scale read-out in order to obtain a reverse read-out scaling.

E.g.: 0 mA = 0 mBar and 20 mA = -1000 mBar (vacuum).

[5] unit - Engineering unit
Range: °C = Celsius; °F = Fahrenheit.

[6] FiL - Digital filter on the measured value
Available: Always.
Range: oFF (No filter); 0.1 to 20.0 s.
Note: This is a first order digital filter applied on the measured value. For this reason it will affect the measured value but also the control action and the alarms behaviour.

[7] bS - PV input bias
Available: Always.
Range: In Engineering unit, it is programmable from -100 to 100 % of the input span.

Available: Always.
Range: 0 = DI1 Direct action,
1 = DI1 Reverse action,

[9] o1.t - Out 1 type
Available: When the out 1 is a linear output.
Range: 0.20 0 to 20 mA;
4.20 4 to 20 mA;
0.10 0 to 10 V;
2.10 2 to 10 V.

[10] o1F - Out 1 function
Available: Always.
Range: • When the out 1 is a linear output:
nonE = Output not used. With this setting the status of this output can be driven directly from serial link;
r.inP = Measured value Analog retransmission.
r.Err = Analog retransmission of the measured error (PV-SP);
r.SP = Analog retransmission of the operative set point;
r.SEr = Analog retransmission of a value coming from serial link;

[11] Ao1L - Initial scale value of the analog retransmission
Available: When Out 1 is a present
Range: -1999 to [12] Ao1H.

[12] Ao1H - Full scale value of the analog retransmission
Available: When Out 1 is present

[13] o3F - Out 3 function
Available: When the instrument has out 3 option.
Range: nonE = Output not used. With this setting the status of the this output can be driven directly from serial link;
AL = Alarm output;
or.bo = Out-of-range or burn out indicator;
P.FAL = Power failure indicator;
bo.PF = Out-of-range, burn out and Power failure indicator;

[14] o3AL - Alarms linked up with Out 3
Range: 0 to 15 with the following rule:
+1 = Alarm 1;
+2 = Alarm 2;
+4 = Sensor break (burn out);
+8 = Overload on Out 4 (short circuit on out 4);

[15] o3Ac - Out 3 action
Available: when [13] o3F is different from "nonE".
Range: dir = Direct action;
rEU = Reverse action;
Notes: 1. Direct action: the output repeats the status of the driven element. Example: the output is an alarm output with direct action. When the alarm is ON, the relay will be energized (logic output 1).
2. Reverse action: the output status is the opposite of the status of the driven element. Example: the output is an alarm output with reverse action. When the alarm is OFF, the relay will be energized (logic output 1). This setting is usually named "fail-safe" and it is generally used in dangerous process in order to generate an alarm when the instrument power supply goes OFF or the internal watchdog starts.

[16] o4F - Out 4 function
Available: Always
Range: nonE = Output not used. With this setting the status of the this output can be driven directly from serial link;
AL = Alarm output;
or.bo = Out-of-range or burn out indicator;
P.FAL = Power failure indicator;
bo.PF = Out-of-range, burn out and Power failure indicator;
On = Output ever ON (it is used as auxiliary power supply for TX).

[17] o4AL - Alarms linked up with Out 4
Available: When [16] o4F = AL.
Range: 0 to 7 with the following rule.
+1 = Alarm 1;
+2 = Alarm 2;
+4 = Sensor break (burn out);

[18] o4Ac - Out 4 action
Available: When [16] o4F is different from “nonE”.
Range: dir = Direct action;
rEU = Reverse action;.
For more details see [15] o3.Ac parameter.

AL1 Group - Alarm 1 parameters

[19] AL1t - Alarm 1 type

Available: Always.

Range:
- nonE = Alarm not used;
- LoAb = Absolute low alarm;
- HiAb = Absolute high alarm;
- LHAo = Absolute band alarm with alarm indication out of the band;
- LHAi = Absolute band alarm with alarm indication inside the band;
- SE.br = Sensor break;
- LodE = Deviation low alarm (relative);
- HidE = Deviation high alarm (relative);
- LHdo = Relative band alarm with alarm indication out of the band;
- LHdi = Relative band alarm with alarm indication inside the band.

Notes:
1. The relative and deviation alarms are “relative” to the operative set point value.

2. The (SE.br) sensor break alarm will be ON when the display shows ---- indication.

[20] Ab1 - Alarm 1 function

Available: When [28] AL1t is different from “nonE”.

Range: 0 to 3 with the following rule:
- +1 = Not active at power up;
- +2 = Relative alarm not active at set point change.

Notes:
1. The “not active at power up” selection allows to inhibit the alarm function at instrument power up. The alarm will be automatically enabled when the measured value reaches, for the first time, the alarm threshold ±hysteresis (in other words, when the initial alarm condition disappears).

2. A relative alarm not active at set point change is an alarm that masks the alarm condition after a set point change until process variable reaches the alarm threshold ±hysteresis.

[21] AL1L - For High and low alarms it is the low limit of the AL1 threshold

- For band alarm it is low alarm threshold

Available: When [19] AL1t is different from “nonE”.

Range: From -999 to [22] AL1H engineering units.

