Quick Installation Guide
00825-0100-4665, Rev AB
December 2012
Rosemount 8732

Rosemount 8732E Magnetic Flowmeter System
with PROFIBUS PA digital fieldbus
(Transmitter and Sensor)

Start

Step 1: Pre-Installation
Step 2: Handling
Step 3: Mounting
Step 4: Installation
 (Flanged Sensors)
 (Wafer Sensors)
 (Sanitary Sensors)
Step 5: Grounding
Step 6: Wiring
Step 7: Basic Configuration
Product Certifications

End

www.rosemount.com
IMPORTANT NOTICE

This document provides basic installation guidelines for the Rosemount 8732. It does not provide instructions for detailed configuration, diagnostics, maintenance, service, troubleshooting, explosion-proof, flameproof, or intrinsically safe (I.S.) installations. Refer to the Rosemount 8732 reference manual (document number 00809-0100-4665) for more instructions. The manual and this QIG are also available electronically on www.rosemount.com.

WARNING

Failure to follow these installation guidelines could result in death or serious injury:

Installation and servicing instructions are for use by qualified personnel only. Do not perform any servicing other than that contained in the operating instructions, unless qualified. Verify that the operating environment of the sensor and transmitter is consistent with the appropriate FM, CSA, ATEX, or IECEx approval.

Do not connect a Rosemount 8732 to a non-Rosemount sensor that is located in an explosive atmosphere.

WARNING

The sensor liner is vulnerable to handling damage. Never place anything through the sensor for the purpose of lifting or gaining leverage. Liner damage can render the sensor useless.

To avoid possible damage to the sensor liner ends, do not use metallic or spiral-wound gaskets. If frequent removal is anticipated, take precautions to protect the liner ends. Short spool pieces attached to the sensor ends are often used for protection.

Correct flange bolt tightening is crucial for proper sensor operation and life. All bolts must be tightened in the proper sequence to the specified torque limits. Failure to observe these instructions could result in severe damage to the sensor lining and possible sensor replacement.

WARNING

Rosemount 8705 Magnetic Flowtube units ordered with non-standard paint options may be subject to electrostatic discharge.

To avoid electrostatic charge build-up, do not rub the meter body with a dry cloth or clean with solvents.
STEP 1: PRE-INSTALLATION

Before installing the Rosemount 8732 Magnetic Flowmeter Transmitter, there are several pre-installation steps that should be completed to make the installation process easier:

- Identify the options and configurations that apply to your application
- Set the hardware switches if necessary
- Consider mechanical, electrical, and environmental requirements

Mechanical Considerations

The mounting site for the Rosemount 8732 transmitter should provide enough room for secure mounting, easy access to conduit ports, full opening of the transmitter covers, and easy readability of the display screen (see Figure 1).

If the Rosemount 8732 is mounted separately from the sensor, it is not subject to limitations that might apply to the sensor.

Figure 1. Rosemount 8732 Dimensional Drawing

NOTE:

* M20 and PG 13.5 connections are available with the use of threaded conduit adapters.
Environmental Considerations
To ensure maximum transmitter life, avoid excessive heat and vibration. Typical problem areas include:
• High-vibration lines with integrally mounted transmitters
• Warm-climate installations in direct sunlight
• Outdoor installations in cold climates.
Remote-mounted transmitters may be installed in the control room to protect the electronics from the harsh environment and provide easy access for configuration or service.
Both remotely and integrally mounted Rosemount 8732 transmitters require external power so there must be access to a suitable power source.

Installation Procedures
Rosemount 8732 installation includes both detailed mechanical and electrical installation procedures.

Mount the Transmitter
At a remote site the transmitter may be mounted on a pipe up to two inches in diameter or against a flat surface.

Pipe Mounting
To mount the transmitter on a pipe:
1. Attach the mounting bracket to the pipe using the mounting hardware.
2. Attach the Rosemount 8732 to the mounting bracket using the mounting screws.

Hardware Jumpers/Switches
The 8732 PROFIBUS PA electronics board is equipped with two user-selectable hardware switches. These switches do not have any functionality and should be left in the default positions as listed below:

<table>
<thead>
<tr>
<th>Switch</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simulate Enable</td>
<td>OFF</td>
</tr>
<tr>
<td>Transmitter Security</td>
<td>OFF</td>
</tr>
</tbody>
</table>

Changing the switch position will have no effect on the functionality of the electronics.

Electrical Considerations
Before making any electrical connections to the Rosemount 8732, consider local and plant electrical standards and be sure to have the proper power supply, conduit, and other accessories necessary to comply with these standards.

Rotate Transmitter Housing
The electronics housing can be rotated on the sensor in 90° increments by loosening the four mounting bolts on the bottom of the housing, and reinstalling the bolts. When the housing is returned to its original position, be sure the surface is clean and there is no gap between the housing and the sensor. When rotating the housing more than 90°, be sure to disconnect the wiring from the electronics board and reconnect once the housing is securely tightened in the desired orientation.
STEP 2: HANDLING

Handle all parts carefully to prevent damage. Whenever possible, transport the system to the installation site in the original shipping containers. PTFE-lined sensors are shipped with end covers that protect it from both mechanical damage and normal unrestrained distortion. Remove the end covers just before installation.

![Figure 2. Rosemount 8705 Sensor Support for Handling](image)

STEP 3: MOUNTING

Upstream/Downstream Piping

To ensure specification accuracy over widely varying process conditions, install the sensor a minimum of five straight pipe diameters upstream and two pipe diameters downstream from the electrode plane (see Figure 3).

![Figure 3. Upstream and Downstream Straight Pipe Diameters](image)

Installations with reduced straight runs from 0 to 5 pipe diameters are possible. In reduced straight pipe run installations, performance will shift. Reported flow rates will still be highly repeatable.
Flow Direction
The sensor should be mounted so the FORWARD end of the flow arrow, shown on the sensor identification tag, points in the direction of flow through the sensor.

Sensor Location
The sensor should be installed in a position that ensures the sensor remains full during operation. Vertical installation allows upward process fluid flow and keeps the cross-sectional area full, regardless of flow rate. Horizontal installation should be restricted to low piping sections that are normally full.

