Rosemount™ 8600 Series Vortex Flowmeter
Contents

1.1 How to use this manual ... 1
1.2 Safety messages ... 1
1.3 System description ... 1

Section 1: Introduction

Section 2: Configuration

2.1 Review ... 3
2.2 Process variables ... 3
 2.2.1 Primary Variable (PV) ... 4
 2.2.2 PV% of range ... 4
 2.2.3 Analog output ... 4
 2.2.4 View other variables ... 4
2.3 Basic setup ... 12
 2.3.1 Tag ... 12
 2.3.2 Process configuration ... 12
 2.3.3 Reference K-factor ... 15
 2.3.4 Flange type ... 15
 2.3.5 Mating pipe ID (Inside Diameter) ... 16
 2.3.6 Variable mapping ... 16
 2.3.7 PV units ... 17
 2.3.8 Range values ... 17
 2.3.9 PV damping ... 17
 2.3.10 Auto adjust filter ... 18

Section 3: Installation

3.1 Safety messages ... 21
3.2 Commissioning ... 23
 3.2.1 General considerations ... 23
 3.2.2 Flowmeter sizing ... 23
 3.2.3 Flowmeter orientation ... 23
 3.2.4 Wetted material selection ... 26
 3.2.5 Environmental considerations ... 26
3.3 Hazardous locations ... 27
3.4 Hardware configuration ... 27
Table of Contents

Section 4: Operation

4.1 Diagnostics/service
- 4.1.1 Test/status ... 47
- 4.1.2 Loop test .. 48
- 4.1.3 Pulse output test .. 48
- 4.1.4 Flow simulation .. 49
- 4.1.5 D/A trim(Digital-to-Analog Trim) 50
- 4.1.6 Scaled D/A trim .. 50
- 4.1.7 Shed freq at URV .. 51

4.2 Advanced functionality ... 51

4.3 Detailed set-up .. 51
- 4.3.1 Characterize meter 51
- 4.3.2 Configure outputs 53
- 4.3.3 Signal processing 61
- 4.3.4 Device information 64

3.4.1 Failure mode vs. saturation output values 28
3.4.2 LCD indicator option ... 28
3.5 Meter body installation tasks .. 29
- 3.5.1 Handling .. 29
- 3.5.2 Flow direction ... 30
- 3.5.3 Gaskets .. 30
- 3.5.4 Flange bolts ... 31
- 3.5.5 Flanged-style flowmeter mounting 31
- 3.5.6 Flowmeter grounding 32

3.6 Electronics considerations .. 32
- 3.6.1 High-Temperature installations 32
- 3.6.2 Conduit connections 33
- 3.6.3 High-Point installation 33
- 3.6.4 Cable gland .. 33
- 3.6.5 Grounding the transmitter case 34
- 3.6.6 Wiring procedure .. 34
- 3.6.7 Remote electronics .. 39
- 3.6.8 Calibration .. 41

3.7 Software configuration .. 41
- 3.7.1 Installing the indicator 43

3.8 Transient protection .. 44
- 3.8.1 Installing the Transient Protector 44
Section 5: Troubleshooting

5.1 Safety messages ... 67
5.2 Troubleshooting tables ... 68
5.3 Advanced troubleshooting .. 69
 5.3.1 Diagnostic messages ... 69
 5.3.2 Electronics test points ... 71
 5.3.3 TP1 .. 72
5.4 Diagnostic messages on LCD ... 73
5.5 Testing procedures .. 75
5.6 Hardware replacement .. 75
 5.6.1 Replacing the terminal block in the housing 76
 5.6.2 Replacing the electronics boards 77
 5.6.3 Replacing the electronics housing 79
 5.6.4 Replacing the sensor ... 80
 5.6.5 Remote electronics procedure 83
 5.6.6 Coaxial cable at the electronics housing 85
 5.6.7 Changing the housing orientation 87
 5.6.8 Temperature sensor replacement (MTA option only) 87
5.7 Return of material ... 88

Appendix A: Specifications and Reference Data

A.1 Specifications .. 89
A.2 Functional specifications .. 89
A.3 Typical flow ranges ... 92
A.4 Performance specifications ... 97
 A.4.1 Flow accuracy .. 97
A.5 Physical specifications ... 98
A.6 Dimensional drawings .. 100

Appendix B: Product Certifications

B.1 Overview ... 105
B.2 Product certifications ... 105
 B.2.1 Approved manufacturing locations 105
 B.2.2 International certifications (IEEx) 105
 B.2.3 Chinese certifications (NEPSI) 106
 B.2.4 European certifications (ATEX) 108
 B.2.5 EurAsian Conformity (EAC) 109
 B.2.6 Canadian Standards Association (CSA) 109
Appendix C: Electronics Verification

C.1 Safety messages ... 111
C.2 Electronics verification ... 112
 C.2.1 Electronics verification using flow simulation mode 112
 C.2.2 Fixed flow rate simulation .. 112
 C.2.3 Varying flow rate simulation .. 112
 C.2.4 Electronics verification using an external frequency generator 113
 C.2.5 Calculating output variables with known input frequency 114
C.3 Examples ... 116
 C.3.1 English units ... 116
 C.3.2 SI units ... 120

Appendix D: HART® Menu Tree

D.1 Overview ... 123
NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

Within the United States, Emerson Process Management has two toll-free assistance numbers:

Customer Central
Technical support, quoting, and order-related questions.
1-800-999-9307 (7:00 am to 7:00 pm CST)

North American Response Center
Equipment service needs.
1-800-654-7768 (24 hours—includes Canada)

Outside of the United States, contact your local Emerson Process Management representative.

CAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Emerson Process Management Sales Representative.
Section 1 Introduction

1.1 How to use this manual

This manual provides installation, configuration, troubleshooting, and other procedures for the use of the Rosemount™ 8600D Vortex Flowmeter. Specifications and other important information are also included.

Section 2: Configuration contains information on entering and verifying basic configuration parameters.

Section 3: Installation contains mechanical and electrical installation instructions.

Section 4: Operation contains information on advanced configuration parameters and functions that can aid in maintaining the 8600D.

Section 5: Troubleshooting provides troubleshooting techniques, diagnostic information, and transmitter verification procedures.

Specifications and Reference Data provides reference and specification data.

Appendix B: Product Certifications provides specific information for approval codes.

Appendix C: Electronics Verification provides a short procedure for verification of electronic output to assist in meeting the quality standards for ISO 9000 certified manufacturing processes.

Appendix D: HART® Menu Tree provides command tree, and Fast Key Sequence tables for the Field Communicator when used in conjunction with the Rosemount 8600D.

1.2 Safety messages

Procedures and instructions in this manual may require special precautions to ensure the safety of the personnel performing the operations. Refer to the safety messages, listed at the beginning of each section, before performing any operations.

1.3 System description

The Rosemount 8600D Vortex Flowmeter consists of a meter body and transmitter and measures volumetric flow rate by detecting the vortices created by a fluid passing by the shedder bar.

The meter body is installed in-line with process piping. A sensor is located at the end of the shredder bar and creates an alternating sine wave due to the passing vortices. The transmitter measures the frequency of the sine waves and converts it into a flowrate.

This manual is designed to assist in the installation and operation of the Rosemount 8600D Vortex Flowmeter.
Section 2 Configuration

2.1 Review

FastKeys

1, 5

Review the flowmeter configuration parameters set at the factory to ensure accuracy and compatibility with your particular application of the flowmeter. Once you have activated the Review function, scroll through the data list to check each variable in the configuration data list.

The last step of start-up and commissioning is to check the flowmeter output to ensure that the flowmeter is operating properly. Rosemount 8600D digital process variables include: primary variable, primary variable as a percent of range, analog output, vortex shedding rate, pulse frequency, mass flow, volumetric flow, velocity flow, totalizer, electronics temperature, calculated process density, cold junction temperature, and process temperature.

2.2 Process variables

FastKeys

1, 1

The process variables for the Rosemount 8600D provide the flowmeter output. When commissioning a flowmeter, review each process variable, its function and output, and take corrective action if necessary before using the flowmeter in a process application.

WARNING

This product is intended to be used as a flowmeter for liquid, gas, or steam applications. Any use other than for which it was intended may result in serious injury or death.
2.2.1 Primary Variable (PV)

The measured value of the variable mapped to the primary variable. This can be either Process Temperature (MTA option only) or Flow. Flow variables are available as mass, volume, or velocity. When bench commissioning, the flow values for each variable should be zero and the temperature value should be the ambient temperature.

If the units for the flow or temperature variables are not correct, refer to “View other variables” on page 4. Use the Process Variable Units function to select the units for your application.

2.2.2 PV% of range

The primary variable as a percentage of range provides a gauge as to where the current measurement of the meter is within the configured range of the meter. For example, the range may be defined as 0 gal/min to 20 gal/min. If the current flow is 10 gal/min, the percent of range is 50 percent.

2.2.3 Analog output

The analog output variable provides the analog value for the primary variable. The analog output refers to the industry standard output in the 4–20 mA range. Check the analog output value against the actual loop reading given by a multi-meter. If it does not match, a 4–20 mA trim is required. See D/A Trim (Digital-to-Analog Trim).

2.2.4 View other variables

Allows for the viewing and configuration of other variables such as flow units, totalizer operation, and pulse output.

Volume flow

Allows the user to view the current volumetric flow value.
Volume flow units

<table>
<thead>
<tr>
<th>Volumetric Unit</th>
<th>LCD Display</th>
<th>Field Communicator</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Gallons per second</td>
<td>GAL/S</td>
<td>gal/s</td>
</tr>
<tr>
<td>U.S. Gallons per minute</td>
<td>GAL/M</td>
<td>gal/m</td>
</tr>
<tr>
<td>U.S. Gallons per hour</td>
<td>GAL/H</td>
<td>gal/h</td>
</tr>
<tr>
<td>U.S. Gallons per day</td>
<td>GAL/D</td>
<td>gal/d</td>
</tr>
<tr>
<td>Actual Cubic Feet per second</td>
<td>ACFS</td>
<td>ACFS</td>
</tr>
<tr>
<td>Actual Cubic Feet per minute</td>
<td>ACFM</td>
<td>ACFM</td>
</tr>
<tr>
<td>Actual Cubic Feet per hour</td>
<td>ACFH</td>
<td>ACFH</td>
</tr>
<tr>
<td>Actual Cubic Feet per day</td>
<td>ACFD</td>
<td>ACFD</td>
</tr>
<tr>
<td>Standard Cubic Feet per minute</td>
<td>SCFM</td>
<td>N/A</td>
</tr>
<tr>
<td>Standard Cubic Feet per hour</td>
<td>SCFH</td>
<td>N/A</td>
</tr>
<tr>
<td>Barrels per second</td>
<td>BBL/S</td>
<td>bbl/s</td>
</tr>
<tr>
<td>Barrels per minute</td>
<td>BBL/M</td>
<td>bbl/min</td>
</tr>
<tr>
<td>Barrels per hour</td>
<td>BBL/H</td>
<td>bbl/h</td>
</tr>
<tr>
<td>Barrels per day</td>
<td>BBL/D</td>
<td>bbl/d</td>
</tr>
<tr>
<td>Imperial Gallons per second</td>
<td>IGAL/S</td>
<td>Impgal/s</td>
</tr>
<tr>
<td>Imperial Gallons per minute</td>
<td>IGAL/M</td>
<td>Impgal/min</td>
</tr>
<tr>
<td>Imperial Gallons per hour</td>
<td>IGAL/H</td>
<td>Impgal/h</td>
</tr>
<tr>
<td>Imperial Gallons per day</td>
<td>IGAL/D</td>
<td>Impgal/d</td>
</tr>
<tr>
<td>Liters per second</td>
<td>L/S</td>
<td>L/s</td>
</tr>
<tr>
<td>Liters per minute</td>
<td>L/MIN</td>
<td>L/min</td>
</tr>
<tr>
<td>Liters per hour</td>
<td>L/H</td>
<td>L/h</td>
</tr>
<tr>
<td>Liters per day</td>
<td>L/D</td>
<td>L/D</td>
</tr>
<tr>
<td>Actual Cubic Meters per second</td>
<td>ACMS</td>
<td>ACMS</td>
</tr>
<tr>
<td>Actual Cubic Meters per minute</td>
<td>ACMM</td>
<td>ACMM</td>
</tr>
<tr>
<td>Actual Cubic Meters per hour</td>
<td>ACMH</td>
<td>ACMH</td>
</tr>
<tr>
<td>Actual Cubic Meters per day</td>
<td>ACMD</td>
<td>ACMD</td>
</tr>
<tr>
<td>Million Actual Cubic Meters per day</td>
<td>MACMD</td>
<td>MACMD</td>
</tr>
<tr>
<td>Normal Cubic Meters per second</td>
<td>NCMS</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal Cubic Meters per minute</td>
<td>NCMM</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal Cubic Meters per hour</td>
<td>NCMH</td>
<td>N/A</td>
</tr>
<tr>
<td>Normal Cubic Meters per day</td>
<td>NCMD</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Allows the user to select the volumetric flow units from the available list.
Standard/Normal flow units