[22] AL1H - For High and low alarms, it is the high limit of the AL1 threshold

- For band alarm, it is the high alarm threshold

Available: When [19] AL1t is different from “nonE”.

Range: From [21] AL1L to 9999 engineering units.

[23] AL1 - Alarm 1 threshold

Available: When:
- [19] AL1t = LoAb - Absolute low alarm;
- [19] AL1t = HiAb - Absolute high alarm;
- [19] AL1t = LodE - Deviation low alarm (relative);
- [19] AL1t = HidE - Deviation high alarm (relative).

Range: From [21] AL1L to [22] AL1H engineering units.

[24] HAL1 - Alarm 1 hysteresis

Available: When [19] AL1t is different from “nonE”.

Range: 1 to 9999 engineering units.

Notes:
1. The hysteresis value is the difference between the Alarm threshold value and the point the Alarm automatically resets.

2. When the alarm threshold plus or minus the hysteresis is out of input range, the instrument will not be able to reset the alarm.

Example: Input range 0 to 1000 (mBar).
- Set point equal to 900 (mBar);
- Deviation low alarm equal to 50 (mBar);
- Hysteresis equal to 160 (mBar) the theoretical reset point is 900 - 50 + 160 = 1010 (mBar) but this value is out of range. The reset can be made only by turning the instrument OFF, removing the condition that generate the alarm and then turn the instrument ON again;
- All band alarms use the same hysteresis value for both thresholds;
- When the hysteresis of a band alarm is bigger than the programmed band, the instrument will not be able to reset the alarm.

Example: Input range 0 to 500 (°C).
- Set point equal to 250 (°C);
- Relative band alarm;
- Low threshold equal to 10 (°C);
- High threshold equal to 10 (°C);
- Hysteresis equal to 25 (°C).
[25] **AL1d - Alarm 1 delay**
Available: When [19] AL1t is different from "nonE".
Range: From off (0) to 9999 seconds.
Note: The alarm goes on only when the alarm condition persists for a time longer than [25] AL1d time but the reset is immediate.

AL2 Group - Alarm 2 parameters

[26] **AL2t - Alarm 2 type**
Available: Always.
Range:
- **LoAb** = Absolute low alarm;
- **HiAb** = Absolute high alarm;
- **LHAo** = Absolute band alarm with alarm indication out of the band;
- **LHAi** = Absolute band alarm with alarm indication inside the band;
- **SE.br** = Sensor break;
- **LodE** = Deviation low alarm (relative);
- **HidE** = Deviation high alarm (relative);
- **LHdo** = Relative band alarm with alarm indication out of the band;
- **LHdi** = Relative band alarm with alarm indication inside the band.

Note: The relative alarm are “relative” to the current set point.

[27] **Ab2 - Alarm 2 function**
Available: When [26] AL2t is different from "nonE".
Range: 0 to 3 with the following rule:
- +1 = Not active at power up;
- +2 = Relative alarm not active at set point change.

[28] **AL2L - For High and low alarms it is the low limit of the AL2 threshold**
- For band alarm it is low alarm threshold
Available: When [26] AL2t is different from "nonE".
Range: -1999 to [29] AL2H engineering units.

[29] **AL2H - For High and low alarms it is the high limit of the AL2 threshold**
- For band alarm it is high alarm threshold
Available: When [26] AL2t is different from "nonE".
Range: From [28] AL2L to 9999 engineering units.

[30] **AL2 - Alarm 2 threshold**
Available: When:
- [26] AL2L = LoAb Absolute low alarm;
- [26] AL2L = HiAb Absolute high alarm;
- [26] AL2L = LodE Deviation low alarm (relative);
- [26] AL2L = HidE Deviation high alarm (relative).

[31] **HAL2 - Alarm 2 hysteresis**
Available: When [26] AL2t is different to “nonE” or [26] AL2t is different from “SE.br”.
Range: 1 to 9999 engineering units.
Note: For other details see [24] HAL1 parameter.

[32] **AL2d - Alarm 2 delay**
Available: When [26] AL2t type is different form “nonE”.
Range: From off (0) to 9999 seconds.
Note: The alarm goes on only when the alarm condition persists for a time longer than [32] AL2d time but the reset is immediate.

rEG group - Control parameters

[33] **Hi.Lo - Control type**
Available: Always.
Range:
- **Hi** = Hi limit;
- **Lo** = Low limit.

High limit control
When a measured value (PV) exceeds a set point (SP), “EXCEEDED” [EX] lamp lights, “OUT” lamp turns on and the limit output relay (Out 2) is de-energized.

“EXCEEDED” [EX] lamp turns off when PV goes into normal condition, while the output [OUT] display stays on as it is (b). The output [OUT] display lamp turns off when a confirming operation (rearm) is done by an operator.

The way to confirm are: pressing key or by DI1 (according to the <<diS>> parameter setting).

The confirming operation is not accepted during PV exceeds SP (D) (during EXCEEDED lamp lights*). State of output relay is de-energized whenever “OUT” lamp is on.

When the EXCEED lamp is ON but PV is lower than SP, the upper display will be in green value and it shows that the PV is in the hysteresis area.