Figure 4. Sensor Orientation

The electrodes in the sensor are properly orientated when the two measurement electrodes are in the 3 and 9 o'clock positions or within 45° from the vertical, as shown on the right of Figure 5. Avoid any mounting orientation that positions the top of the sensor at 90° from the vertical position as shown on the left of Figure 5.

Figure 5. Mounting Position
STEP 4: INSTALLATION

Flanged Sensors

Gaskets

The sensor requires a gasket at each of its connections to adjacent devices or piping. The gasket material selected must be compatible with the process fluid and operating conditions. Metallic or spiral-wound gaskets can damage the liner. Gaskets are required on each side of a grounding ring. All other applications (including sensors with lining protectors or a grounding electrode) require only one gasket on each end connection.

Flange Bolts

NOTE
Do not bolt one side at a time. Tighten each side simultaneously. Example:
1. Snug left
2. Snug right
3. Tighten left
4. Tighten right

Do not snug and tighten the upstream side and then snug and tighten the downstream side. Failure to alternate between the upstream and downstream flanges when tightening bolts may result in liner damage.

Suggested torque values by sensor line size and liner type are listed in Table 1 for ASME B16.5 and Table 2 for EN flanges. Consult the factory if the flange rating of the sensor is not listed. Tighten flange bolts on the upstream side of the sensor in the incremental sequence shown in Figure 7 to 20% of the suggested torque values. Repeat the process on the downstream side of the sensor. For sensors with more or less flange bolts, tighten the bolts in a similar crosswise sequence. Repeat this entire tightening sequence at 40%, 60%, 80%, and 100% of the suggested torque values or until the leak between the process and sensor flanges stop.
If leakage has not stopped at the suggested torque values, the bolts can be tightened in additional 10% increments until the joint stops leaking, or until the measured torque value reaches the maximum torque value of the bolts. Practical consideration for the integrity of the liner often leads the user to distinct torque values to stop leakage due to the unique combinations of flanges, bolts, gaskets, and sensor liner material.

Check for leaks at the flanges after tightening the bolts. Failure to use the correct tightening methods can result in severe damage. Sensors require a second tightening 24 hours after the initial installation. Over time, sensor liner materials may deform under pressure.

Table 1. Suggested Flange Bolt Torque Values for Rosemount 8705 and 8707 High-Signal Sensors

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>PTFE/ETFE/PFA liners</th>
<th>Polyurethane/Neoprene/ Linatex/Adiprene liner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Class 150 (pound-feet)</td>
<td>Class 300 (pound-feet)</td>
</tr>
<tr>
<td>005</td>
<td>0.5-in. (15 mm)</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>010</td>
<td>1-in. (25 mm)</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>015</td>
<td>1.5-in. (40 mm)</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>020</td>
<td>2-in. (50 mm)</td>
<td>22</td>
<td>24</td>
</tr>
<tr>
<td>025</td>
<td>2.5-in. (65 mm)</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>030</td>
<td>3-in. (80 mm)</td>
<td>34</td>
<td>35</td>
</tr>
<tr>
<td>040</td>
<td>4-in. (100 mm)</td>
<td>26</td>
<td>50</td>
</tr>
<tr>
<td>050</td>
<td>5-in. (125 mm)</td>
<td>36</td>
<td>60</td>
</tr>
<tr>
<td>060</td>
<td>6-in. (150 mm)</td>
<td>45</td>
<td>50</td>
</tr>
<tr>
<td>080</td>
<td>8-in. (200 mm)</td>
<td>60</td>
<td>82</td>
</tr>
<tr>
<td>100</td>
<td>10-in. (250 mm)</td>
<td>55</td>
<td>80</td>
</tr>
<tr>
<td>120</td>
<td>12-in. (300 mm)</td>
<td>65</td>
<td>125</td>
</tr>
<tr>
<td>140</td>
<td>14-in. (350 mm)</td>
<td>85</td>
<td>110</td>
</tr>
<tr>
<td>160</td>
<td>16-in. (400 mm)</td>
<td>85</td>
<td>160</td>
</tr>
<tr>
<td>180</td>
<td>18-in. (450 mm)</td>
<td>120</td>
<td>170</td>
</tr>
<tr>
<td>200</td>
<td>20-in. (500 mm)</td>
<td>110</td>
<td>175</td>
</tr>
<tr>
<td>240</td>
<td>24-in. (600 mm)</td>
<td>185</td>
<td>280</td>
</tr>
<tr>
<td>300</td>
<td>30-in. (750 mm)</td>
<td>195</td>
<td>375</td>
</tr>
<tr>
<td>360</td>
<td>36-in. (900 mm)</td>
<td>280</td>
<td>575</td>
</tr>
</tbody>
</table>
Table 2. Flange Bolt Torque and Bolt Load Specifications for 8705 (EN 1092-1)

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>PTFE/ETFE Liner</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PN10 (Newton-meter)</td>
</tr>
<tr>
<td>005</td>
<td>0.5-in. (15 mm)</td>
<td>10</td>
</tr>
<tr>
<td>010</td>
<td>1-in. (25 mm)</td>
<td>20</td>
</tr>
<tr>
<td>015</td>
<td>1.5-in. (40 mm)</td>
<td>50</td>
</tr>
<tr>
<td>020</td>
<td>2-in. (50 mm)</td>
<td>60</td>
</tr>
<tr>
<td>025</td>
<td>2.5-in. (65 mm)</td>
<td>50</td>
</tr>
<tr>
<td>030</td>
<td>3-in. (80 mm)</td>
<td>50</td>
</tr>
<tr>
<td>040</td>
<td>4-in. (100 mm)</td>
<td>70</td>
</tr>
<tr>
<td>050</td>
<td>5-in. (125 mm)</td>
<td>100</td>
</tr>
<tr>
<td>060</td>
<td>6-in. (150 mm)</td>
<td>130</td>
</tr>
<tr>
<td>080</td>
<td>8-in. (200 mm)</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>10-in. (250 mm)</td>
<td>120</td>
</tr>
<tr>
<td>120</td>
<td>12-in. (300 mm)</td>
<td>100</td>
</tr>
<tr>
<td>140</td>
<td>14-in. (350 mm)</td>
<td>120</td>
</tr>
<tr>
<td>180</td>
<td>16-in. (400 mm)</td>
<td>160</td>
</tr>
<tr>
<td>200</td>
<td>18-in. (450 mm)</td>
<td>220</td>
</tr>
<tr>
<td>240</td>
<td>20-in. (500 mm)</td>
<td>230</td>
</tr>
<tr>
<td>260</td>
<td>22-in. (600 mm)</td>
<td>290</td>
</tr>
</tbody>
</table>
Table 2. (continued) Flange Bolt Torque and Bolt Load Specifications for 8705 (EN 1092-1)