StdCuft/min
SCFH
NCMM
NmlCum/h
NCMD

Note
When configuring Standard or Normal Flow units to the volumetric flow, a density ratio must be provided. See the Density/Density Ratio on page 13.

Special units

Special Units allows you to create flow rate units that are not among the standard options. They can be volumetric only. Configuration of a special unit involves entry of these values: base volume unit, base time unit, user defined unit and conversion number. Suppose you want the Rosemount 8600D to display flow in barrels per minute instead of gallons per minute, and one barrel is equal to 31.0 gallons.

- Base volume unit: gal
- Base time unit: min
- User defined unit: br
- Conversion number: \(\frac{1}{31.0} \)

See the specific variables listed below for more information on setting special units.

Base volume unit

Base Volume Unit is the unit from which the conversion is made. You must select one of the Field Communicator defined unit options:

- Gallons (gal)
- Liters (L)
- Imperial gallons (Impgal)
- Cubic meters (Cum)
- Barrels (bbl) where 1 bbl=42 gal
- Cubic Feet (Cuft)
Base time unit

| FastKeys | 1, 1, 4, 1, 3, 2 |

Provides the time unit from which to calculate the special units. For example, if your special units is a volume per minute, select minutes. Choose from the following units:

- Seconds (s)
- Minutes (min)
- Hours (h)
- Days (d)

User defined unit

| FastKeys | 1, 1, 4, 1, 3, 3 |

A format variable that provides a record of the flow units to which you are converting. The LCD display on the Rosemount 8600D will display the actual units you define. The Field Communicator will simply display “SPCL.” There are four characters available to store the new units designation.

Conversion number

| FastKeys | 1, 1, 4, 1, 3, 4 |

Used to relate base units to special units. For a straight conversion of volume units from one to another, the conversion number is the number of base units in the new unit.

For example, if you are converting from gallons to barrels and there are 31 gallons in a barrel, the conversion factor is 31. The conversion equation is as follows (where barrels is the new volume unit):

\[
1 \text{ gallon} = 0.032258 \text{ bbl.}
\]

Mass flow

| FastKeys | 1, 1, 4, 2 |

Allows the user to view the current mass flow value and units. Also allows the user to configure the mass flow units.

Mass units

| FastKeys | 1, 1, 4, 2, 1 |

Displays the current mass flow value and units.

Mass units

| FastKeys | 1, 1, 4, 2, 2 |

Allows the user to select the mass flow units from the available list. (1 STon = 2000 lb; 1 MetTon = 1000 kg)
Mass Flow Units

<table>
<thead>
<tr>
<th>Unit</th>
<th>Equivalent Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/s</td>
<td>STon/min</td>
</tr>
<tr>
<td>lb/min</td>
<td>STon/h</td>
</tr>
<tr>
<td>lb/h</td>
<td>STon/d</td>
</tr>
<tr>
<td>lb/d</td>
<td>MetTon/min</td>
</tr>
<tr>
<td>kg/s</td>
<td>MetTon/h</td>
</tr>
<tr>
<td>kg/min</td>
<td>MetTon/d</td>
</tr>
<tr>
<td>kg/h</td>
<td>g/s</td>
</tr>
<tr>
<td>kg/d</td>
<td>g/min</td>
</tr>
<tr>
<td></td>
<td>g/h</td>
</tr>
</tbody>
</table>

Note
If you select a Mass Units option, you must enter process density in your configuration. See the Density/Density Ratio section on page 13.

Velocity flow

| FastKeys | 1, 1, 4, 3 |

Allows the user to view the current velocity flow value and units. Also allows the user to configure the velocity flow units.

Velocity flow

| FastKeys | 1, 1, 4, 3, 1 |

Displays the current velocity flow value and units.

Velocity units

| FastKeys | 1, 1, 4, 3, 2 |

Allows the user to select the velocity units from the available list
- ft/s
- m/s

Velocity measured base

| FastKeys | 1, 1, 4, 3, 3 |

Determines if the velocity measurement is based on the mating pipe ID or the meter body ID.

Totalizer

| FastKeys | 1, 1, 4, 4 |

Tallies the total amount of liquid or gas that has passed through the flowmeter since the totalizer was last reset. It enables you to change the settings of the totalizer.
Total

| FastKeys | 1, 1, 4, 4, 1 |

Provides the output reading of the totalizer. Its value is the amount of liquid or gas that has passed through the flowmeter since the totalizer was last reset.

Start

| FastKeys | 1, 1, 4, 4, 2 |

Starts the totalizer counting from its current value.

Stop

| FastKeys | 1, 1, 4, 3 |

 Interrupts the totalizer count until it is restarted again. This feature is often used during pipe cleaning or other maintenance operations.

Reset

| FastKeys | 1, 1, 4, 4 |

Returns the totalizer value to zero. If the totalizer was running, it will continue to run starting at zero.

Totalizer config

| FastKeys | 1, 1, 4, 5 |

Used to configure the flow parameter (volume, mass, velocity) that will be totalled.

Note

The totalizer value is saved in the non-volatile memory of the electronics every three seconds. Should power to the transmitter be interrupted, the totalizer value will start at the last saved value when the power is re-applied.

Note

Changes that affect the density, density ratio, or compensated K-Factor will affect the totalizer value being calculated. These changes will not cause the existing totalizer value to be recalculated.

Pulse frequency

| FastKeys | 1, 1, 4, 5 |

Allows users to view the pulse output frequency value. To configure the pulse output, refer to the section on pulse output found on page 54.

Vortex frequency

| FastKeys | 1, 1, 4, 6 |

Allows users to view the shedding frequency directly off of the sensor.
Electronics temperature

| FastKeys | 1, 1, 4, 7 |

Allows users to view the electronics temperature value and units. Also allows the user to configure the units for the electronics temperature.

Electronics temperature

| FastKeys | 1, 1, 4, 7, 1 |

Displays the current electronics temperature value and units.

Electronics temperature unit

| FastKeys | 1, 1, 4, 7, 2 |

Allows the user to select the units for electronics temperature from the available list.

- deg C
- deg F
- deg R
- Kelvin

Calculated process density

| FastKeys | 1, 1, 4, 8 |

Allows users to view the calculated process density value when the vortex is configured for temperature compensated steam applications. Also allows the user to configure the calculated density units.

Process density

| FastKeys | 1, 1, 4, 8, 1 |

Displays the current calculated process density value.

Density units

| FastKeys | 1, 1, 4, 8, 2 |

Allows the user to configure the units for the calculated process density from the available list.

- g/Cucm (cm³)
- g/L
- kg/Cum (m³)
- lb/Cuft (ft³)
- lb/Cuin (in³)
Process temperature

FastKeys 1, 1, 4, 9

Allows users to view the process temperature value when the vortex transmitter has the temperature sensor option. Also allows the user to configure the process temperature units.

Process temperature

FastKeys 1, 1, 4, 9, 1

 Displays the current process temperature value.

Process temperature units

FastKeys 1, 1, 4, 9, 2

Allows the user to configure the units for the process temperature from the available list.

- deg C
- deg F
- deg R
- Kelvin

T/C failure mode

FastKeys 1, 1, 4, 9, 3

Allows the user to configure the temperature sensor failure mode. In the event that the thermocouple sensor fails, the vortex can go either into an alarm output mode, or continue to operate normally using the Fixed Process Temperature value. See Fixed Process Temperature page 13. This mode is only relevant with the MTA option.

Note

If the Primary Variable is set to Process Temperature and there is an error, the output will always go to alarm and this setting will be ignored.

Cold Junction (CJ) temperature

FastKeys 1, 1, 4, Scroll to bottom of list

Allows users to view the thermocouple cold junction temperature value when the vortex has the temperature sensor option. Also allows the user to configure the CJ temperature units.

CJ temperature

FastKeys 1, 1, 4, -. 1

Displays the current thermocouple cold junction temperature value.
CJ temperature units

| FastKeys | 1, 1, 4, -, 2 |

Allows the user to configure the units for the thermocouple cold junction temperature from the available list.
- deg C
- deg F
- deg R
- Kelvin

2.3 Basic setup

| FastKeys | 1, 3 |

The Rosemount 8600D must be configured for certain basic variables in order to be operational. In most cases, all of these variables are pre-configured at the factory. Configuration may be required if your Rosemount 8600D is not configured or if the configuration variables need revision.

2.3.1 Tag

| FastKeys | 1, 3, 1 |

The quickest way to identify and distinguish between flowmeters. Flowmeters can be tagged according to the requirements of your application. The tag may be up to eight characters long.

2.3.2 Process configuration

| FastKeys | 1, 3, 2 |

The flowmeter can be used for liquid or gas/steam applications, but it must be configured specifically for the application. If the flowmeter is not configured for the proper process, readings will be inaccurate. Select the appropriate Process configuration parameters for your application:

Transmitter mode

| FastKeys | 1, 3, 2, 1 |

For units with an integral temperature sensor, the temperature sensor can be activated here.

| Without Temperature Sensor |

| With Temperature Sensor |
Process fluid

Select the fluid type: either Liquid, Gas/Steam, Tcomp Sat Steam. Tcomp Sat Steam requires the MTA Option and provides a temperature compensated mass flow output for saturated steam.

Fixed process temperature

Process Temperature is needed for the electronics to compensate for thermal expansion of the flowmeter as the process temperature differs from the reference temperature. Process temperature is the temperature of the liquid or gas in the line during flowmeter operation.

Fixed process temperature may also be used as a back-up temperature value in the event of a temperature sensor failure if the MTA option is installed.

Note
The Fixed Process Temperature may also be changed under Calculate Density Ratio.