Low limit control
When a measured value (PV) exceeds a setpoint (SP), “EXCEEDED” lamp (c) lights, and “OUT” lamp (b) turns on . The limit output relay is de-energized then.

“EXCEEDED” lamp turns off when PV goes into normal condition, while the output (OUT) display lamp stays on as it is. The output (OUT) display lamp turns off when a confirming operation is done by an operator.

The way to confirm are:
- pressing key or
- by DI1 (according to the <<diS>> parameter setting).

The confirming operation is not accepted during PV exceeds SP (D) (during EXCEEDED lamp lights*). State of output relay is de-energized whenever “OUT” lamp is on.
When the EXCEED lamp is ON but PV is Higher than SP, the upper display will be in green value and it shows that the PV is in the hysteresis area.

34] r.md – Limit output status at power ON (Restart mode)
Available: Available: always
Range: 0 = limit output is ON in any case
1 = Limit output is OFF at power on when PV doesn’t exceed SP.

[35] Hs – Hysteresis of the control output
Available: Available: always
Range: In engineering unit from 0.0 to 100% of the input span.

Available: Available: always
Range: PU.SP = (0) PV (upper display) and SP (lower display)
PU = (1) SP only (lower display)
Note: When you change the [37] SPLL value, the instrument checks the local set points (SP parameters). If SP is out of this range, the instrument forces it to the maximum acceptable value.

[37] SPLL – Minimum set point value
Available: Available: always
Range: from -1999 to [38] SPHL.
Note: When you change the [37] SPLL value, the instrument checks the local set points (SP parameters). If SP is out of this range, the instrument forces it to the minimum acceptable value.

[38] SPHL – Maximum set point value
Available: Available: always
Range: from [37] SPLL to 9999.

[39] SP – Set point.
Available: Available: always
Range: from [37] SPLL to [38] SPHL.

[40] diS – the way of confirming operation
Available: Available: always
Range: but = by keyboard
di = by digital input

[41] TIm – time duration of the last exceeded period.
Available: Available: always but it is a read only parameter.
Range: from 00.00 to 99.59 (HH.mm).

[42] Hi – maximum measured value
Available: Available: when [33] Hi.Lo = Hi (high limit) but it is a read only parameter.
Range: Engineering unit within the input range.

[43] Lo – minimum measured value
Available: Available: when [33] Hi.Lo = Lo (low limit) but it is a read only parameter.
Range: Engineering unit within the input range.

3PAn group - Operator HMI

[44] PAS2 - Level 2 password:
Available: Always.
Range: off = Level 2 not protected by password (as level 1 = Operator level) 1 to 200.

[45] PAS3 - Level 3 password:
Complete configuration level
Available: Always.
Range: 3 to 200.
Note: Setting [44] PAS2 equal to [45] PAS3, the level 2 will be masked.

[46] di.CL – Display color
Available: Always.
Range: 0 = the display color is used to show the Exceed condition.
When no exceed condition is present, the upper display will be green.
when [33] Hi.Lo = Hi (high limit) and PV > SP the upper display will be red.
when [33] Hi.Lo = Lo (low limit) and PV < SP the upper display will be red.
1 = Display red (fix);
2 = Display green (fix);
3 = Display orange (fix).

[47] diS.t – Display time out
Available: Always.
Range: off = The display is ever ON;
0 (OFF) to 99.59 minutes and seconds.
Note: This function allows to turn OFF the display when no alarm is present and no action is made on the instrument.
When diS.t is different from OFF and no button is pressed for more than the programmed time out, the display goes OFF and only 4 segments of the less significant digit are turned ON in sequence in order to show that the instrument is working correctly.
If an alarm occurs or a button is pressed, the display will come back to the normal operation.

3Ser group - Serial link parameter

[48] Add - Instrument address
Available: Always.
Range: off = Serial address not used;
1 to 254.

[49] baud – Baud rate
Range: 1200 = 1200 baud;
2400 = 2400 baud;
9600 = 9600 baud;
19.2 = 19200 baud;
38.4 = 38400 baud.

CAL group - User calibration group

This function allows to calibrate the complete measuring chain and to compensate the errors due to:

– Sensor location;
– Sensor class (sensor errors);
– Instrument accuracy.

[50] A.L.P - Adjust Low Point

Available: Always.

Range: -1999 to (A.H.P - 10) engineering units.

Note: The minimum difference between A.L.P and A.H.P is equal to 10 Engineering Units.

[51] A.L.o - Adjust Low Offset

Available: Always.

Range: -300 to +300 engineering units.

[52] A.H.P - Adjust High Point

Available: Always.

Range: From (A.L.P + 10) to 9999 engineering units.

Note: The minimum difference between A.L.P and A.H.P is equal to 10 Engineering Units.

[53] A.H.o - Adjust High Offset

Available: Always.

Range: -300 to +300 Engineering Units.

Example: Environmental chamber with an operative range: 10 to 100°C.