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>Polyurethane, Linatex, Adiprene and Neoprene Liners</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>PN 10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Newton-meter)</td>
</tr>
<tr>
<td>010</td>
<td>1-in. (25 mm)</td>
<td>20</td>
</tr>
<tr>
<td>015</td>
<td>1.5-in. (40 mm)</td>
<td>30</td>
</tr>
<tr>
<td>020</td>
<td>2-in. (50 mm)</td>
<td>40</td>
</tr>
<tr>
<td>025</td>
<td>2.5-in. (65 mm)</td>
<td>35</td>
</tr>
<tr>
<td>030</td>
<td>3-in. (80 mm)</td>
<td>30</td>
</tr>
<tr>
<td>040</td>
<td>4-in. (100 mm)</td>
<td>40</td>
</tr>
<tr>
<td>050</td>
<td>5.0-in. (125 mm)</td>
<td>50</td>
</tr>
<tr>
<td>060</td>
<td>6-in. (150 mm)</td>
<td>60</td>
</tr>
<tr>
<td>080</td>
<td>8-in. (200 mm)</td>
<td>90</td>
</tr>
<tr>
<td>100</td>
<td>10-in. (250 mm)</td>
<td>70</td>
</tr>
<tr>
<td>120</td>
<td>12-in. (300 mm)</td>
<td>80</td>
</tr>
<tr>
<td>140</td>
<td>14-in. (350 mm)</td>
<td>110</td>
</tr>
<tr>
<td>160</td>
<td>16-in. (400 mm)</td>
<td>150</td>
</tr>
<tr>
<td>180</td>
<td>18-in. (450 mm)</td>
<td>130</td>
</tr>
<tr>
<td>200</td>
<td>20-in. (500 mm)</td>
<td>150</td>
</tr>
<tr>
<td>240</td>
<td>24-in. (600 mm)</td>
<td>200</td>
</tr>
</tbody>
</table>
Wafer Sensors

Gaskets
The sensor requires a gasket at each of its connections to adjacent devices or piping. The gasket material selected must be compatible with the process fluid and operating conditions. Metallic or spiral-wound gaskets can damage the liner. Gaskets are required on each side of a grounding ring. See Figure 8 below.

Alignment
1. On 1.5 through 8-inch (40 through 200 mm) line sizes. Rosemount strongly recommends installing the alignment spacers provided to insure proper centering of the wafer sensor between the process flanges. Sensor sizes of 0.15, 0.30, 0.5 and 1 in. (4 through 25 mm), do not require alignment spacers.
2. Insert studs for the bottom side of the sensor between the pipe flanges and center the alignment spacer in the middle of the stud. See Figure 8 for the bolt hole locations recommended for the spacers provided. Stud specifications are listed in Table 3.
3. Place the sensor between the flanges. Make sure that the alignment spacers are properly centered on the studs. For vertical flow installations slide the oring over the stud to keep the spacer in place. See Figure 8. To ensure the spacers match the flange size and class rating for the process flanges see Table 4.
4. Insert the remaining studs, washers, and nuts.
5. Tighten to the torque specifications shown in Table 5. Do not overtighten the bolts or the liner may be damaged.

NOTE
Sensor sizes of 0.15, 0.30, and 0.5 in. mount between AMSE 1/2-inch flanges. Using carbon steel bolts on sensor sizes of 0.15, 0.30, 0.5 and 1 in. (15 and 25 mm), rather than the required stainless steel bolts, will degrade the flow sensor measurement.
Table 4. Rosemount Alignment Spacer Table

<table>
<thead>
<tr>
<th>Dash No.</th>
<th>Line Size (in)</th>
<th>Flange Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>0A15</td>
<td>1.5</td>
<td>JIS 10K-20K</td>
</tr>
<tr>
<td>0A20</td>
<td>2</td>
<td>JIS 10K-20K</td>
</tr>
<tr>
<td>0A30</td>
<td>3</td>
<td>JIS 10K</td>
</tr>
<tr>
<td>0B15</td>
<td>1.5</td>
<td>JIS 40K</td>
</tr>
<tr>
<td>AA15</td>
<td>1.5</td>
<td>ANSI - 150#</td>
</tr>
<tr>
<td>AA20</td>
<td>2</td>
<td>ANSI - 150#</td>
</tr>
<tr>
<td>AA30</td>
<td>3</td>
<td>ANSI - 150#</td>
</tr>
<tr>
<td>AA40</td>
<td>4</td>
<td>ANSI - 150#</td>
</tr>
<tr>
<td>AA60</td>
<td>6</td>
<td>ANSI - 150#</td>
</tr>
<tr>
<td>AB80</td>
<td>8</td>
<td>ANSI - 150#</td>
</tr>
<tr>
<td>AB15</td>
<td>1.5</td>
<td>ANSI - 300#</td>
</tr>
<tr>
<td>AB20</td>
<td>2</td>
<td>ANSI - 300#</td>
</tr>
<tr>
<td>AB30</td>
<td>3</td>
<td>ANSI - 300#</td>
</tr>
<tr>
<td>AB40</td>
<td>4</td>
<td>ANSI - 300#</td>
</tr>
<tr>
<td>AB60</td>
<td>6</td>
<td>ANSI - 300#</td>
</tr>
<tr>
<td>AB80</td>
<td>8</td>
<td>ANSI - 300#</td>
</tr>
<tr>
<td>DB40</td>
<td>4</td>
<td>DIN - PN10/16</td>
</tr>
<tr>
<td>DB60</td>
<td>6</td>
<td>DIN - PN10/16</td>
</tr>
<tr>
<td>DD80</td>
<td>8</td>
<td>DIN - PN10/16</td>
</tr>
<tr>
<td>DC80</td>
<td>8</td>
<td>DIN - PN25</td>
</tr>
<tr>
<td>DD15</td>
<td>1.5</td>
<td>DIN - PN10/16</td>
</tr>
<tr>
<td>DD20</td>
<td>2</td>
<td>DIN - PN10/16</td>
</tr>
<tr>
<td>DD30</td>
<td>3</td>
<td>DIN - PN10/16</td>
</tr>
<tr>
<td>DD40</td>
<td>4</td>
<td>DIN - PN25/40</td>
</tr>
<tr>
<td>DD60</td>
<td>6</td>
<td>DIN - PN25/40</td>
</tr>
<tr>
<td>DD80</td>
<td>8</td>
<td>DIN - PN40</td>
</tr>
<tr>
<td>RA80</td>
<td>8</td>
<td>AS40871-PN16</td>
</tr>
<tr>
<td>RC20</td>
<td>2</td>
<td>AS40871-PN21/35</td>
</tr>
<tr>
<td>RC30</td>
<td>3</td>
<td>AS40871-PN21/35</td>
</tr>
<tr>
<td>RC40</td>
<td>4</td>
<td>AS40871-PN21/35</td>
</tr>
<tr>
<td>RC60</td>
<td>6</td>
<td>AS40871-PN21/35</td>
</tr>
<tr>
<td>RC80</td>
<td>8</td>
<td>AS40871-PN21/35</td>
</tr>
</tbody>
</table>