Density/Density ratio

When configuring a meter for mass flow units, a density value needs to be entered. When configuring a meter for Standard and Normal Volumetric flow units a density ratio will be required.

Density ratio

Configure the Density Ratio in one of two ways:

1. Enter Density Ratio to convert from actual flow rate to standard flow rate.
2. Enter the process and base conditions. (The Rosemount 8600D electronics will then calculate the density ratio for you).

Note
Be careful to calculate and enter the correct conversion factor. Standard flow is calculated with the conversion factor you enter. Any error in the factor entered will result in an error in the standard flow measurement. If pressure and temperature changes over time, use actual volumetric flow units. The Rosemount 8600D does not compensate for changing temperature and pressure.

Note
Changing the base process conditions will modify the density ratio. Likewise a change to the density ratio will lead to a change in the base process pressure (Pf).
Density ratio

FastKeys 1, 3, 2, 4, 1, 1

Used to convert actual volumetric flow to standard volumetric flow rates based on the following equations:

\[
\text{DensityRatio} = \frac{\text{density at actual (flowing) conditions}}{\text{density at standard (base) conditions}}
\]

\[
\text{DensityRatio} = \frac{T_b P_f Z_b}{T_f P_b Z_f}
\]

Calculate density ratio

FastKeys 1, 3, 2, 4, 1, 2

Calculates the density ratio (shown above) based on user entered process and base conditions.

Operating conditions

FastKeys 1, 3, 2, 4, 1, 2, 1

\(T_f = \) absolute temperature at actual (flowing) conditions in degrees Rankine or Kelvin. (The transmitter will convert from degrees Fahrenheit or degrees Celsius to degrees Rankine or Kelvin respectively.)

\(P_f = \) absolute pressure at actual (flowing) conditions psia or KPa absolute. (The transmitter will convert from psi, bar, kg/sqcm, kpa, or mpa to psi or kpa for calculation. Note that pressure values must be absolute.)

\(Z_f = \) compressibility at actual (flowing) conditions (dimensionless)

Base conditions

FastKeys 1, 3, 2, 4, 1, 2, 2

\(T_b = \) absolute temperature at standard (base) conditions degrees Rankine or Kelvin. (The transmitter will convert from degrees Fahrenheit or degrees Celsius to degrees Rankine or Kelvin respectively.)

\(P_b = \) absolute pressure at standard (base) conditions psia or KPa absolute. (The transmitter will convert from psi, bar, kg/sqcm, kpa, or mpa to psi or kpa for calculation. Note that pressure values must be absolute.)

\(Z_b = \) compressibility at standard (base) conditions (dimensionless)

Example:

Configure the Rosemount 8600D to display flow in standard cubic feet per minute (SCFM). (Fluid is hydrogen flowing at conditions of 170 °F and 100 psia.) Assume base conditions of 59 °F and 14.696 psia.

\[
\text{DensityRatio} = \frac{518.57 \text{ °R} \times 100 \text{ psia} \times 1.0006}{629.67 \text{ °R} \times 14.7 \text{ psia} \times 1.0036} = 5.586
\]
Fixed process density

| FastKeys | 1, 3, 2, 4, 2 |

Process Density is required only if you have designated mass units for your flow rate units. You will first be prompted for density units. It is required for the conversion from volumetric units to mass units. For example, if you have set flow units to kg/sec rather than gal/sec, a density is required to convert the measured volumetric flow into the desired mass flow. The Fixed Process Density must be entered even in temperature compensated Saturated Steam applications as this value is used to determine flow sensor limits in Mass Flow Units.

Note

If mass units are chosen, you must enter the density of your process fluid into the software. Be careful to enter the correct density. The mass flow rate is calculated using this user-entered density, and any error in this number will cause error in the mass flow measurement. If fluid density is changing over time, it is recommended that volumetric flow units be used.

2.3.3 Reference K-factor

| FastKeys | 1, 3, 3 |

The reference K-factor is a factory calibration number relating the flow through the meter to the shedding frequency measured by the electronics. Every Rosemount 8600 meter manufactured by Emerson is run through a water calibration to determine this value.

2.3.4 Flange type

| FastKeys | 1, 3, 4 |

Flange Type enables you to specify the type of flange on the flowmeter for later reference. This variable is preset at the factory but can be changed if necessary.

- ANSI 150
- ANSI 300
- PN16
- PN40
- Spcl
2.3.5 Mating pipe ID (Inside Diameter)

The Pipe ID (Inside Diameter) of the pipe adjacent to the flowmeter can cause entrance effects that may alter flowmeter readings. You must specify the exact inside diameter of the pipe to correct for these effects. Enter the appropriate value for this variable.

Pipe ID values for schedule 10, 40, and 80 piping are given in Table 2-1. If the piping in your application is not one of these, you may need to contact the manufacturer for exact Pipe ID.

<table>
<thead>
<tr>
<th>Pipe Size</th>
<th>Schedule 10 Inches (mm)</th>
<th>Schedule 40 Inches (mm)</th>
<th>Schedule 80 Inches (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25)</td>
<td>1.097 (27.86)</td>
<td>1.049 (26.64)</td>
<td>0.957 (24.31)</td>
</tr>
<tr>
<td>1.7 (40)</td>
<td>1.682 (42.72)</td>
<td>1.610 (40.89)</td>
<td>1.500 (38.10)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>2.157 (54.79)</td>
<td>2.067 (52.50)</td>
<td>1.939 (49.25)</td>
</tr>
<tr>
<td>3 (80)</td>
<td>3.260 (82.80)</td>
<td>3.068 (77.93)</td>
<td>2.900 (73.66)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>4.260 (108.2)</td>
<td>4.026 (102.3)</td>
<td>3.826 (97.18)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>6.357 (161.5)</td>
<td>6.065 (154.1)</td>
<td>5.716 (145.2)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>8.329 (211.6)</td>
<td>7.981 (202.7)</td>
<td>7.625 (193.7)</td>
</tr>
</tbody>
</table>

2.3.6 Variable mapping

Allows the user to select which variables the Rosemount 8600D will output.

Primary Variable (PV)

| FastKeys | 1, 3, 6 |

Selections for this Variable are Mass Flow, Volumetric Flow, Velocity Flow, and Process Temperature. The Primary Variable is the variable mapped to the analog output.

Secondary Variable (SV)

| FastKeys | 1, 3, 6, 2 |

Selections for this Variable include all Variables that can be mapped to PV, and also Vortex Frequency, Pulse Output Frequency, Totalizer Value, Calculated Process Density, Electronics Temperature, and Cold Junction (CJ) Temperature.

Tertiary Variable (TV)

| FastKeys | 1, 3, 6, 3 |

Selections for this Variable are identical to those of the Secondary Variable.

Quaternary Variable (4V)

| FastKeys | 1, 3, 6, 4 |

Selections for this Variable are identical to those of the Secondary Variable.
2.3.7 PV units

| FastKeys | 1, 3, 7 |

Selections for this include all units available for the selection of PV. This will set the units for the flow rate or process temperature.

2.3.8 Range values

| FastKeys | 1, 3, 8 |

Range Values enables you to maximize resolution of analog output. The meter is most accurate when operated within the expected flow ranges for your application. Setting the range to the limits of expected readings will maximize flowmeter performance.

The range of expected readings is defined by the Lower Range Value (LRV) and Upper Range Value (URV). Set the LRV and URV within the limits of flowmeter operation as defined by the line size and process material for your application. Values set outside that range will not be accepted.

Primary Variable Upper Range Value (PV URV)

| FastKeys | 1, 3, 8, 1 |

This is the 20 mA set point for the meter.

Primary Variable Lower Range Value (PV LRV)

| FastKeys | 1, 3, 8, 2 |

This is the 4 mA set point for the meter, and is typically set to 0 when the PV is a Flow Variable.

2.3.9 PV damping

| FastKeys | 1, 3, 9 |

Damping changes the response time of the flowmeter to smooth variations in output readings caused by rapid changes in input. Damping is applied to the Analog Output, Primary Variable, Percent of Range, and Vortex Frequency. This will not affect the Pulse Output, Total, or other Digital Information.

The default damping value is 2.0 seconds. This can be reset to any value between 0.2 to 255 seconds when PV is a flow variable or 0.4 to 32 seconds when PV is Process Temperature. Determine the appropriate damping setting based on the necessary response time, signal stability, and other requirements of the loop dynamics in your system.

Note

If the vortex shedding frequency is slower than the damping value selected, no damping is applied.
2.3.10 Auto adjust filter

The Auto Adjust Filter is a function that can be used to optimize the range of the flowmeter based on the density of the fluid. The electronics uses process density to calculate the minimum measurable flow rate, while retaining at least a 4:1 signal to the trigger level ratio. This function will also reset all of the filters to optimize the flowmeter performance over the new range. If the configuration of the device has changed, this method should be executed to ensure the signal processing parameters are set to their optimum settings. For a stronger signal select a density value that is lower than the actual flowing density.
Figure 2-1. Field Communicator Menu Tree for the Rosemount 8600D

1. Process Variables
 1. PV
 2. PV % Range
 3. Analog Output
 4. View Other Variables

1. Volumetric Flow
 2. Mass Flow
 3. Velocity Flow
 4. Totalizer
 5. Pulse Frequency
 6. Vortex Frequency
 7. Electronics Temp
 8. Calc Proc Density
 9. Process Temp
 - CJ Temperature

2. Diagnostics and Service
 1. Test/Status
 2. Loop Test
 3. Pulse Output Test
 4. Flow Simulation
 5. D/A Trim
 6. Scaled D/A Trim
 7. Shed Freq at URV

 1. View Status
 2. Config Status
 3. Density Test Calc
 4. Min/Max Temp
 5. Self Test
 6. Reset Xrntr

2. Electronics Temp
2.1 Min CJ Temp
2.2 Max CJ Temp

3. Basic Setup
 1. Tag
 2. Process Config
 3. Reference K Factor
 4. Flange Type
 5. Mating Pipe ID
 6. Variable Mapping
 7. PV Unit
 8. Range Values
 9. PV Damping
 - Auto Adjust Filter

3.1 Transmitter Mode
3.2 Process Fluid
3.3 Fixed Process Temp
3.4 Density / Dens Ratio

3.1.1 PV is
3.1.2 SV is
3.1.3 TV is
3.1.4 QV is

3.1.1.1 URV
3.1.1.2 LRV
3.1.1.3 PV Min Span
3.1.1.4 USL
3.1.1.5 LSL

1. Density Ratio
2. Fixed Process Density
3. Calc Density Ratio

4. Detailed Setup
 1. Characterize Meter
 2. Configure Outputs
 3. Signal Processing
 4. Device Information

4.1 Analog Output
4.2 Pulse Output
4.3 HART Output
4.4 Local Display

4.1.1 Optimize Flow Range
4.1.2 Manual Filter Adjust
4.1.3 Filter Restore
4.1.4 Damping
4.1.5 LFC Response

4.1.1.1 PV
4.1.1.2 LFC
4.1.1.3 Sig/Tr
4.1.1.4 Low Flow Cutoff
4.1.1.5 Low Pass Filter
4.1.1.6 Trigger Level

4.1.1.1.1 PV
4.1.1.1.2 LFC
4.1.1.1.3 Sig/Tr
4.1.1.1.4 Low Flow Cutoff
4.1.1.1.5 Low Pass Filter
4.1.1.1.6 Trigger Level

4.1.1.1.1.1 Poll Address
4.1.1.1.1.2 Alarm Level Select
4.1.1.1.1.3 Recall Factory Trim

4.1.1.1.1.1.1 High Alarm
4.1.1.1.1.1.2 High Saturation
4.1.1.1.1.1.3 Low Saturation
4.1.1.1.1.1.4 Low Alarm

4.1.1.1.1.1.1 Off
4.1.1.1.1.1.2 Direct (Shedding)
4.1.1.1.1.1.3 Scaled Volume
4.1.1.1.1.1.4 Scaled Velocity
4.1.1.1.1.1.5 Scaled Mass