1. Insert in the chamber a reference sensor connected with a reference instrument (usually a calibrator).
2. Start the control of the instrument, and set a set point equal to the minimum value of the operative range (e.g.: 10°C). When the temperature in the chamber is steady, take note of the temperature measured by the reference system (e.g.: 9°C).
3. Set [50] A.L.P = 10 (low working point) and [140] A.L.o = -1 (it is the difference between the reading of the instrument and the reading of the reference system). Note that after this set the measured value of the instrument is equal to the measured value of the reference system.
4. Set a set point equal to the maximum value of the operative range (e.g. 100°C). When the temperature in the chamber is steady, take note of the temperature measured by the reference system (e.g. 98°C).
5. Set [52] A.H.P = 100 (low working point) and [142] A.H.o = +2 (it is the difference between the reading of the instrument and the reading of the reference system). Note that after this set the measured value of the instrument is equal to the measured value of the reference system.

The most important step of the configuration procedure is completed.

In order to exit from configuration parameter procedure, proceed as follows:

- Push button for more than 3 s. The instrument will come back to the “standard display”.

The following graph shows the real curve and the modified curve.

![Graph showing real and modified curves](image_url)
6. OPERATIVE MODES

The TC10-L is an FM (both FM3545 and FM3810) approved limit controller that can be configured either as a high limit or as a low limit controller by a user. The relay of the output 2 operates in fail-safe mode (relay de-energized during shutdown condition) and latching mode. OUT 2 turns OFF (in this document this condition will be named shutdown) when:

The instrument is configured as a high limiter (Hi.Lo = Hi) and the measured value is greater than limiter threshold ["SP" parameter] or.

The instrument is configured as a low limiter (Hi.Lo = Lo) and the measured value is lower than limiter threshold. Out 2 remains OFF until the condition which generated the shutdown, no longer exists and the Confirming action (re-arm) has been performed.

During a shutdown (Out 2 is OFF) the upper display will be red.

Confirming action (rearm) can be performed in two different way:
- by pressing the [] key [when "diS" parameter is set to "but"] but it will be accepted only when the condition which generated the shutdown, no longer exists (EX lamp is OFF) and the set point is shown on the lower display (see “normal display” in “Navigation access”)
- by momentarily closing the digital input (by an external dry contact) [when diS parameter is set to “di”] but it will be accepted only when the condition which generated the shutdown, no longer exists.

We define also that the time duration of the shutdown condition, stored by the instrument, will be the time from Out 2 goes OFF (shutdown start) and the condition that generate the shutdown no longer exists.

The confirmation action is not part of this time count.

The time duration of the shutdown condition and max/min measured values are stored in memory and available for viewing (see “navigation access”) until the next shutdown condition occurs.

These informations are lost at power down.

6.1 HIGH LIMIT CONTROL

The HI lamp (d) is ON

When a measured value (a) is higher then the set point (b), "EX" lamp (e) lights, and "OUT" lamp (c) turns ON and the limit output relay (Out 2) is de-energized.

EX lamp (e) turns off when PV goes into normal condition, while the "OUT" lamp (c) lamp stays on as it is.

The out (c) lamp turns off only when the EX lamp (e) is off and a confirming operation (rearm) has been done by an operator.

The way to confirm are (according to the “diS” parameter):
- pressing [] key for more than 3 seconds or
- by DI1.

Output relay is de-energized whenever “OUT” lamp is on. Check the “HYS” parameter value if the EX lamp (e) is not turn off when PV (a) is lower than SP (b).

When the EX lamp (e) is ON but PV (a) is lower than SP (b), the upper display will be in green color and it shows that the PV is in the hysteresis area

6.2 LOW LIMIT CONTROL

The HI lamp (d) is OFF

When a measured value (a) is lower than the set point (b), “EX” lamp (e) lights, and “OUT” lamp (c) turns ON and the limit output relay is de-energized.

“EX” (e) lamp turns off when PV goes into normal condition, while the “OUT” lamp (c) lamp stays on as it is.

The out (c) lamp turns off only when the EX lamp (e) is off and a confirming operation (rearm) has been done by an operator.

The way to confirm are (according to the “diS” parameter):
- pressing [] key for more than 3 seconds or
- by DI1.

The confirming operation is not accepted during PV exceeds SP (D) (during EXCEEDED lamp lights*). State of output relay is de-energized whenever “OUT” lamp is on. Output relay is de-energized whenever “OUT” lamp is on.

Check the “HYS” parameter value if the EX lamp (e) is not turn off when PV (a) is lower than SP (b).

When the EX lamp (e) is ON but PV (a) is higher than SP (b), the upper display will be in green color and it shows that the PV is in the hysteresis area
6.3 ACCESS LEVELS AND SPECIFIC PARAMETERS

The instrument is showing the "standard display". This instrument is equipped with 3 different access levels:
- Level 1 – Operator Mode (not protected by password)
- Level 2 – Operator modify parameter (protected by a programmable password [default 20])
- Level 3 – Configuration parameters mode (protected by programmable password [default 30])

- The operator area (Level 1) allows: confirmation action, to see and to reset the <<tim>> parameter (time duration of the last shutdown condition detected) and to see and to reset the <<Min/max>> (minimum or maximum measured value during last shutdown condition detected).

Note: when a new shutdown condition is detected, the instrument automatically reset <<tim>> and <<min/max>> parameters and start to memorize the values related with the new shutdown condition only. At the end of the shut down condition, <<tim>> and <<min/max>> can be read and reset.