To order an Alignment Spacer Kit (qty 3 spacers) use p/n 08711-3211-xxxx along with the Dash No. above.
Flange Bolts
Wafer sensors require threaded studs. See Figure 7 for torque sequence. Always check for leaks at the flanges after tightening the flange bolts. All sensors require a second torquing 24 hours after initial flange bolt tightening.

Table 5. Rosemount 8711 Torque Specifications

<table>
<thead>
<tr>
<th>Size Code</th>
<th>Line Size</th>
<th>Pound-feet</th>
<th>Newton-meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>15F</td>
<td>0.15 inch (4 mm)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>30F</td>
<td>0.30 inch (8 mm)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>005</td>
<td>0.5 inch (15 mm)</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>010</td>
<td>1 inch (25 mm)</td>
<td>10</td>
<td>14</td>
</tr>
<tr>
<td>015</td>
<td>1.5 inch (40 mm)</td>
<td>15</td>
<td>20</td>
</tr>
<tr>
<td>020</td>
<td>2 inch (50 mm)</td>
<td>25</td>
<td>34</td>
</tr>
<tr>
<td>030</td>
<td>3 inch (80 mm)</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>040</td>
<td>4 inch (100 mm)</td>
<td>30</td>
<td>41</td>
</tr>
<tr>
<td>060</td>
<td>6 inch (150 mm)</td>
<td>50</td>
<td>68</td>
</tr>
<tr>
<td>080</td>
<td>8 inch (200 mm)</td>
<td>70</td>
<td>95</td>
</tr>
</tbody>
</table>
Sanitary Sensors

Gaskets
The sensor requires a gasket at each of its connections to adjacent devices or piping. The gasket material selected must be compatible with the process fluid and operating conditions. Gaskets are supplied between the IDF fitting and the process connection fitting, such as a Tri-Clamp fitting, on all Rosemount 8721 Sanitary sensors except when the process connection fittings are not supplied and the only connection type is an IDF fitting.

Alignment and Bolting
Standard plant practices should be followed when installing a magmeter with sanitary fittings. Unique torque values and bolting techniques are not required.
STEP 5: GROUNDING

Use Table 6 to determine which process grounding option to follow for proper installation. The sensor case should be earth grounded in accordance with national and local electrical codes. Failure to do so may impair the protection provided by the equipment.

Table 6. Process Grounding Installation

<table>
<thead>
<tr>
<th>Type of Pipe</th>
<th>Grounding Straps</th>
<th>Grounding Rings</th>
<th>Grounding Electrode</th>
<th>Lining Protectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductive Unlined Pipe</td>
<td>See Figure 10</td>
<td>Not Required</td>
<td>Not Required</td>
<td>See Figure 11</td>
</tr>
<tr>
<td>Conductive Lined Pipe</td>
<td>Insufficient</td>
<td>See Figure 11</td>
<td>See Figure 10</td>
<td>See Figure 11</td>
</tr>
<tr>
<td>Non-Conductive Pipe</td>
<td>Insufficient</td>
<td>See Figure 12</td>
<td>See Figure 13</td>
<td>See Figure 12</td>
</tr>
</tbody>
</table>

Figure 10. Grounding Straps or Grounding Electrode in Lined Pipe

Figure 11. Grounding with Grounding Rings or Lining Protectors
Figure 12. Grounding with Grounding Rings or Lining Protectors

Grounding Rings or Lining Protectors

Figure 13. Grounding with Grounding Electrode
STEP 6: WIRING

This wiring section covers the connection between the transmitter and sensor, the PROFIBUS PA fieldbus segment, and supplying power to the transmitter. Follow the conduit information, cable requirements, and disconnect requirements in the sections below.

Conduit Ports and Connections

Both the sensor and transmitter junction boxes have ports for \(\frac{1}{2} \)-inch NPT conduit connections with optional CM20 or PG 13.5 connections available. These connections should be made in accordance with national, local, and plant electrical codes. Unused ports should be sealed with metal plugs. Proper electrical installation is necessary to prevent errors due to electrical noise and interference. Separate conduits are not necessary for the coil drive and signal cables, but a dedicated conduit line between each transmitter and sensor is required. Shielded cable must be used for best results in electrically noisy environments. When preparing all wire connections, remove only the insulation required to fit the wire completely under the terminal connection. Removal of excessive insulation may result in an unwanted electrical short to the transmitter housing or other wire connections. For flanged sensors installed into an application requiring IP68 protection, sealed cable glands, conduit, and conduit plugs that meet IP68 ratings are required.

Conduit Requirements

A single dedicated conduit run for the coil drive and signal cable is needed between the sensor and the remote transmitter. See Figure 14. Bundled cables in a single conduit are likely to create interference and noise problems in the system. Use one set of cables per conduit run.

Figure 14. Conduit Preparation

Wrong	Correct
Power Outputs | Power Outputs
Coil Drive and Electrode Cables | Power Outputs

680/RevABQIG.fm Page 17 Thursday, January 10, 2013 5:49 PM
STEP 6 CONTINUED...

Run the appropriate size cable through the conduit connections in your magnetic flowmeter system. Run the power cable from the power source to the transmitter. Run the coil drive and signal cables between the flowmeter sensor and transmitter.