5. Review
 1. Manufacturer
 2. Tag
 3. Descriptor
 4. Message
 5. Date
 6. Write Protect
 7. Transmitter Options
 8. Revision Numbers

5.1 PV Damping
5.2 Flow Damping
5.3 Temperature Damping

5.1.1 Universal Rev
5.1.2 Transmitter Rev
5.1.3 Software Rev
5.1.4 Hardware Rev
5.1.5 Final Assembly #
5.1.6 Device ID
5.1.7 Board Serial #
Table 2-2. Field Communicator Fast Key Sequences for the Rosemount 8600D

<table>
<thead>
<tr>
<th>Function</th>
<th>Fast Keys</th>
<th>Function</th>
<th>Fast Keys</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alarm Jumper</td>
<td>1, 4, 2, 1, 3</td>
<td>Message</td>
<td>1, 4, 4, 4</td>
</tr>
<tr>
<td>Analog Output (Config)</td>
<td>1, 4, 2, 1</td>
<td>Meter Body Number</td>
<td>1, 4, 1, 5</td>
</tr>
<tr>
<td>Analog Output (View)</td>
<td>1, 1, 3</td>
<td>Minimum Span</td>
<td>1, 3, 8, 3</td>
</tr>
<tr>
<td>Auto Adjust Filter</td>
<td>1, 4, 3, 1, 4</td>
<td>Num Req Preaems</td>
<td>1, 4, 2, 3, 2</td>
</tr>
<tr>
<td>Base Time Unit</td>
<td>1, 1, 4, 1, 3, 2</td>
<td>Poll Address</td>
<td>1, 4, 2, 3, 1</td>
</tr>
<tr>
<td>Base Volume Unit</td>
<td>1, 1, 4, 1, 3, 1</td>
<td>Process Fluid Type</td>
<td>1, 3, 2, 2</td>
</tr>
<tr>
<td>Burst Mode</td>
<td>1, 4, 2, 3, 4</td>
<td>Process Variables</td>
<td>1, 1</td>
</tr>
<tr>
<td>Burst Option</td>
<td>1, 4, 2, 3, 5</td>
<td>Pulse Output</td>
<td>1, 4, 2, 2, 1</td>
</tr>
<tr>
<td>Burst Variable 1</td>
<td>1, 4, 2, 3, 6, 1</td>
<td>Pulse Output Test</td>
<td>1, 4, 2, 2, 2</td>
</tr>
<tr>
<td>Burst Variable 2</td>
<td>1, 4, 2, 3, 6, 2</td>
<td>PV Damping</td>
<td>1, 3, 9</td>
</tr>
<tr>
<td>Burst Variable 3</td>
<td>1, 4, 2, 3, 6, 3</td>
<td>PV Mapping</td>
<td>1, 3, 6, 1</td>
</tr>
<tr>
<td>Burst Variable 4</td>
<td>1, 4, 2, 3, 6, 4</td>
<td>PV Percent Range</td>
<td>1, 1, 2</td>
</tr>
<tr>
<td>Burst Xmtr Variables</td>
<td>1, 4, 2, 3, 6</td>
<td>QV Mapping</td>
<td>1, 3, 6, 4</td>
</tr>
<tr>
<td>Conversion Number</td>
<td>1, 1, 4, 1, 3, 4</td>
<td>Range Values</td>
<td>1, 3, 8</td>
</tr>
<tr>
<td>D/A Trim</td>
<td>1, 2, 5</td>
<td>Review</td>
<td>1, 5</td>
</tr>
<tr>
<td>Date</td>
<td>1, 4, 4, 5</td>
<td>Revision Numbers</td>
<td>1, 4, 4, 7</td>
</tr>
<tr>
<td>Descriptor</td>
<td>1, 4, 4, 3</td>
<td>Scaled D/A Trim</td>
<td>1, 2, 6</td>
</tr>
<tr>
<td>Density Ratio</td>
<td>1, 3, 2, 4, 1, 1</td>
<td>Self Test</td>
<td>1, 2, 1, 5</td>
</tr>
<tr>
<td>Device ID</td>
<td>1, 4, 4, 7, 6</td>
<td>Signal to Trigger Ratio</td>
<td>1, 4, 3, 2, 2</td>
</tr>
<tr>
<td>Electronics Temp</td>
<td>1, 1, 4, 7, 1</td>
<td>STD/Nor Flow Units</td>
<td>1, 1, 4, 1, 2</td>
</tr>
<tr>
<td>Electronics Temp Units</td>
<td>1, 1, 4, 7, 2</td>
<td>Special Units</td>
<td>1, 1, 4, 1, 3</td>
</tr>
<tr>
<td>Filter Restore</td>
<td>1, 4, 3, 3</td>
<td>Status</td>
<td>1, 2, 1, 1</td>
</tr>
<tr>
<td>Final Assembly Number</td>
<td>1, 4, 4, 7, 5</td>
<td>SV Mapping</td>
<td>1, 3, 6, 2</td>
</tr>
<tr>
<td>Fixed Process Density</td>
<td>1, 3, 2, 4, 2</td>
<td>Tag</td>
<td>1, 3, 1</td>
</tr>
<tr>
<td>Fixed Process Temperature</td>
<td>1, 3, 2, 3</td>
<td>Total</td>
<td>1, 1, 4, 4, 1</td>
</tr>
<tr>
<td>Flange Type</td>
<td>1, 3, 4</td>
<td>Totalizer Control</td>
<td>1, 1, 4, 4</td>
</tr>
<tr>
<td>Flow Simulation</td>
<td>1, 2, 4</td>
<td>Transmitter Mode</td>
<td>1, 3, 2, 1</td>
</tr>
<tr>
<td>Installation Effects</td>
<td>1, 4, 1, 6</td>
<td>TV Mapping</td>
<td>1, 3, 6, 3</td>
</tr>
<tr>
<td>K-Factor (reference)</td>
<td>1, 3, 3</td>
<td>Trigger Level</td>
<td>1, 4, 3, 2, 5</td>
</tr>
<tr>
<td>Local Display</td>
<td>1, 4, 2, 4</td>
<td>URV</td>
<td>1, 3, 8, 1</td>
</tr>
<tr>
<td>Loop Test</td>
<td>1, 2, 2</td>
<td>User Defined Units</td>
<td>1, 1, 4, 1, 3, 3</td>
</tr>
<tr>
<td>Low Flow Cutoff</td>
<td>1, 4, 3, 2, 3</td>
<td>USL</td>
<td>1, 3, 8, 4</td>
</tr>
<tr>
<td>Low Pass Filter</td>
<td>1, 4, 3, 2, 4</td>
<td>Shedding Frequency</td>
<td>1, 1, 4, 6</td>
</tr>
<tr>
<td>LRV</td>
<td>1, 3, 8, 2</td>
<td>Variable Mapping</td>
<td>1, 3, 6</td>
</tr>
<tr>
<td>LSL</td>
<td>1, 3, 8, 5</td>
<td>Velocity Flow</td>
<td>1, 1, 4, 3</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>1, 4, 4, 1</td>
<td>Velocity Flow Base</td>
<td>1, 1, 4, 3, 3</td>
</tr>
<tr>
<td>Mass Flow</td>
<td>1, 1, 4, 2, 1</td>
<td>Volumetric Flow</td>
<td>1, 1, 4, 1</td>
</tr>
<tr>
<td>Mass Flow Units</td>
<td>1, 1, 4, 2, 2</td>
<td>Wetted Material</td>
<td>1, 4, 1, 4</td>
</tr>
<tr>
<td>Mating Pipe ID (Inside Diameter)</td>
<td>1, 3, 5</td>
<td>Write Protect</td>
<td>1, 4, 4, 6</td>
</tr>
</tbody>
</table>
Section 3 Installation

This section provides installation instructions for the Rosemount 8600D Vortex Flowmeter. Dimensional drawings for each Rosemount 8600D variation and mounting configuration are included in the Appendix on page 100.

The options available for the Rosemount 8600D flowmeter are also described in this section. The numbers in parentheses refer to the codes used to order each option.

3.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Refer to the following safety messages before performing any operation in this section.

WARNING

Explosions could result in death or serious injury.

- Do not remove the transmitter cover in explosive atmospheres when the circuit is alive.
- Before connecting a HART-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- Verify the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications.
- Both transmitter covers must be fully engaged to meet explosion-proof requirements.

Failure to follow these installation guidelines could result in death or serious injury.

- Make sure only qualified personnel perform the installation.
Figure 3-1. Installation Flowchart

START HERE

Bench Commissioning?

Yes

Review Configuration

Is Configuration OK?

No

Go to A

Yes

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

A) CONFIGURE

Tag

Process Config
- Transmitter Mode
- Process Fluid
- Fixed Process Temp.
- Dens/Dens Ratio
 - Density Ratio (Std. or Normal Volumetric Flow Units Only)
 - Fixed Process Density (Mass Flow Units Only)

Reference K-Factor

Flange Type

Mating Pipe ID

Variable Mapping

PV Unit

Range Values

PV Damping

Auto Adjust Filter

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

BENEFIT INSTALL

Field Install

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A

Using LCD?

Yes

Configure Local Display

No

Configure if Necessary

Go to B

Using Pulse Output

Yes

Configure Pulse Output

No

Configure if Necessary

Go to B

Using Totalizer

Yes

Configure Totalizer

No

Configure if Necessary

Go to B

Meter Installed

Yes

DONE

No

Configure if Necessary

Go to A

B) FIELD INSTALL

Mount Flowmeter

Mount Conduit

Wire

Flowmeter

Power Flowmeter

Did you Configure on Bench?

Yes

DONE

No

Configure if Necessary

Go to A
3.2 Commissioning

Commission the Rosemount 8600D before putting it into operation. This ensures proper configuration and operation of the meter. It also enables you to check hardware settings, test the flowmeter electronics, verify flowmeter configuration data, and check output variables. Any problems can be corrected – or configuration settings changed – before going out into the installation environment. To commission on the bench, connect the Field Communicator or AMS™ Device Manager (or other communications device) to the signal loop in accordance with the specifications for your communicator.

3.2.1 General considerations

Before you install a flowmeter in any application, you must consider flowmeter sizing (the line size) and location. Choose the correct flowmeter size for an application to increase rangeability and minimize pressure drop and cavitation. Proper location of the flowmeter can ensure a clean and accurate signal. Follow the installation instructions carefully to reduce start-up delays, ease maintenance, and ensure optimum performance.

3.2.2 Flowmeter sizing

Correct meter sizing is important for flowmeter performance. The Rosemount 8600D is capable of processing signals from flow applications within the limitations described in Appendix A: Specifications and Reference Data. Full scale is continuously adjustable within these ranges.

To determine the correct flowmeter size for an application, process conditions must be within the stated requirements for Reynolds number and velocity. See Appendix A: Specifications and Reference Data for sizing data.