- The Level 2 area encompasses the following parameters:

<table>
<thead>
<tr>
<th>Param.</th>
<th>Description</th>
<th>Dec. Point</th>
</tr>
</thead>
<tbody>
<tr>
<td>SP</td>
<td>Set point (shutdown set point)</td>
<td>dP</td>
</tr>
<tr>
<td>AL1L</td>
<td>For high or low alarm, it is the low limit of AL1 threshold</td>
<td>dP</td>
</tr>
<tr>
<td>AL1H</td>
<td>For high or low alarm, it is the high limit of AL1 threshold</td>
<td>dP</td>
</tr>
<tr>
<td>AL1</td>
<td>Alarm 1 threshold</td>
<td>dP</td>
</tr>
<tr>
<td>AL2L</td>
<td>For high or low alarm, it is the low limit of AL2 threshold</td>
<td>dP</td>
</tr>
<tr>
<td>AL2H</td>
<td>For high or low alarm, it is the high limit of AL2 threshold</td>
<td>dP</td>
</tr>
<tr>
<td>AL2</td>
<td>Alarm 2 threshold</td>
<td>dP</td>
</tr>
<tr>
<td>HyS</td>
<td>Hysteresis of the shutdown control (relay hysteresis for control output)</td>
<td>dP</td>
</tr>
<tr>
<td>Fil</td>
<td>Digital filter on the measured value</td>
<td>1</td>
</tr>
<tr>
<td>bS</td>
<td>PV input bias</td>
<td></td>
</tr>
</tbody>
</table>

6.4 ENTER THE “OPERATOR MODIFY PARAMETER”

The instrument is showing the “standard display”.
1. Press the button for more than 3 seconds;
2. The upper display will show PASS while the lower display will show 0;
3. By and buttons set the value assigned to [44] PAS2 (Level 2 password).

Notes: 1. The factory default password for configuration parameters is equal to 20.
2. All parameter modification are protected by a time out. If no button is pressed for more than 30 second the instrument comes automatically back to the Standard display, the new value of the last selected parameter is lost and the parameter modification procedure is closed. When you desire to remove the time out (e.g. for the first configuration of an instrument) you can use a password equal to 1000 plus the programmed password (e.g. 1000 + 20 [default] = 1020). It is always possible to manually End the parameter configuration procedure (see below).
4. Push button.
5. The instrument will show on the upper display the acronym of the first parameter promoted to this level and on the lower display its value.
6. By and buttons assign to this parameter the desired value.
7. Press the button in order to memorize the new value and go to the next parameter.
8. When you want to come back to the "standard display" push the button for more than 3 s.

6.5 HOW TO SEE BUT NOT MODIFY THE “OPERATOR MODIFY PARAMETERS ACCESS PARAMETERS”

Sometime it is necessary to let the possibility to see the value assigned to the Operator Modify Parameter but it is important that changes are made by authorized personnel only. In this cases, proceed as follows:
1. Press the button for more than 3 seconds;
2. The upper display will show PASS while the lower display will show 0;
3. By and button set the value -181;
4. Push button;
5. The upper display will show the acronym of the first parameter promoted to the level 2 and lower display will show its value;
6. Using button it is possible to see the value assigned to all parameter present in level 2 but it will not be possible to modify it;
7. It is possible to come back to the “standard display” by pushing the button for more than 3 seconds or by pushing no pushbutton for more than 30 seconds.
6.6 LIST OF POSSIBLE ERRORS

ErrAt Fast Auto-tune cannot start. The measure value is too close to the set point.
- Push the button in order to delete the error message.

ouLd Overload on the out 4
- The messages shows that a short circuit is present on the Out 4 when it is used as output or as a transmitter power supply.
- When the short circuit disappears the output restart to operate.

noAt Auto-tune not finished within 12 hours.

ErEP Possible problem of the instrument memory.
- The messages disappears automatically.
- When the error continues, send the instrument to your supplier.

ronE Possible problem of the firmware memory.
- When this error is detected, send the instrument to your supplier.

Errt Possible problem of the calibration memory.
- When this error is detected, send the instrument to your supplier.

7. HARDWARE SPECIFICATIONS

7.6.1 Measuring input

Thermocouples
- Continuity detection current: 250 nA
- Engineering Unit: °C or °F programmable.
- CJ: automatic compensation from 0 to +55 °C.
- CJ temperature drift : 0,04 °C/°C @ 25 °C after a warm-up (instrument ON) equal to 20 minutes.
- Burn-out: full scale.
- Calibration: EN584-1, DIN 43710 - 1977