- Installed signal wiring should not be run together and should not be in the same cable tray as AC or DC power wiring.
- Device must be properly grounded or earthed according to local electric codes.
- Rosemount combination cable part number 08732-0753-1003 (ft.) or 08732-0753-2004 (m) is required to be used to meet EMC requirements.

Transmitter to Sensor Wiring

The transmitter can be integral to the sensor or remotely mounted following the wiring instructions.

Remote Mount Cable Requirements and Preparation

For installations using the individual coil drive and signal cable, lengths should be limited to less than 1,000 feet (300 meters). Equal length cable is required for each. See Table 7.

For installations using the combination coil drive and signal cable, lengths should be limited to less than 330 feet (100 meters). See Table 7.

Prepare the ends of the coil drive and signal cables as shown in Figure 15. Limit the unsheathed wire length to 1-inch on both the coil drive and signal cables. Any unsheathed wire should be wrapped with proper insulation. Excessive lead length or failure to connect cable shields can create electrical noise resulting in unstable meter readings.

Figure 15. Cable Preparation Detail

NOTE
Dimensions are in inches (millimeters).
Quick Installation Guide
00825-0100-4665, Rev AB
December 2012
Rosemount 8732

Wiring the Transmitter to the Sensor

When using individual cables for coil drive and signal refer to Table 8. If using the combination coil drive and signal cable refer to Table 9. See Figure 16 for transmitter specific wiring diagram.

1. Connect the coil drive cable using terminals 1, 2, and 3 (ground).
2. Connect the signal cable using terminals 17, 18, and 19.

Table 7. Cable Requirements
To order cable specify length as quantity desired. 25 feet = Qty (25) 08732-0753-1003

<table>
<thead>
<tr>
<th>Description</th>
<th>Length</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coi l Drive Cable (14 AWG)</td>
<td>ft</td>
<td>08712-0060-0001</td>
</tr>
<tr>
<td>Belden 8720, Alpha 2442</td>
<td>m</td>
<td>08712-0060-2013</td>
</tr>
<tr>
<td>or equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal Cable (20 AWG)</td>
<td>ft</td>
<td>08712-0061-0001</td>
</tr>
<tr>
<td>Belden 8762, Alpha 2411</td>
<td>m</td>
<td>08712-0061-2003</td>
</tr>
<tr>
<td>or equivalent</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combination Cable</td>
<td>ft</td>
<td>08732-0753-1003</td>
</tr>
<tr>
<td>Coil Drive Cable (18 AWG)</td>
<td>m</td>
<td>08732-0753-2004</td>
</tr>
<tr>
<td>and Signal Cable (20 AWG)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

WARNING

Potential Shock Hazard Across Terminals 1 & 2 (40 Vac).

Table 8. Individual Coil and Signal Cables

<table>
<thead>
<tr>
<th>Transmitter Terminal</th>
<th>Sensor Terminal</th>
<th>Wire Gauge</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>14</td>
<td>Clear</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>14</td>
<td>Black</td>
</tr>
<tr>
<td>3 or Ground</td>
<td>3 or Ground</td>
<td>14</td>
<td>Shield</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>20</td>
<td>Shield</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>20</td>
<td>Black</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>20</td>
<td>Clear</td>
</tr>
</tbody>
</table>

Table 9. Combination Coil and Signal Cable

<table>
<thead>
<tr>
<th>Transmitter Terminal</th>
<th>Sensor Terminal</th>
<th>Wire Gauge</th>
<th>Wire Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>18</td>
<td>Red</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>18</td>
<td>Green</td>
</tr>
<tr>
<td>3 or Ground</td>
<td>3 or Ground</td>
<td>18</td>
<td>Shield</td>
</tr>
<tr>
<td>17</td>
<td>17</td>
<td>20</td>
<td>Shield</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>20</td>
<td>Black</td>
</tr>
<tr>
<td>19</td>
<td>19</td>
<td>20</td>
<td>White</td>
</tr>
</tbody>
</table>
NOTE

When using the Rosemount supplied combination cable, the signal wires for terminals 18 and 19 contain an additional shield wire. These two shield wires should be tied with the main shield wire at terminal 17 at the sensor terminal block and cut back to the insulation in the transmitter junction box. See Figure 17.

Figure 17. Combination Coil and Signal Cable Wiring Diagram

4665RevABQIG.fm Page 20 Thursday, January 10, 2013 5:49 PM
Integral Mount Transmitters

The interconnecting wire harness for an integral mount transmitter is installed at the factory. See Figure 18. Do not use cable other than that supplied by Emerson Process Management, Rosemount, Inc.

Figure 18. 8732EST Integral Mount Wiring Diagram
PROFIBUS PA Fieldbus Connection Wiring

Transmitter Communication Input
The PROFIBUS PA fieldbus communication requires a minimum of 9 V dc and a maximum of 32 V dc at the transmitter communication terminals. Do not exceed 32 V dc at the transmitter communication terminals. Do not apply ac line voltage to the transmitter communication terminals. Improper supply voltage can damage the transmitter.

Field Wiring
Power independent of the transmitter power supply must be supplied for PROFIBUS PA fieldbus communications. Use shielded, twisted pair for best results. In order to get maximum performance in new applications, twisted pair cable specifically designed for fieldbus communications should be used. The number of devices on a fieldbus segment is limited by the power supply voltage, the resistance of the cable, and the amount of current drawn by each device. See Table 10 for cable specifications.

Table 10. Ideal Cable Specifications for Fieldbus Wiring

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Ideal Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impedance</td>
<td>100 Ohms ± 20% at 31.25 kHz</td>
</tr>
<tr>
<td>Wire Size</td>
<td>18 AWG (0.8 mm²)</td>
</tr>
<tr>
<td>Shield Coverage</td>
<td>90%</td>
</tr>
<tr>
<td>Attenuation</td>
<td>3 dB/km</td>
</tr>
<tr>
<td>Capacitive Unbalance</td>
<td>2 nF/km</td>
</tr>
</tbody>
</table>

Power Conditioning
Each fieldbus power supply requires a power conditioner to decouple the power supply output from the fieldbus wiring segment.