Contact your local Rosemount Inc. sales representative to obtain a copy of Instrument Toolkit® which contains a sizing module for the Rosemount 8600D Vortex flowmeter. The vortex sizing module will calculate valid flowmeter sizes based on user-supplied application information.

3.2.3 Flowmeter orientation

Design process piping so the meter body will remain full, with no entrapped air. Allow enough straight pipe both upstream and downstream of the meter body to ensure a nonskewed, symmetrical profile. Install valves downstream of the meter when possible.

Vertical installation

Vertical installation allows upward process liquid flow and is generally preferred. Upward flow ensures that the meter body always remains full and that any solids in the fluid are evenly distributed.

The vortex meter can be mounted in the vertical down position when measuring gas or steam flows. This type of application should be strongly discouraged for liquid flows, although it can be done with proper piping design.
Note
To ensure the meter body remains full, avoid downward vertical liquid flows where back pressure is inadequate.

Horizontal installation

For horizontal installation, the preferred orientation is to have the electronics installed to the side of the pipe. In liquid applications, this ensures any entrapped air or solids do not strike the shedding bar and disrupt the shedding frequency. In gas or steam applications, this ensures that any entrained liquid (such as condensate) or solids do not strike the shredder bar and disrupt the shedding frequency.

High-Temperature installations

Install the meter body so the electronics are positioned to the side of the pipe or below the pipe as shown in Figure 3-2. Insulation may be required around the pipe to maintain an electronics temperature below 185 °F (85 °C).

Steam installations

For steam applications, avoid installations such as the one shown in Figure 3-3. Such installations may cause a water-hammer condition at start-up due to trapped condensate. The high force from the water hammer can overstress the sensing mechanism and cause permanent damage to the sensor.
Upstream/Downstream piping

The vortex meter may be installed with a minimum of ten diameters (D) of straight pipe length upstream and five diameters (D) of straight pipe length downstream.

Rated accuracy is based on the number of pipe diameter from an upstream disturbance. No K-factor correction is required if the meter is installed with 35 D upstream and 5 D downstream. The value of the K-factor may shift up to 0.5% when the upstream straight pipe length is between 10D and 35D. Please see Technical Data Sheet (00816-0100-3250) on Installation Effects for optional K-factor corrections. This effect can be corrected for using the Installation Effect Correction Factor (See page 52).

Pressure and temperature transmitter location

When using pressure and temperature transmitters in conjunction with the Rosemount 8600D for compensated mass flows, install the transmitter(s) downstream of the Vortex Flowmeter. See Figure 3-4.
3.2.4 Wetted material selection

Ensure the process fluid is compatible with the meter body wetted materials when specifying the Rosemount 8600D. Corrosion will shorten the life of the meter body. Consult recognized sources of corrosion data or contact your Rosemount Sales Representative for more information.

Note
For accurate results perform a Positive Material Identification (PMI) test on a machined surface.

3.2.5 Environmental considerations

Avoid excessive heat and vibration to ensure maximum flowmeter life. Typical problem areas include high-vibration lines with integrally mounted electronics, warm-climate installations in direct sunlight, and outdoor installations in cold climates.
Although the signal conditioning functions reduce susceptibility to extraneous noise, some environments are more suitable than others. Avoid placing the flowmeter or its wiring close to devices that produce high intensity electromagnetic and electrostatic fields. Such devices include electric welding equipment, large electric motors and transformers, and communication transmitters.

3.3 Hazardous locations

The Rosemount 8600D has an explosion-proof housing and circuitry suitable for intrinsically safe and non-incendive operation. Individual transmitters are clearly marked with a tag indicating the certifications they carry.

3.4 Hardware configuration

The hardware jumpers on the Rosemount 8600D enable you to set the alarm and security. (See Figure 3-5.) To access the jumpers, remove the electronics housing cover from the electronics end of the Rosemount 8600D. If your Rosemount 8600D includes an LCD option, the alarm and security jumpers are found on the face of the LCD indicator. (See Figure 3-6 on page 29.)

Note
If you will be changing configuration variables frequently, it may be useful to leave the security lockout jumper in the OFF position to avoid exposing the flowmeter electronics to the plant environment.

Set these jumpers during the commissioning stage to avoid exposing the electronics to the plant environment.

Figure 3-5. Alarm and Security Jumpers
Alarm

As part of normal operations, the Rosemount 8600D continuously runs a self-diagnostic routine. If the routine detects an internal failure in the electronics, flowmeter output is driven to a low or high alarm level, depending on the position of the failure mode jumper.

The failure mode jumper is labeled ALARM and is set at the factory per the CDS (Configuration Data Sheet); the default setting is HI.

Security

You can protect the configuration data with the security lockout jumper. With the security lockout jumper ON, any configuration changes attempted on the electronics are disallowed. You can still access and review any of the operating parameters and scroll through the available changes, but no actual changes will be permitted. The security lockout jumper is labeled SECURITY and is set at the factory per the CDS; the default setting is OFF.

3.4.1 Failure mode vs. saturation output values

The failure mode alarm output levels differ from the output values that occur when the operating flow is outside the range points. When the operating flow is outside the range points, the analog output continues to track the operating flow until reaching the saturation value listed below; the output does not exceed the listed saturation value regardless of the operating flow. For example, with standard alarm and saturation levels and flows outside the 4—20 mA range points, the output saturates at 3.9 mA or 20.8 mA. When the transmitter diagnostics detect a failure, the analog output is set to a specific alarm value that differs from the saturation value to allow for proper troubleshooting.

<table>
<thead>
<tr>
<th>Level</th>
<th>4—20 mA Saturation Value</th>
<th>4—20 mA Alarm Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3.9 mA</td>
<td>≤ 3.75 mA</td>
</tr>
<tr>
<td>High</td>
<td>20.8 mA</td>
<td>≥ 21.75 mA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>4—20 mA Saturation Value</th>
<th>4—20 mA Alarm Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3.8 mA</td>
<td>≤ 3.6 mA</td>
</tr>
<tr>
<td>High</td>
<td>20.5 mA</td>
<td>≥ 22.6 mA</td>
</tr>
</tbody>
</table>

3.4.2 LCD indicator option

If your electronics are equipped with the LCD indicator (Option M5), the ALARM and SECURITY jumpers are located on the face of the indicator as shown in Figure 3-6.
3.5 Meter body installation tasks

The installation tasks include detailed mechanical and electrical installation procedures.

3.5.1 Handling

Handle all parts carefully to prevent damage. Whenever possible, transport the system to the installation site in the original shipping containers. Keep the shipping plugs in the conduit connections until you are ready to connect and seal them.

Note

Do not lift the flowmeter by the transmitter. Lift the meter by the meter body. If necessary, Lifting supports can be tied around the meter body as shown in Figure 3-7.
3.5.2 Flow direction

Mount the meter body so the FORWARD end of the flow arrow, shown on the meter body, points in the direction of the flow in the pipe.

3.5.3 Gaskets

The Rosemount 8600D requires flange gaskets supplied by the user, and sensor gaskets supplied with the meter. Be sure to select gasket material that is compatible with the process fluid and pressure ratings of the specific installation.

Note

Ensure that the inside diameter of the flange gasket is larger than the inside diameter of the flowmeter and adjacent piping. If gasket material extends into the flow stream, it will disturb the flow and cause inaccurate measurements.
3.5.4 Flange bolts

Install the Rosemount 8600D Flowmeter between two conventional pipe flanges, as shown in Figure 3-8 on page 31.

Figure 3-8. Flanged-Style Flowmeter Installation

A. Installation bolts and nuts (supplied by customer)
B. Gaskets (supplied by customer)

3.5.5 Flanged-style flowmeter mounting

Physical mounting of a flanged-style flowmeter is similar to installing a typical section of pipe. Conventional tools, equipment, and accessories (such as bolts and gaskets) are required. Tighten the nuts following the sequence shown in Figure 3-9.

Note
The required bolt load for sealing the gasket joint is affected by several factors, including operating pressure and gasket material, width, and condition. A number of factors also affect the actual bolt load resulting from a measured torque, including condition of bolt threads, friction between the nut head and the flange, and parallelism of the flanges. Due to these application-dependent factors, the required torque for each application may be different. Follow the guidelines outlined in the ASME Pressure Vessel Code (Section VIII, Division 2) for proper bolt tightening. Make sure the flowmeter is centered between flanges of the same nominal size as the flowmeter.
3.5.6 Flowmeter grounding

Grounding is not required in typical vortex applications; however, a proper ground will eliminate possible noise pickup by the electronics. Grounding straps may be used to ensure that the meter is grounded to the process piping. If you are using the transient protection option (T1), grounding straps are required to provide a proper low impedance ground.

Note
Properly ground flow meter body and transmitter per the local code.

To use grounding straps, secure one end of the grounding strap to the bolt extending from the side of the meter body and attach the other end of each grounding strap to a suitable ground.

3.6 Electronics considerations

Both integral and remote mounted electronics require input power at the electronics. For remote mount installations, mount the electronics against a flat surface or on a pipe that is up to two inches (50 mm) in diameter. Remote mounting hardware includes an L bracket that is stainless steel and one stainless steel u-bolt. See Appendix A: Specifications and Reference Data, “Dimensional drawings” on page 100 for dimensional information.

3.6.1 High-Temperature installations

Install the meter body so the electronics are positioned to the side of or below the pipe as shown in Figure 3-2 on page 24. Insulation may be required around the pipe to maintain an ambient transmitter temperature below 185 °F (85 °C) or the more restrictive temperature ratings marked on hazardous locations tags.
3.6.2 Conduit connections

The electronics housing has two ports for 1/2–14 NPT or M20 x 1.5 conduit connections. Unless marked otherwise conduit entries in the housing are 1/2 NPT. These connections are made in a conventional manner in accordance with local or plant electrical codes. Be sure to properly seal unused ports to prevent moisture or other contamination from entering the terminal block compartment of the electronics housing. Additional conduit entry types are available via adapters.

Note
In some applications it may be necessary to install conduit seals and arrange for conduits to drain to prevent moisture from entering the wiring compartment.

3.6.3 High-Point installation

Prevent condensation in any conduit from flowing into the housing by mounting the flowmeter at a high point in the conduit run. If the flowmeter is mounted at a low point in the conduit run, the terminal compartment could fill with fluid.

If the conduit originates above the flowmeter, route conduit below the flowmeter before entry. In some cases a drain seal may need to be installed.

Figure 3-10. Proper Conduit Installation with Rosemount 8600D

3.6.4 Cable gland

If you are using cable glands instead of conduit, follow the cable gland manufacturer’s instructions for preparation and make the connections in a conventional manner in accordance with local or plant electrical codes. Be sure to properly seal unused ports to prevent moisture or other contamination from entering the terminal block compartment of the electronics housing.
3.6.5 Grounding the transmitter case

The transmitter case should always be grounded in accordance with national and local electrical codes. The most effective transmitter case grounding method is direct connection to earth ground with minimal impedance. Methods for grounding the transmitter case include:

- **Internal Ground Connection**: The Internal Ground Connection screw is inside the FIELD TERMINALS side of the electronics housing. This screw is identified by a ground symbol (grounds), and is standard on all Rosemount 8600D transmitters.

- **External Ground Assembly**: This assembly is included with the optional transient protection terminal block (Option Code T1). The External Ground Assembly can also be ordered with the transmitter (Option Code V5) and is automatically included with certain hazardous area approvals.