<table>
<thead>
<tr>
<th>TC</th>
<th>Type</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>J</td>
<td>-50 to 1000 °C</td>
<td>-50.0 to 999.9 °C to -58 to 1832 °F to -58.0 to 999.9°F</td>
</tr>
<tr>
<td>K</td>
<td>-50 to 1370 °C</td>
<td>-50.0 to 999.9 °C to -58 to 2498 °F to -58.0 to 999.9°F</td>
</tr>
<tr>
<td>S</td>
<td>-50 to 1760 °C</td>
<td>-50.0 to 999.9 °C to -58 to 3200 °F to -58.0 to 999.9°F</td>
</tr>
<tr>
<td>R</td>
<td>-50 to 1760 °C</td>
<td>-50.0 to 999.9 °C to -58 to 3200 °F to -58.0 to 999.9°F</td>
</tr>
<tr>
<td>T</td>
<td>-70 to 400 °C</td>
<td>-70.0 to 400.0 °C to -94 to 752 °F to -94.0 to 752.0°F</td>
</tr>
<tr>
<td>N</td>
<td>-50 to 1300°C</td>
<td>-50.0 to 999.9°C to -58 to 2372°F to -58.0 to 999.9°F</td>
</tr>
</tbody>
</table>

RTD (Resistive Temperature Detector)
- Type: Pt 100 - 3 wires
- Pt 1000 - 2 wires.
- Current injection: 135 µA.
- Line resistance: Automatic compensation (PT100 only) up to 20 Ohm/wire with maximum error <+0.1% input span.
- Engineering unit: °C or °F programmable.
- Burn-out: full scale.
- Calibration: DIN 43760, EN 60751/A2

<table>
<thead>
<tr>
<th>RTD type</th>
<th>Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pt 100</td>
<td>-200 to 850 °C to -328 to 1562 °F</td>
</tr>
<tr>
<td>Pt 1000</td>
<td>-200 to 850 °C to -328 to 1562 °F</td>
</tr>
</tbody>
</table>

Linear inputs
- Type: 0/12-60 mV, 0/4-20 mA, 0/1-5V, 0/2-10V.
- Readout: programmable from -1999 to 9999
- Decimal point: programmable

<table>
<thead>
<tr>
<th>Input type</th>
<th>Input impedance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0/12 to 60 mV</td>
<td>> 1 MΩohm</td>
</tr>
<tr>
<td>0/4 to 20 mA</td>
<td>53 Ohm</td>
</tr>
<tr>
<td>0/1 to 5 V or 0/2 to 10 V</td>
<td>> 500 kΩohm</td>
</tr>
</tbody>
</table>

Digital input
- Type: contact free of voltage
- Max. contact resistance: 100 Ohm.
- Contact rating: 10 V, 6 mA.
- Outputs
- Out 1
- Available: Optionally
- Output action: direct/reverse programmable
- Function: retransmission
- Output type: 0-20 mA, 4-20 mA, 0-10 V or 2-10V programmable
- Isolation: isolated output
- Maximum load: 500 Ohm
Out 2
Function: Limiter output
Available: Ever
Output action: Reverse
Output type: relay
Contact: SPST (NO contact)
Contact rating: -2A / 250 V c.a. on resistive load.
1 A / 250 V with cosf = 0.4

Out 3
Function: Alarm output
Available: optionally
Type: relay or SSR
a) Relay output
Contact type: SPST (No contact)
Contact rating: -2A / 250 V c.a. on resistive load.
-1 A / 250 V with cosf = 0.4
b) Logic voltage for SSR drive.
 Isolation: Output NOT isolated.
Protection: Output protected from short circuit.
1 logic status: 12 V ±20% @ 15 mA.
0 logic status: <0.5 V

Out 4 (when programmed)
Function: Alarm output
Available: ever
Type: SSR drive
Isolation: Not isolated
Protection: Output protected from short circuit.
Stato logico 1: 12 V ±20% @ 23 mA.
Stato logico 0: <0.5 V

Auxiliary power supply for TX
NOTE: this output is obtained by forcing the out 4 to ON.
Isolation: Not isolated
Protection: Output protected from short circuit.
Voltage: 12 VDC
Current: 23 mA Max.

Serial interfaces
Type: TTL
Available: ever
Isolation: Not isolated
Protocol: Modbus RTU
Baud rate: from 1200 to 38400 baud
Multiple reading: max 16 word.
Multiple writing: max 16 word.
Parity: none
Data format: 8 bit
Start Bit: 1
Stop Bit: 1
8. GENERAL NOTES

8.1 PROPER USE
Every possible use not described in this manual must be considered as a improper use.

This instrument is in compliance with EN 61010-1 “Safety requirements for electrical equipment for measurement, control and laboratory use”; for this reason it could not be used as a safety equipment.

Whenever a failure or a malfunction of the control device may cause dangerous situations for persons, thing or animals, please remember that the plant has to be equipped with additional safety devices.

Yokogawa Electric Corporation and its legal representatives do not assume any responsibility for any damage to people, things or animals deriving from violation, wrong or improper use or in any case not in compliance with the instrument’s features.

8.2 WARRANTY
This product is under warranty against manufacturing defects or faulty materials that are found within 18 months from manufacturing date. The warranty is limited to the replacement of the instrument.

The tampering of the instrument or an improper use of the product will bring about the immediate withdrawal of the warranty’s effects.

In the event of a faulty instrument, either within the period of warranty, or further to its expiry, please contact our sales department to obtain authorisation for sending the instrument to our company.

8.3 DISPOSAL

Waste Electrical and Electric Equipment (WEEE) Directive (This directive is valid in the EU member states).