Figure 19. Power Connections

* Intrinsically safe installations may allow fewer devices per I.S. barrier.
Quick Installation Guide
00825-0100-4665, Rev AB
December 2012

Transmitter Wiring Connection
Follow the steps listed below to wire the model 8732E PROFIBUS PA Fieldbus transmitter:
1. Ensure Power Conditioner and cable meet the requirements shown above in 'Field Wiring'
2. Ensure the transmitter is not powered
3. Route Fieldbus wire through appropriate conduit entry
4. Connect one Fieldbus wire to terminal 1 and the other Fieldbus wire to terminal 2. The 8732E Fieldbus transmitter is polarity insensitive. See Figure 20.

When wiring to screw terminals, crimped lugs are recommended. Tighten the terminals to ensure adequate contact. Both transmitter covers must be fully engaged to meet explosion proof requirements. Do not remove the transmitter covers in an explosive atmosphere when the transmitter is powered.

Figure 20. 8732E PROFIBUS PA Fieldbus Wiring Diagram
Powering the Transmitter

The 8732E transmitter is designed to be powered by 90-250 Vac, 50–60 Hz or 12–42 Vdc. Before connecting power to the Rosemount 8732E, consider the following standards and be sure to have the proper power supply, conduit, and other accessories. Wire the transmitter according to national, local, and plant electrical requirements for the supply voltage. See Figure 21.

Figure 21. DC Power Supply Current Requirements

Supply Wire Requirements

Use 12 to 18 AWG wire rated for the proper temperature of the application. For connections in ambient temperatures above 140 °F (60 °C), use a wire rated for 176 °F (80 °C). For ambient temperatures greater than 176 °F (80 °C), use a wire rated for 230 °F (110 °C). For DC powered transmitters with extended cable lengths, verify that there is a minimum of 12 V DC at the terminals of the transmitter.

Disconnects

Connect the device through an external disconnect or circuit breaker. Clearly label the disconnect or circuit breaker and locate it near the transmitter and per local electrical control.

Installation Category

The installation category for the 8732E is (Overvoltage) Category II.

Overcurrent Protection

The Rosemount 8732E flowmeter transmitter requires overcurrent protection of the supply lines. Maximum ratings of overcurrent devices are shown in Table 11.

Table 11. Overcurrent Limits

<table>
<thead>
<tr>
<th>Power System</th>
<th>Fuse Rating</th>
<th>Manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>95-250 V AC</td>
<td>2 Amp, Quick Acting</td>
<td>Bussman AGC2 or Equivalent</td>
</tr>
<tr>
<td>12-42 V DC</td>
<td>3 Amp, Quick Acting</td>
<td>Bussman AGC2 or Equivalent</td>
</tr>
</tbody>
</table>
Quick Installation Guide
00625-0100-4665, Rev AB
December 2012

8732E Power Supply
For AC power applications (90-250 VAC, 50-60 Hz) connect AC Neutral to terminal 9 (AC N/L2) and connect AC Line to terminal 10 (AC/L1). For DC power applications connect negative to terminal 9 (DC -) and positive to terminal 10 (DC +). Units powered by 12-42 V DC power supply may draw up to 1 amp of current. See Figure 22 for terminal block connections.

Figure 22. 8732E Transmitter Power Connections

Cover Jam Screw
For transmitter housings shipped with a cover jam screw, the screw should be properly installed once the transmitter has been wired and powered up. Follow these steps to install the cover jam screw:

1. Verify that the cover jam screw is completely threaded into the housing.
2. Install the transmitter housing cover and verify that the cover is tight against the housing.
3. Using an M4 hex wrench, loosen the jam screw until it contacts the transmitter cover.
4. Turn the jam screw an additional 1/2 turn counterclockwise to secure the cover.
 (Note: Application of excessive torque may strip the threads.)
5. Verify that the cover cannot be removed.
Step 7: Basic Configuration

Quick Start-Up

Once the magnetic flowmeter system is installed and communication is established, configuration of the transmitter must be completed. The standard transmitter configuration, without Option Code C1, Custom Configuration, is shipped with the following parameters:

- Engineering Units: ft/s
- Sensor Size: 3-in.
- Sensor Calibration Number: 100000501000000

Assigning Device Node Address and Ident Number

The 8732E Magnetic Flowmeter Transmitter with PROFIBUS PA fieldbus is shipped with a temporary address. To change the Node Address and Ident Number, use the features of the Local Operator Interface (LOI) or a configuration tool. The tools do the following:

- Change the Node Address to a user specified address on the network.
- Change the Ident Number to determine if the device will operate in Generic mode or Manufacturer Specific mode. This setting affects the GSD file required by the host system.

Flow-Specific Block Configuration

AI Block

The Analog Input (AI) function block provides the primary interface of the measurement to the control and/or monitoring systems. To properly configure the device, the following parameters should be reviewed and configured to ensure that the device is correctly configured.

1. The first parameter is CHANNEL. The CHANNEL parameter defines which transducer block measurement is used by the AI block. In the 8732E Magnetic Flowmeter Transmitter, the channel will always be set to Flow. There is no other option for this variable.
2. The second parameter is the LINEARIZATION TYPE. This parameter defines the relationship between the block input and the block output. Since the 8732E Magnetic Flowmeter Transmitter does not require linearization, this parameter will always be set to No Linearization. This means that the AI block will only apply scaling, filtering, and limit checking to the input value.
3. The third parameter is PV_SCALE. The Transducer Block VOLUME_FLOW_UNITS define the unit of measure of the primary variable input and are directly related to the choice of the PV_SCALE UPPER RANGE and LOWER RANGE values.
4. The fourth parameter is OUT_SCALE. The output from the AI Block is scaled according to the relationship of the PV_SCALE and OUT_SCALE UPPER RANGE and LOWER RANGE values.
5. The fifth group of parameters are the alarm limits. The High and Low warning and Fault Alarm limits should be configured relative to the OUT_SCALE UPPER RANGE and LOWER RANGE values to set the control limits for the primary variable.
Slot Configuration

The 8732E has 4 slots that must be configured. If a slot is not going to be used, it must be configured as an empty slot.

Figure 23 shows an example of a basic slot configuration for the Primary Variable (PV or Flow), and the totalized flow value.

Figure 23. Basic Slot Configuration

Consult the GSD file for more details on what each slot can be configured for.