Note
Grounding the transmitter case using the threaded conduit connection may not provide a sufficient ground. The transient protection terminal block (Option Code T1) does not provide transient protection unless the transmitter case is properly grounded. See “Transient Terminal Block” on page 45 for transient terminal block grounding. Use the above guidelines to ground the transmitter case. Do not run the transient protection ground wire with signal wiring as the ground wire may carry excessive current if a lightning strike occurs.

3.6.6 Wiring procedure

The signal terminals are located in a compartment of the electronics housing separate from the flowmeter electronics. Connections for a HART-based communicator and a current test connection are above the signal terminals. Figure 3-11 illustrates the power supply load limitations for the flowmeter.

Note
A power disconnect is required to remove power from the transmitter for maintenance, removal, and replacement.

Power supply

Power Supply Specifications:

Typical installations use a 22 Vdc – 28 Vdc power supply. The dc power supply should provide clean power with less than 2% ripple. Refer to Figure 3-11 as a quick reference.

Loop resistance specification:

If HART communication is required, a minimum resistance of 250Ω dc is required between the power supply and the transmitter.

Note
See the Loop Load Calculation section to determine the maximum allowable loop resistance as a function of power supply voltage.
Typical single loop wiring diagram:

![Diagram](image)

Loop Load Calculation

\[R_{\text{loop(max)}} = \frac{(V_{ps} - 10.8)}{0.024} \]

Where:

- \(R_{\text{loop(min)}} = 250 \, \Omega \). Required for HART communication.
- \(R_{\text{loop(max)}} \) = The maximum value the loop load resistor can be.
- \(V_{ps} \) = Power Supply Voltage
- 10.8 = minimum terminal voltage “\(V_{\text{terminals}} \)” in Vdc.
- 0.024 = maximum transmitter current in Adc

Figure 3-11. Power Supply Load Limitations

![Graph](image)

Note

\(R_{\text{loop(max)}} \) in the equation above refers to the total loop load resistance. Technically, the total loop load resistance is the sum of the loop load resistor, signal wiring resistance, and if applicable, any intrinsic safety barriers. In a typical installation, the loop load resistor will largely determine the total loop resistance. In some installations, depending on signal wire gauge and signal wire length, and/or any IS barriers, the additional resistance may need to be accounted for.
To minimize noise pickup on the 4-20 mA signal and any digital communications signal:

- Twisted pair wiring is recommended.
- Shielded signal wire is preferred.
- For high EMI/RFI environments, shielded signal wire is required.

To ensure proper operation, wiring should be:

- 24 AWG or larger.
- Less than 5000 ft. (1500 m) in length.

<table>
<thead>
<tr>
<th>Gage number A.W.G.</th>
<th>Ohms per 1,000 ft (305 m) at 68 °F (20 °C) equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>2.525</td>
</tr>
<tr>
<td>16</td>
<td>4.016</td>
</tr>
<tr>
<td>18</td>
<td>6.385</td>
</tr>
<tr>
<td>20</td>
<td>10.15</td>
</tr>
<tr>
<td>22</td>
<td>16.14</td>
</tr>
<tr>
<td>24</td>
<td>25.67</td>
</tr>
</tbody>
</table>

Note

If an Emerson Smart Wireless THUM™ Adapter is being used with the Rosemount 8600 flowmeter to exchange information via the WirelessHART protocol, an additional 2.5 Vdc is dropped in the connected loop. This is because the THUM is wired in series with the transmitter. Please use the following formula to calculate the maximum loop load resistor.

Loop Load Calculation: \(R_{\text{loop(max)}} = \frac{(V_{\text{ps}} - 10.8 - 2.5)}{0.024} \)

Where:

- \(R_{\text{loop(max)}} \) = The maximum value the loop load resistor can be.
- \(V_{\text{ps}} \) = Power Supply Voltage.
- 10.8 = minimum terminal voltage “\(V_{\text{terminals}} \)” in Vdc.
- 2.5 = Maximum voltage drop across the THUM wireless adapter.
- 0.024 = maximum transmitter current in Adc.

Analog output

The flowmeter provides a 4–20 mA dc isolated current output, linear with the flow rate.

To make connections, remove the FIELD TERMINALS side cover of the electronics housing. All power to the electronics is supplied over the 4–20 mA signal wiring. Connect the wires as shown in **Figure 3-14 on page 39**.
Pulse output

Note
Remember when using the pulse output, all power to the electronics is still supplied over the 4–20 mA signal wiring.

The flowmeter provides an isolated transistor switch-closure frequency output signal proportional to flow, as shown in Figure 3-12. The frequency limits are as follows:

- Maximum Frequency = 10000 Hz
- Minimum Frequency = 0.0000035 Hz (1 pulse/79 hours)
- Duty Cycle = 50%
- External Supply Voltage (V_s): 5 to 30 Vdc
- Load Resistance (R_L): 100 Ω to 100 kΩ
- Max Switching Current = 75 mA $\geq V_s/R_L$
- Switch Closure: Transistor, open collector
 - Open contact < 50 μA leakage
 - Close contact < 20 Ω

The output may drive an externally powered electromechanical or electronic totalizer, or may serve as a direct input to a control element.

To connect the wires, remove the FIELD TERMINALS side cover of the electronics housing. Connect the wires as shown in Figure 3-15 on page 39.

Figure 3-12. Example: Pulse Output Will Maintain a 50 Percent Duty Cycle for All Frequencies
Note
When using pulse output, be sure to follow these precautions:

- Shielded twisted pair is required when the pulse output and 4–20 mA output are run in the same conduit or cable trays. Shielded wire will also reduce false triggering caused by noise pickup. Wiring should be 24 AWG or larger and not exceed 5,000 ft. (1500 m).
- Do not connect the powered signal wiring to the test terminals. Power could damage the test diode in the test connection.
- Do not run signal wiring in conduit or open trays with power wiring or near heavy electrical equipment. If needed, ground signal wiring at any one point on the signal loop, such as the negative terminal of the power supply. The electronics housing is grounded to the meter body.
- If the flowmeter is protected by the optional transient protector, you must provide a high-current ground connection from the electronics housing to earth ground. Also, tighten the ground screw in the bottom center of the terminal block to provide a good ground connection. See Figure 3-13.

Figure 3-13. The Transient Terminal Block

- Plug and seal all unused conduit connections on the electronics housing to avoid moisture accumulation in the terminal side of the housing.
- If the connections are not sealed, mount the flowmeter with the conduit entry positioned downward for drainage. Install wiring with a drip loop, making sure the bottom of the drip loop is lower than the conduit connections or the electronics housing.
3.6.7 Remote electronics

If you order one of the remote electronics options (options R10, R20, R30, R33, R50, or RXX), the flowmeter assembly will be shipped in two parts:

1. The meter body with an adapter installed in the bracket and an interconnecting coaxial cable attached to it.
2. The electronics housing installed on a mounting bracket.
Mounting

Mount the meter body in the process flow line as described earlier in this section. Mount the bracket and electronics housing in the desired location. The housing can be repositioned on the bracket to facilitate field wiring and conduit routing.

Cable connections

Refer to Figure 3-16 and the following instructions to connect the loose end of the coaxial cable to the electronics housing. (See “Remote electronics procedure” on page 83 if connecting/disconnecting the meter adapter to the meter body.)

Figure 3-16. Remote Electronics Installation

Note
Consult factory for SST installation.

A. Meter body	I. 1/2 in. NPT Conduit adapter or cable gland (supplied by customer)
B. Bracket	J. Electronics housing
C. Sensor cable nut	K. Ground connection
D. Nut	L. Housing base screw
E. Washer	M. Housing adapter
F. Union	N. Housing adapter screws
G. Meter adapter	O. 1/2 in. NPT conduit adapter or cable gland (supplied by customer)
H. Coaxial cable	P. Coaxial cable nut

1. If you plan to run the coaxial cable in conduit, carefully cut the conduit to the desired length to provide for proper assembly at the housing. A junction box may be placed in the conduit run to provide a space for extra coaxial cable length.
2. Slide the conduit adapter or cable gland over the loose end of the coaxial cable and fasten it to the adapter on the meter body bracket.

3. If using conduit, route the coaxial cable through the conduit.

4. Place a conduit adapter or cable gland over the end of the coaxial cable.

5. Remove the housing adapter from the electronics housing.

6. Slide the housing adapter over the coaxial cable.

7. Remove one of the four housing base screws.

8. Attach the coaxial cable ground wire to the housing via the housing base ground screw.

9. Attach and securely tighten the coaxial cable nut to the connection on the electronics housing.

10. Align the housing adapter with the housing and attach with two screws.

11. Tighten the conduit adapter or cable gland to the housing adapter.

⚠️ CAUTION

To prevent moisture from entering the coaxial cable connections, install the interconnecting coaxial cable in a single dedicated conduit run or use sealed cable glands at both ends of the cable.

3.6.8 Calibration

Rosemount 8600D Flowmeters are wet-calibrated at the factory and need no further calibration during installation. The calibration factor (K-factor) is indicated on each meter body and is entered into the electronics. Verification can be accomplished with a Field Communicator or AMS.

3.7 Software configuration

To complete the installation of the Rosemount 8600D Vortex Flowmeter, configure the software to meet the requirements of your application. If the flowmeter was pre-configured at the factory, it may be ready to install. If not, refer to Section 2: Configuration.

LCD indicator

The LCD indicator (option M5) provides local indication of the output and abbreviated diagnostic messages governing operation of the flowmeter. The indicator is located on the electronics side of the flowmeter electronics. An extended cover is required to accommodate the indicator. Figure 3-17 shows the flowmeter fitted with the LCD indicator and extended cover.
The indicator features an eight-character (and five alphanumeric) liquid crystal display that gives a direct reading of the digital signal from the microprocessor. During normal operation, the display can be configured to alternate between the following readings:

- Primary variable in engineering units
- Percent of range
- Totalized flow
- 4–20 mA electrical current output
- Shedding Frequency
- Electronics Temperature
- Pulse Output Frequency
- Process Temperature (MTA Option Only)
- Mass Flow
- Volume Flow
- Velocity Flow
- Calculated Process Density (MTA Option Only)
Figure 3-18 shows the indicator display with all segments lit.

Figure 3-18. Optional Liquid Crystal Display

A HART-based communicator can be used to change the engineering units of the parameters displayed on the indicator. (See Section 4: Operation for more information).

3.7.1 Installing the indicator

For flowmeters ordered with the LCD indicator, the indicator is shipped installed. When purchased separately from the Rosemount 8600D, you must install the indicator using a small instrument screwdriver and the indicator kit (part number 8600-5640). The indicator kit includes:

- One LCD indicator assembly
- One extended cover with o-ring installed
- One connector
- Two mounting screws
- Two jumpers

Referring to Figure 3-17, use the following steps to install the LCD indicator:

1. If the flowmeter is installed in a loop, secure the loop and disconnect the power.
2. Remove the flowmeter cover on the electronics side.

Note
The circuit board is electrostatically sensitive. Be sure to observe handling precautions for static-sensitive components.

3. Insert the mounting screws into the LCD indicator.
4. Remove the two jumpers on the circuit board that coincide with the Alarm and the Security settings.
5. Insert the connector into the Alarm / Security junction.