This product complies with the WEEE Directive marking requirements.

The following marking indicates that you must not discard this electrical/electronic product in domestic household waste.

Product Category
With reference to the equipment types in the WEEE directive, this product is classified as a “Monitoring and control instruments”.

Do not dispose of this product in domestic household waste.
When disposing of product in the EU, contact your Yokogawa Europe B.V. office.
Appendix A

InP Group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Dec. point</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SEnS</td>
<td>Measuring input</td>
<td>J = TC J, crAL = TC K, S = TC S, r = TC R, t = TC T, n = TC N, Pt1 = PT 100, Pt10 = PT 1000, 0.60 = 0 to 60 mV, 12.60 = 12 to 60 mV, 0.20 = 0 to 20 mA, 4.20 = 4 to 20 mA, 0.5 = 0 to 5 V, 1.5 = 1 to 5 V, 0.10 = 0 to 10 V, 2.10 = 2 to 10 V,</td>
<td>dP</td>
</tr>
<tr>
<td>2</td>
<td>dP</td>
<td>Decimal point figure</td>
<td>Note: For TC and RTD inputs the decimal figure must be 0 or 1 only.</td>
<td>0 to 3</td>
</tr>
<tr>
<td>3</td>
<td>SSc</td>
<td>Initial scale readout</td>
<td>NOTE: This parameter will be shown only when a linear input has been selected (mV, V or mA).</td>
<td>-1999 to 9999</td>
</tr>
<tr>
<td>4</td>
<td>FSc</td>
<td>Full scale readout</td>
<td>NOTE: This parameter will be shown only when a linear input has been selected (mV, V or mA).</td>
<td>-1999 to 9999 (E.U.)</td>
</tr>
<tr>
<td>5</td>
<td>unit</td>
<td>Engineering unit</td>
<td>NOTE: This parameter will be shown only when a TC or RTD input has been selected.</td>
<td>°C or °F</td>
</tr>
<tr>
<td>6</td>
<td>FIL</td>
<td>Digital filter on the measured value.</td>
<td>Note: This filter will affect the measured value but also the control action the analogue retransmission and the alarms behaviour.</td>
<td>0 (off) to 20.0 (s)</td>
</tr>
<tr>
<td>7</td>
<td>bS</td>
<td>PV input bias</td>
<td>-100 to 100 % of the input span</td>
<td>dP</td>
</tr>
<tr>
<td>8</td>
<td>di.A</td>
<td>Digital Input action</td>
<td>0 = DI1 direct, 1 = DI1 reverse</td>
<td></td>
</tr>
</tbody>
</table>

OUT group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal point</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>O1.t</td>
<td>Out 1 type</td>
<td>0.20 = 0 to 20 mA, 4.20 = 4 to 20 mA, 0.10 = 0 to 10 Volt, 2.10 = 2 to 10 Volt</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>O1F</td>
<td>Out 1 function</td>
<td>nonE = Out not used, r.inP = Measure retransmission, r.Err = Error retransmission, r.SP = SP retransmission, r.SEr = Retransmission of a value coming from serial link</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Ao1L</td>
<td>Retransmission – initial scale value</td>
<td>-1999 to Ao1H</td>
<td>dP</td>
</tr>
<tr>
<td>12</td>
<td>Ao1H</td>
<td>Retransmission – full scale value</td>
<td>Ao1L to 9999</td>
<td>dP</td>
</tr>
<tr>
<td>13</td>
<td>o3F</td>
<td>Out 3 function</td>
<td>Available: when Out 3 is present.</td>
<td>nonE = Out not used, AL = Alarm output, or.bo = Over-range and burn-out, P.FAL = Power failure, bo,PF = Over-range, Burn-out and power Fail</td>
</tr>
<tr>
<td>14</td>
<td>o3AL</td>
<td>Alarms linked up with Out 3</td>
<td>from 0 to 15, +1 = Alarm 1, +2 = Alarm 2, +4 = Burn-out, +8 = Overload of the Out 4</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>o3Ac</td>
<td>Out 3 action</td>
<td>dir = Direct action, rEU = Reverse action</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>o4F</td>
<td>Out 4 function</td>
<td>nonE = Out not used, AL = Alarm output, or.bo = Over-range and burn-out, P.FAL = Power failure, bo,PF = Over-range, Burn-out and power Fail, On = Output ever ON (usable as auxiliary PWS for a transmitter).</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>Param.</td>
<td>Description</td>
<td>Range value or selection list elements</td>
<td>Decimal figure</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>-------------</td>
<td>--</td>
<td>----------------</td>
</tr>
</tbody>
</table>
| 17 | 04AL | Alarms linked up with Out 4 | from 0 to 7
+1 = Alarm 1
+2 = Alarm 2
+4 = Burn-out | 0 |
| 18 | 04Ac | Out 4 action | $df = $ Direct action
$rEU = $ Reverse action | |