Figure 24. 8732E PROFIBUS PA LOI Menu Tree
Product Certifications

Approved Manufacturing Locations
Rosemount Inc. — Eden Prairie, Minnesota, USA
Fisher-Rosemount Tecnologias de Flujo, S.A. de C.V. — Chihuahua, Mexico
Emerson Process Management Flow — Ede, The Netherlands
Asia Flow Technology Center — Nanjing, China

EUROPEAN DIRECTIVE INFORMATION
The EC declaration of conformity can be found on page 35. The most recent revision can be found at www.rosemount.com.

Type n protection type in accordance with EN50021

• The installation of external connections and the plugging of any unused entries must be carried out using appropriate Ex e or Ex n cable glands and blanking plugs, component certified by an approved Certification Body.

CE Marking
Complies with EN 61326-1 : 2006

For Rosemount 8732E transmitters:

Complies with Essential Health and Safety Requirements:
EN 60079-0: 2004
EN 60079-0: 2007
EN 60079-1: 2007
EN 60079-11: 2007
EN 60079-15: 2005
EN 61241-0: 2004
EN 61241-1: 2006

International Certificates

C-Tick Marking

Rosemount Inc. complies with the following IEC Requirements.

For Rosemount 8732E transmitters:

IEC 60079-0 : 2004
IEC 60079-0: 2007
IEC 60079-1 : 2007
IEC 60079-7 : 2006
IEC 60079-11 : 2006
IEC 60079-15: 2005
IEC 61241-0 : 2004
IEC 61241-1 : 2004
Quick Installation Guide
Rosemount 8732

December 2012

NOTE
For the 8732E transmitters with a local operator interface (LOI), the lower ambient temperature limit is -20 °C.

NOTE
For intrinsically safe (IS) outputs on the 8732E output option code F must be selected.
IS outputs for Class I, Division 1, Groups A, B, C, D. Temp Code – T4 at 60 °C
IS outputs for Ex de [ia] IIB or IIC T6

NOTE
For the 8732E transmitters with a local operator interface (LOI), the lower ambient temperature limit is -20 °C.

North American Certifications

FM Approvals

N0 Non-incendive for Class I, Division 2
Groups A, B, C, and D non-flammable fluids
(T4 at 60 °C: -50 °C ≤ Ta ≤ +60 °C)
Dust-ignition proof Class II/III, Division 1
Groups E, F, and G (T5 at 60 °C)
Hazardous Locations; Enclosure Type 4X

N5 Non-incendive for Class I, Division 2,
Groups A, B, C, and D flammable fluids
(T4 at 60 °C: -50 °C ≤ Ta ≤ +60 °C)
Dust-ignition proof Class II/III, Division 1
Groups E, F, and G (T5 at 60 °C)
Hazardous Locations; Enclosure Type 4X
Requires sensors with N5 Approval

E5 Explosion proof for Class I, Division 1
Groups C and D (T6 at 60 °C)
Dust-ignition proof Class II/III, Division 1
Groups E, F, and G (T5 at 60 °C),
Non-incendive for Class I, Division 2
Groups A, B, C, and D flammable fluids
(T4 at 60 °C: -50 °C ≤ Ta ≤ +60 °C)
Hazardous Locations; Enclosure Type 4X

Canadian Standards Association (CSA)

N0 Non-incendive for Class I, Division 2
Groups A, B, C, and D non-flammable fluids
(T4 at 60 °C: -50 °C ≤ Ta ≤ +60 °C)
Dust-ignition proof Class II/III, Division 1
Groups E, F, and G (T4 at 60 °C)
Hazardous Locations; Enclosure Type 4X
European Certifications

E1 ATEX Flameproof
Certificate No: KEMA 07ATEX0073 X
- II 2G Ex de IIC T6 or II 2G Ex de [ia] IIC T6
 without LOI (-50 °C ≤ Ta ≤ +60 °C)
 with LOI (-20 °C ≤ Ta ≤ +60 °C)
 $V_{\text{max}} = 250$ V AC or 42 V DC
 CE 0575

ED ATEX Flameproof
Certificate No.: KEMA 07ATEX0073 X II 2G
- Ex de IIB or Ex de [ia] IIB T6 (-50°C ≤ Ta ≤ +60 °C)
 with LOI (-20°C ≤ Ta ≤ +60 °C)
 $V_{\text{max}} = 250$ V AC or 42 V DC
 CE 0575

ND ATEX Dust
Certificate No: KEMA 07ATEX0073 X
- II 1D Ex ID A20 IP66 T100 °C or with I.S. outputs II G [Ex ia] IIC
 without LOI (-50 °C ≤ Ta ≤ +60 °C)
 with LOI (-20 °C ≤ Ta ≤ +60 °C)
 $V_{\text{max}} = 250$ V AC or 42 V DC
 IP 66
 CE 0575

Special conditions for safe use (KEMA 07ATEX0073 X):
Contact Rosemount Inc. for information on the dimensions of the flameproof joints. The property class of the security screws which attach the flowtube or junction box to the transmitter is SST A2-70, or SST A4-70.

Installation Instructions:
The cable and conduit entry devices and blanking elements shall be of a certified flameproof or increased safety type, suitable for the conditions of use and correctly installed. With the use of conduit, a certified stopping box shall be provided immediately to the entrance of the enclosure.
Quick Installation Guide

December 2012

Rosemount 8732

N1 ATEX Type n
Certificate No: Baseefa 07ATEX0203X
II 3G Ex na nL IIC T4
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_max = 42 V DC
IP 66
cci 0575

Special conditions for safe use (x):
The apparatus is not capable of withstanding the 500V insulation test required by
Clause 6.8.1 of EN 60079-15: 2005. This must be taken into account when installing the
apparatus.

International Certifications

IECEx

E7 IECEx Flameproof
Certificate No: KEM 07.0038X
Ex IIC or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_max = 250 V AC or 42 V DC

EF IECEx Flameproof
Certificate No: KEM 07.0038X
Ex de IIB or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_max = 250 V AC or 42 V DC

NF IIECEx Dust
Certificate No: KEM 07.0038X
Ex tD A20 IP66 T 100 °C
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_max = 250 V AC or 42 V DC

Special conditions for safe use (KEM 07.0038X):
Contact Rosemount Inc. for information on the dimensions of the flameproof joints. The
property class of the security screws which attach the flowtube or junction box to the
transmitter is SST A2-70, or SST A4-70.