6. Gently slide the LCD indicator onto the connector and tighten the screws into place.

7. Insert jumpers into ALARM and SECURITY positions on the face of the LCD indicator.

8. Attach the extended cover and tighten at least one-third turn past o-ring contact.

Note
The indicator may be installed in 90-degree increments for easy viewing. Mounting screws may need to be installed in the alternative holes based on LCD orientation. One of the four connectors on the back of the indicator assembly must be positioned to fit into the ten-pin connector on the electronic board stack.

Note the following LCD temperature limits:
- Operating: –4 to 185 °F (–20 to 85 °C)
- Storage: –50 to 185 °F (–46 to 85 °C)

3.8 Transient protection

The optional transient terminal block prevents damage to the flowmeter from transients induced by lightning, welding, heavy electrical equipment, or switch gears. The transient protection electronics are located in the terminal block.

The transient terminal block meets the following specifications:

- IEEE C62.41 - 2002 Category B.
- 3 kA crest (8 X 20 μs)
- 6 kV crest (1.2 X 50 μs)
- 6 kV/0.5 kA (0.5 μs, 100 kHz, ring wave)

Note
The ground screw inside the terminal housing must be tightened for the proper operation of the transient protection. Also, a high-current ground connection to earth is required.

3.8.1 Installing the Transient Protector

For flowmeters ordered with the transient protector option (T1), the protector is shipped installed. When purchased separately from the Rosemount 8600D, you must install the protector on a Rosemount 8600D flowmeter using a small instrument screwdriver, a pliers, and the transient protection kit.

The transient protection kit includes the following:
- One transient protection terminal block assembly
- Three captive screws
Use the following steps to install the transient protector:

1. If the flowmeter is installed in a loop, secure the loop and disconnect power.
2. Remove the field terminal side flowmeter cover.
3. Remove the captive screws.
4. Remove the housing ground screw.
5. Use pliers to pull the terminal block out of the housing.
6. Inspect the connector pins for straightness.
7. Place the new terminal block in position and carefully press it into place. The terminal block may have to be moved back and forth to get the connector pins started into the sockets.
8. Tighten the captive screws.
9. Install and tighten the ground screw.
10. Replace the cover.

Figure 3-19. Transient Terminal Block

A. Housing Ground Screw
B. Captive Screws
C. Transient Terminal Block Ground Tab
This section contains information for advanced configuration parameters and diagnostics.

The software configuration settings for the Rosemount 8600D can be accessed through a HART-based communicator or through a control system. The software functions for the Field Communicator are described in detail in this section of the manual. It provides an overview and summary of communicator functions. For more complete instructions, see the communicator manual.

Before operating the Rosemount 8600D in an actual installation, you should review all of the factory set configuration data to ensure that they reflect the current application.

4.1 Diagnostics/service

FastKeys

1, 2

Use the following functions to verify that the flowmeter is functioning properly, or when you suspect component failure or a problem with loop performance, or when instructed to do so as part of a troubleshooting procedure. Initiate each test with the Field Communicator or other HART-based communications device.

4.1.1 Test/status

FastKeys

1, 2, 1

Under Test/Status choose from View Status or Self Test.

View status

FastKeys

1, 2, 1, 1

Allows you to view any error messages that may have occurred.

Configuration status

FastKeys

1, 2, 1, 2

Allows you to check the validity of the transmitter configuration.

Density test calc

FastKeys

1, 2, 1, 3

Allows for the test of the density calculation for saturated steam. The vortex meter will calculate the associated steam density at a user entered temperature value. Process Fluid must be set to Tcomp Sat Steam in order to run this test.
Min/Max electronics temperatures

| FastKeys | 1, 2, 1, 4 |

Allows the user to view the minimum and maximum temperatures that the electronics have been exposed to.

Min electronics temp

| FastKeys | 1, 2, 1, 4, 1 |

Displays the lowest temperature that the electronics have been exposed to.

Max electronics temp

| FastKeys | 1, 2, 1, 4, 2 |

Displays the highest temperature that the electronics have been exposed to.

Self test

| FastKeys | 1, 2, 1, 5 |

Although the Rosemount 8600D performs continuous self-diagnostics, you can initiate an immediate diagnostic to check for possible electronics failure.

Self Test checks proper communications with the transmitter and provides diagnostic capabilities for transmitter problems. Follow on-screen instructions if problems are detected, or check the appropriate appendix for error messages relating to your transmitter.

Reset transmitter

| FastKeys | 1, 2, 1, 6 |

Restarts the transmitter - same as cycling power.

4.1.2 Loop test

| FastKeys | 1, 2, 2 |

Verifies the output of the flowmeter, the integrity of the loop, and the operation of any recorders or similar devices. Conduct the loop test after the flowmeter is installed in the field.

If the meter is located in a loop with a control system, the loop will have to be set to manual control before the loop test is performed.

Loop Test allows the device to be set to any output between the Low Alarm and High Alarm.

4.1.3 Pulse output test

| FastKeys | 1, 2, 3 |

A fixed frequency mode test that checks the integrity of the pulse loop. It tests that all connections are good and that the pulse output is running on the loop.
4.1.4 Flow simulation

Enables you to check the electronics functionality. This can be verified with either the Flow Simulation Internal or Flow Simulation External method. PV must be Volume Flow, Velocity Flow, or Mass Flow before Flow Simulation can be used.

PV

Shows the flow value in current engineering units for the flow simulation.

Shedding frequency

Shows the shedding frequency for the flow simulation.

Configure flow simulation

Allows you to configure your flow simulation (internal or external).

Simulate flow internal

When licensed, the simulate flow internal function will automatically electronically disconnect the sensor and enable you to configure the internal flow simulation (fixed or varying).

Fixed flow

The fixed flow simulation signal can be entered in either a percent of range or flow rate in current engineering units. This simulation locks the Vortex in to the specific flow rate entered.

Varying flow

The minimum and maximum flowrate can be entered in either percent of range or as a flow rate in current engineering units. The ramp time can be entered in seconds from a minimum of 0.6 seconds to a maximum of 34951 seconds. This simulation causes the Vortex meter to continuously ramp from the minimum entered rate to the maximum entered rate and back over the ramp time.

Simulate flow external

Allows you to disconnect the sensor electronically so an external frequency source can be used to test and verify the electronics.
Enable normal flow

| FastKeys | 1, 2, 4, 4 |

Allows you to exit the flow simulation mode (internal or external) and return to normal operation mode. Enabled Normal Flow must be activated after any simulation is run. Failure to enable normal flow will leave the Vortex in simulation mode.

Mode

| FastKeys | 1, 2, 4, 5 |

Allows you to view which flow simulation mode you are in:

- Internal (flow simulation – internal)
- Snsr Offln (flow simulation – external)
- Norm Flow (normal flow operation)

4.1.5 D/A trim (Digital-to-Analog Trim)

| FastKeys | 1, 2, 5 |

Enables you to check and trim the analog output in a single function. If the analog output is trimmed, it will be scaled proportionally through the range of the output.

To trim the digital-to-analog output, initiate the D/A Trim function and connect an ammeter to the loop to measure the actual analog output of the meter. Follow the on-screen functions to complete the task.

4.1.6 Scaled D/A trim

| FastKeys | 1, 2, 6 |

Enables you to calibrate the flowmeter analog output using a different scale than the standard 4-20 mA output scale. Non-scaled D/A Trimming (described above), is typically performed using an ammeter where calibration values are entered in units of milliamperes. Both non-scaled D/A trimming and scaled D/A trimming allow you to trim the 4-20mA output to approximately ±5% of the nominal 4mA end point and ±3% of the nominal 20mA end point. Scaled D/A Trimming allows you to trim the flowmeter using a scale that may be more convenient based upon your method of measurement.

For example, it may be more convenient for you to make current measurements by direct voltage readings across the loop resistor. If your loop resistor is 500 Ohms, and you want to calibrate the meter using voltage measurements made across this resistor, you could rescale (select CHANGE on the 375) your trim points from 4-20 mA to 4-20 mA x 500 ohm or 2-10 Vdc. Once your scaled trim points have been entered as 2 and 10, you can now calibrate your flowmeter by entering voltage measurements directly from the voltmeter.
4.1.7 Shed freq at URV

Gives the shedding frequency corresponding to your URV (URV = Upper Range Value). If the PV is Process Temperature, the Shedding Frequency at URV represents the shedding frequency of the Volumetric Flow URV. This can be set by assigning Volumetric Flow to PV and setting range values.

4.2 Advanced functionality

The Rosemount 8600D enables you to configure the flowmeter for a wider range of applications and special situations. These functions are grouped as follows under Detailed Set-Up:

4.3 Detailed set-up

- Characterize Meter
- Configure Outputs
- Signal Processing
- Device Information

4.3.1 Characterize meter

The meter body variables provide configuration data that are unique to your Rosemount 8600D. The settings of these variables can affect the compensated K-factor on which the primary variable is based. This data is provided during factory configuration and should not be changed unless the physical make-up of your Rosemount 8600D is changed.

K-factor

The Field Communicator provides information on Reference and Compensated K-factor values.

The Reference K-factor is factory set according to the actual K-factor for your application. It should only be changed if you replace parts of the flowmeter. Contact your Rosemount representative for details.

The Compensated K-factor is based on the reference K-factor as compensated for the given process temperature, wetted materials, body number, and pipe ID. Compensated K-factor is an informational variable that is calculated by the electronics of your flowmeter.
Mating pipe I.D.

| FastKeys | 1, 4, 1, 2 |

The inside diameter of the pipe adjacent to the flow meter can cause entrance effects that may alter flowmeter readings. The exact inside diameter of the pipe must be specified to correct for these effects. Enter the appropriate value for this variable.

Mating Pipe ID values for schedule 10, 40, 80, and 160 piping are given in Table 2-1 on page 16. If the piping in your application is not one of these, you may need to contact the manufacturer for exact Pipe ID.

Flange type

| FastKeys | 1, 4, 1, 3 |

Enables you to specify the type of flange on the flowmeter for later reference. This variable is preset at the factory but can be changed if necessary.

- ANSI 150
- ANSI 300
- PN16
- PN40
- Spcl

Wetted material

| FastKeys | 1, 4, 1, 4 |

A factory-set configuration variable that reflects the construction of your flowmeter.

- 316 SST
- Spcl

Meter body number

| FastKeys | 1, 4, 1, 5 |

A factory-set configuration variable that stores the body number of your particular flowmeter and the type of construction. The meter body number is found to the right of the body number on the meter body tag, which is attached to the bracket of the meter body.

The format of this variable is a number followed by an alpha character. The number designates the body number.

Installation effect

| FastKeys | 1, 4, 1, 6 |

Enables you to compensate the flowmeter for installation effects caused by less than ideal straight run piping. See reference graphs located in Technical Data Sheet 00816-0100-3250 for the percent of K-factor shift based on entrance effects of upstream disturbances. This value is entered as a percentage of the range of -1.5% to +1.5%.
4.3.2 Configure outputs

FastKeys 1, 4, 2

The Rosemount 8600D is digitally adjusted at the factory using precision equipment to ensure accuracy. You should be able to install and operate the flowmeter without a D/A Trim.

Analog output

FastKeys 1, 4, 2, 1

For maximum accuracy, calibrate the analog output and, if necessary, trim for your system loop. The D/A Trim procedure alters the conversion of the digital signal into an analog 4–20 mA output.

Range values

FastKeys 1, 4, 2, 1, 1

Enables you to maximize resolution of analog output. The meter is most accurate when operated within the expected flow ranges for your application. Setting the range to the limits of expected readings will maximize flowmeter performance.