AL1 Group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal figure</th>
</tr>
</thead>
</table>
| 19 | AL1t | Alarm 1 type | nonE = Alarm not used;
LoAb = Absolute low alarm;
HiAb = Absolute high alarm;
LHAo = Absolute band alarm with alarm indication out of the band;
LHAi = Absolute band alarm with alarm indication inside the band;
SE.br = Sensor break;
LoE = Deviation low alarm;
HiE = Deviation high alarm;
LHdo = Relative band alarm with alarm indication out of the band;
LHdi = Relative band alarm with alarm indication inside the band. | |
| 20 | Ab1 | Alarm 1 function | from 0 to 3
0 = no function
+1 = not active at power up
+2 = Relative alarm not active at set point change. | 0 |
| 21 | AL1L | - For High and low alarms, it is the low limit of the AL1 threshold
- For band alarm, it is low alarm threshold | -1999 to AL1H (E.U.) | dP |
| 22 | AL1H | - For High and low alarms, it is the high limit of the AL1 threshold
- For band alarm, it is the high alarm threshold | AL1L to 9999 (E.U.) | dP |
| 23 | AL1 | Alarm 1 threshold | AL1L to AL1H (E.U.) | dP |
| 24 | HAL1 | Alarm 1 hysteresis | 1 to 9999 (E.U.) | dP |
| 25 | AL1d | Alarm 1 delay | 0 (off) to 9999 (s) | 0 |

AL2 Group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal figure</th>
</tr>
</thead>
</table>
| 26 | AL2t | Alarm 2 type | nonE = Alarm not used;
LoAb = Absolute low alarm;
HiAb = Absolute high alarm;
LHAo = Absolute band alarm with alarm indication out of the band;
LHAi = Absolute band alarm with alarm indication inside the band;
SE.br = Sensor break;
LoE = Deviation low alarm;
HiE = Deviation high alarm;
LHdo = Relative band alarm with alarm indication out of the band;
LHdi = Relative band alarm with alarm indication inside the band. | |
| 27 | Ab2 | Alarm 2 function | From 0 to 3
0 = no function
+1 = not active at power up
+2 = Relative alarm not active at set point change. | 0 |
| 28 | AL2L | - For High and low alarms, it is the low limit of the AL2 threshold
- For band alarm, it is low alarm threshold | -1999 to AL2H (E.U.) | dP |
| 29 | AL2H | - For High and low alarms, it is the high limit of the AL2 threshold
- For band alarm, it is the high alarm threshold | AL2L to 9999 (E.U.) | dP |
| 30 | AL2 | Alarm 2 threshold | AL2L to AL2H (E.U.) | dP |
| 31 | HAL2 | Alarm 2 hysteresis | 1 to 9999 (E.U.) | dP |
| 32 | AL2d | Alarm 2 delay | 0 (off) to 9999 (s) | 0 |

rEG group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal figure</th>
</tr>
</thead>
</table>
| 33 | Hi.Lo | Limit control type | Hi = High limit.
Lo = Low limit. | |
| 34 | r.md | Restart mode | 0 = On > limit output is ON in any case (the instrument start in shutdown condition)
1 = off > limit output is OFF when, at power on, PV doesn’t exceed SP. | |
| 35 | HyS | Hysteresis of the control output | From 0.0 to 100% of the input span | dP |
| 36 | oP.SL | Operative display selection | 0 = PU SP > PV and SP / SP only (lower display)
1 = SP > SP only (lower display) | |
PAn Group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>44</td>
<td>PAS2</td>
<td>Password level 2</td>
<td>0 (OFF) to 200</td>
<td>0</td>
</tr>
<tr>
<td>45</td>
<td>PAS3</td>
<td>Password level 3</td>
<td>3 to 200</td>
<td>0</td>
</tr>
<tr>
<td>46</td>
<td>di.CL</td>
<td>Display color</td>
<td>0 = The display color is used to show the Exceeded condition. 1 = fixed red display 2 = fixed green display 3 = fixed amber display</td>
<td>0</td>
</tr>
<tr>
<td>47</td>
<td>di.S.t</td>
<td>Display time-out</td>
<td>0 (OFF) to 99.59 (mm.ss)</td>
<td>2</td>
</tr>
</tbody>
</table>

Ser group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Add</td>
<td>Address</td>
<td>0 (OFF) to 254</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>bAud</td>
<td>Baud rate</td>
<td>1200 2400 9600 19.2 38.4</td>
<td></td>
</tr>
</tbody>
</table>

CAL group

<table>
<thead>
<tr>
<th>N</th>
<th>Param.</th>
<th>Description</th>
<th>Range value or selection list elements</th>
<th>Decimal figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>A.L.P</td>
<td>Adjust low Point</td>
<td>-1999 to A.H.P-10 (E.U.)</td>
<td>dP</td>
</tr>
<tr>
<td>51</td>
<td>A.L.o</td>
<td>Adjust low Offset</td>
<td>-300 to 300 (E.U.)</td>
<td>dP</td>
</tr>
<tr>
<td>52</td>
<td>A.H.P</td>
<td>Adjust High Point</td>
<td>A.L.P +10 to 9999 (E.U.)</td>
<td>dP</td>
</tr>
<tr>
<td>53</td>
<td>A.H.o</td>
<td>Adjust High Offset</td>
<td>-300 to 300 (E.U.)</td>
<td>dP</td>
</tr>
</tbody>
</table>