Installation Instructions:
The cable and conduit entry devices and blanking elements shall be of a certified
flameproof or increased safety type, suitable for the conditions of use and correctly
installed. With the use of conduit, a certified stopping box shall be provided immediately
to the entrance of the enclosure.
Quick Installation Guide
00825-0100-4665, Rev AB
December 2012

Rosemount 8732

N7 IECEx Type n
Certificate No: IECEx BAS 07.0062X
Ex nA nL IIC T4
with FISCO / FNICO output
Ex nA nL [ia] IIC T4
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 42 V DC

Special conditions for safe use (x)
The apparatus is not capable of withstanding the 500V insulation test required by Clause 6.8.1 of IEC 60079-15: 2005. This must be taken into account when installing the apparatus.

NEPSI - China
E3 NEPSI Flameproof
Certificate No: GYJ071438X
Ex de IIC T6 or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

EP NEPSI Flameproof
Certificate No: GYJ071438X
Ex de IIB T6 or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

InMetro - Brazil
E2 InMetro Flameproof
Certificate No: NCC 12.1177 X
Ex de IIC T6 Gb IP66 or
Ex de [ia IIC Ga] IIC T6 Gb IP66
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC

EB InMetro Flameproof
Certificate No: NCC 12.1177 X
Ex de IIB T6 Gb IP66 or
Ex de [ia IIC Ga] IIB T6 Gb IP66
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V_{max} = 250 V AC or 42 V DC
Quick Installation Guide
00825-0100-4665, Rev AB
December 2012

Rosemount 8732

KOSHA - Korea

E9 KOSHA Flameproof
Certificate No: 2008-2094-Q1X
Ex de IIC or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V\text{max} = 250 V AC or 42 V DC

EK KOSHA Flameproof
Certificate No: 2008-2094-Q1X
Ex de IIB or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
V\text{max} = 250 V AC or 42 V DC

GOST - Russia

E8 GOST Flameproof
Ex de IIC T6 or Ex de [ia] IIC T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
IP67

EM GOST Flameproof
Ex de IIB T6 or Ex de [ia] IIB T6
without LOI (-50 °C ≤ Ta ≤ +60 °C)
with LOI (-20 °C ≤ Ta ≤ +60 °C)
IP67
Sensor Approval Information

Table 12. Sensor Option Codes

<table>
<thead>
<tr>
<th>Approval Codes</th>
<th>Rosemount 8705 Sensor</th>
<th>Rosemount 8707 Sensor</th>
<th>Rosemount 8711 Sensor</th>
<th>Rosemount 8721 Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>For Non-flammable Fluids</td>
<td>For Non-flammable Fluids</td>
<td>For Non-flammable Fluids</td>
<td>For Non-flammable Fluids</td>
</tr>
<tr>
<td>NA</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>N0</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>ND</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>N1</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>N5</td>
<td>•</td>
<td>•</td>
<td>•</td>
<td></td>
</tr>
<tr>
<td>N7</td>
<td>•</td>
<td>•</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NF</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E1</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E2</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E3</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E5(^{(2)})</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E8</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E9</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EK</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EM</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EP</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KD</td>
<td>•</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(1) CE Marking is standard on Rosemount 8705, 8711, and 8721.

(2) Available in line sizes up to 8 in. (200 mm) only.
Figure 25. Declaration of Conformity

EC Declaration of Conformity
No: RFD 1068 Rev. E

We,

Rosemount Inc.
12001 Technology Drive
Eden Prairie, MN 55344-3695
USA

declare under our sole responsibility that the product(s),

Model 8732E Magnetic Flowmeter Transmitter

manufactured by,

Rosemount Inc.
12001 Technology Drive
Eden Prairie, MN 55344-3695
USA

and

8200 Market Boulevard
Chanhassen, MN 55317-9687
USA

to which this declaration relates, is in conformity with the provisions of the European Community Directives, including the latest amendments, as shown in the attached schedule.

Assumption of conformity is based on the application of harmonized or applicable technical standards and, when applicable or required, a European Community notified body certification, as shown in the attached schedule.

January 21, 2010
(date of issue)

Mark J Fleigle
(signature)

Vice President Technology and New Products
(function name - printed)
Schedule
EC Declaration of Conformity RFD 1068 Rev. E

All Models
EN 61326-1: 2006

LVD Directive (2006/95/EC)
All Models
EN 61010-1: 2001

ATEX Directive (94/9/EC)
Model 8732E Magnetic Flowmeter Transmitter

KEMA 07ATEX0073 X – Flameproof, with Increased Safety Terminal(s), Intrinsically Safe Output(s), Dust

Equipment Group II, Category 2 G:
Ex d IIB/IC T6
Ex de IIB/IC T6
Ex e IIB/IC (Junctionbox)

Equipment Group II, Category 2 (1) G:
Ex de [ia] IIB/IC T6 (Transmitter)

Equipment Group II, Category (1) G
[Ex ia] IIC

Equipment Group II, Category 1 D:
Ex tD A20 IP66 T100 °C

EN 60079-0: 2006 EN 60079-26: 2004
EN 60079-7: 2007 EN 61241-0: 2006
EN 60079-11: 2007 EN 61241-1: 2004
Quick Installation Guide
00825-0100-4665, Rev AB
December 2012
Rosemount 8732

Schedule
EC Declaration of Conformity RFD 1068 Rev. E

BASEEF07ATEX0203X – Type n, Intrinsically Safe Output

Equipment Group II, Category 3 G
Ex nA nL IC T4

Equipment Group II, Category 3(1) G
Ex nA nL [ia] IC T4

EN 60079-0: 2006
EN 60079-15: 2005
EN 60079-11: 2007

ATEX Notified Bodies for EC Type Examination Certificate

KEMA [Notified Body Number: 0344]
Utrechtseweg 318, 6812 AR Arnhem
P.O. Box 5185, 6802 ED Arnhem
The Netherlands
Postbank 6794687

Baseefa [Notified Body Number: 1180]
Rockhead Business Park, Staden Lane
Buxton, Derbyshire SK17 9RZ
United Kingdom

ATEX Notified Body for Quality Assurance

Det Norske Veritas (DNV) [Notified Body Number: 0575]
Veritasveien 1, N-1322
Hovik, Norway