The range of expected readings is defined by the Lower Range Value (LRV) and Upper Range Value (URV). Set the LRV and URV within the limits of flowmeter operation as defined by the line size and process material for your application. Values set outside that range will not be accepted.

Loop test

FastKeys 1, 4, 2, 1, 2

Verifies the output of the flowmeter, the integrity of the loop, and the operation of any recorders or similar devices. Conduct the loop test after the flowmeter is installed in the field. If the meter is located in a loop with a control system, the loop will have to be set to manual control before the loop test is performed.

Loop Test allows the device to be set to any output between the Low Alarm and High Alarm.

Alarm jumper

FastKeys 1, 4, 2, 1, 3

Allows you verify the alarm jumper setting.

D/A trim (Digital-to-Analog trim)

FastKeys 1, 4, 2, 1, 4

Enables you to check and trim the analog output in a single function. If the analog output is trimmed, it will be scaled proportionally through the range of the output. To trim the digital-to-analog output, initiate the D/A Trim function and connect an ammeter to the loop to measure the actual analog output of the meter. Follow the on-screen functions to complete the task.
Alarm level select

| FastKeys | 1, 4, 2, 1, 5 |

Allows you to select the alarm level of the transmitter. Either Rosemount standard or NAMUR compliant.

Alarm/sat levels

| FastKeys | 1, 4, 2, 1, 6 |

Displays alarm and saturation mA output levels.

Note

Alarm and saturation levels can be found in the specifications section.

Scaled D/A trim

| FastKeys | 1, 4, 2, 1, 7 |

enables you to calibrate the flowmeter analog output using a different scale than the standard 4-20 mA output scale. Non-scaled D/A Trimming (described above), is typically performed using an ammeter where calibration values are entered in units of milliamperes. Both non-scaled D/A trimming and scaled D/A trimming allow you to trim the 4-20mA output to approximately ±5% of the nominal 4mA end point and ±3% of the nominal 20mA end point. Scaled D/A Trimming allows you to trim the flowmeter using a scale that may be more convenient based upon your method of measurement.

For example, it may be more convenient for you to make current measurements by direct voltage readings across the loop resistor. If your loop resistor is 500 Ohms, and you want to calibrate the meter using voltage measurements made across this resistor, you could rescale your trim points from 4-20mA to 4-20mA x 500 ohm or 2-10 Vdc. Once your scaled trim points have been entered as 2 and 10, you can now calibrate your flowmeter by entering voltage measurements directly from the voltmeter.

Recall factory Trim

| FastKeys | 1, 4, 2, 1, 8 |

Enables you to return to the original factory trim values.

Pulse output

| FastKeys | 1, 4, 2, 2 |

Enables you to configure the Pulse Output.

Note

The Field Communicator will allow configuration of the pulse features even if the pulse option (Option P) was not ordered.
Pulse output

The Rosemount 8600D comes with an optional pulse output option (P). This enables the flowmeter to output the pulse rate to an external control system, totalizer, or other device. If the flowmeter was ordered with the pulse mode option, it may be configured for either pulse scaling (based on rate or unit) or shedding frequency output. There are four methods for configuring the pulse output:

- Off
- Direct (Shedding Frequency)
- Scaled Volume
- Scaled Velocity
- Scaled Mass

Direct (shedding frequency)

This mode provides the vortex shedding frequency as output. In this mode, the software does not compensate the K-factor for effects such as thermal expansion or differing mating pipe inside diameters. Scaled pulse mode must be used to compensate the K-factor for thermal expansion and mating pipe effects.

Scaled volume

Allows you to configure the pulse output based on a volumetric flow rate. For example, set 100 gallons per minute = 10,000 Hz. (The user enterable parameters are flow rate and frequency.)

Pulse scaling rate

 Allows the user to set a certain volume flow rate to a desired Frequency.

For example:

1. Enter a flow rate of 100 gallons per minute.
2. Enter a frequency of 10,000 Hz.

Pulse scaling unit

Allows the user to set one pulse equal to a desired volume.

For example:

1 pulse = 100 gal. Enter 100 for the Flow Rate.
Scaled velocity

| FastKeys | 1, 4, 2, 2, 1, 4 |

Allows you to configure the pulse output based on a velocity Flow Rate.

Pulse scaling rate

| FastKeys | 1, 4, 2, 2, 1, 4, 1 |

Allows the user to set a certain velocity flow rate to a desired frequency.

For example:

10 ft/sec = 10,000HZ

1. Enter a Flow rate of 10 ft/sec.
2. Enter a Frequency of 10,000HZ.

Pulse scaling unit

| FastKeys | 1, 4, 2, 2, 1, 4, 2 |

Allows the user to set one pulse equal to a desired distance.

For example:

1 pulse = 10 ft. Enter 10 for the distance.

Scaled mass

| FastKeys | 1, 4, 2, 2, 1, 5 |

Allows you to configure the pulse output based on a mass Flow Rate. If Process Fluid = Tcomp Sat Steam, this is a temperature compensated mass flow.

Pulse scaling rate

| FastKeys | 1, 4, 2, 2, 1, 5, 1 |

Allows the user to set a certain mass Flow Rate to a desired Frequency.

For example:

1000 lbs/hr = 1000HZ

1. Enter a Flow rate of 1000 lbs/hr.
2. Enter a Frequency of 1000HZ.
Pulse scaling unit

| FastKeys | 1, 4, 2, 2, 1, 5, 2 |

Allows the user to set one pulse equal to a desired mass.

For example:
1 pulse = 1000lbs.
Enter 1000 for the mass.

Pulse output test

| FastKeys | 1, 4, 2, 2, 2 |

A fixed frequency mode test that checks the integrity of the pulse loop. It tests that all connections are good and that pulse output is running on the loop.

HART output

| FastKeys | 1, 4, 2, 3 |

Refers to the connection of several flowmeters to a single communications transmission line. Communication occurs digitally between a HART-based communicator or control system and the flowmeters. Multidrop mode automatically deactivates the analog output of the flowmeters. Using the HART communications protocol, up to 15 transmitters can be connected on a single twisted pair of wires or over leased phone lines.

The use of a multidrop installation requires consideration of the update rate necessary from each transmitter, the combination of transmitter models, and the length of the transmission line. Multidrop installations are not recommended where intrinsic safety is a requirement. Communication with the transmitters can be accomplished with commercially available Bell 202 modems and a host implementing the HART protocol. Each transmitter is identified by a unique address (1-15) and responds to the commands defined in the HART protocol.

Figure 4-1 shows a typical multi-drop network. This figure is not intended as an installation diagram. Contact Rosemount product support with specific requirements for multi-drop applications.

Figure 4-1. Typical Multidrop Network
Note
The Rosemount 8600D is set to poll address zero at the factory, allowing it to operate in the standard point-to-point manner with a 4–20 mA output signal. To activate multidrop communication, the transmitter poll address must be changed to a number between 1 and 15. This change deactivates the 4–20 mA analog output, setting it to 4 mA, and disables the failure mode alarm signal.

Poll address

| FastKeys | 1, 4, 2, 3, 1 |

Enables you to set the poll address for a multi-dropped meter. The poll address is used to identify each meter on the multi-drop line. Follow the on-screen instructions to set the address at a number from 1 to 15. To set or change the flowmeter address, establish communication with the selected Rosemount 8600D in the loop.

Auto poll

| FastKeys | OFF LINE FCN |

When a HART-based communicator is powered up and auto polling is on, the communicator automatically polls the flowmeter addresses to which it is connected. If the address is 0, the HART-based communicator enters its normal online mode. If it detects an address other than 0, the communicator finds each device in the loop and lists them by poll address and tag. Scroll through the list and select the meter with which you need to communicate.

If Auto Poll is off, the flowmeter must have the poll address set to 0 or the flowmeter will not be found. If a single connected device has an address other than zero and auto polling is off, the device will not be found either.

Number of required preams

| FastKeys | 1, 4, 2, 3, 2 |

The number of preambles required by the 8600D for HART communications.

Number of response preams

| FastKeys | 1, 4, 2, 3, 3 |

The number of preambles sent by the transmitter in response to any host request.

Burst mode

| FastKeys | 1, 4, 2, 3, 4 |

Burst mode configuration

The Rosemount 8600D includes a burst mode function that broadcasts the primary variable or all dynamic variables approximately three to four times a second. The burst mode is a specialized function used in very specific applications. The burst mode function enables you to select the variables to broadcast while in the burst mode and to select the burst mode option.
The Burst Mode variable enables you to set the Burst Mode to the needs of your application. Options for the Burst Mode setting include:

Off—Turns off the Burst Mode so that no data are broadcast on the loop.

On—Turns Burst Mode on so that the data selected under Burst Option are broadcast over the loop.

Additional command options may appear that are reserved and do not apply to the Rosemount 8600D.

Burst option

| FastKeys | 1, 4, 2, 3, 5 |

Enables you to select the variables to broadcast over the burst transmitter. Choose one of the following options:

PV—Selects the process variable for broadcast over the burst transmitter.

Percent Range/Current—Selects the process variable as percent of range and analog output variables for broadcast over the burst transmitter.

Process vars/crnt—Selects the process variables and analog output variables for broadcast over the burst transmitter.

Dynamic Vars—Burst all dynamic variables in the transmitter.

Xmtr Vars—Allows the user to define custom burst variables. Select variables from the list below:

- Volume Flow
- Velocity Flow
- Mass Flow
- Vortex Frequency
- Pulse Output Frequency
- Totalizer Value
- Process Temperature (MTA Option Only)
- Calculated Process Density (MTA Option Only)
- Cold Junction Temperature (MTA Option Only)
- Electronics Temperature

Burst XMTR vars

| FastKeys | 1, 4, 2, 3, 6 |

Allows users to select and define Burst Variables.
XMTR variable slot 1

| FastKeys | 1, 4, 2, 3, 6, 1 |

User selected Burst Variable 1.

XMTR variable slot 2

| FastKeys | 1, 4, 2, 3, 6, 2 |

User selected Burst Variable 2.

XMTR variable slot 3

| FastKeys | 1, 4, 2, 3, 6, 3 |

User selected Burst Variable 3.

XMTR variable slot 4

| FastKeys | 1, 4, 2, 3, 6, 4 |

User selected Burst Variable 4.

Local display

| FastKeys | 1, 4, 2, 4 |

The Local Display function on the Rosemount 8600D allows you to select which variables are shown on the optional (M5) local display. Choose from the following variables:

- Primary Variable
- Loop Current
- Percent of Range
- Totalizer
- Shedding Frequency
- Mass Flow
- Velocity Flow
- Volumetric Flow
- Pulse Output Frequency
- Electronics Temperature
- Process Temperature (MTA Option Only)
- Calculated Process Density (MTA Option Only)
4.3.3 Signal processing

The Rosemount 8600D and its HART-based communications feature enable you to filter out noise and other frequencies from the transmitter signal. The four user-alterable parameters associated with the digital signal processing on the Rosemount 8600D include low-pass filter corner frequency, low-flow cutoff, trigger level, and damping. These four signal conditioning functions are configured at the factory for optimum filtering over the range of flow for a given line size and service type (liquid or gas). For most applications, leave these parameters at the factory settings. Some applications may require adjustment of the signal processing parameters.

Use signal processing only when recommended in the Troubleshooting section of this manual. Some of the problems that may require signal processing include:

- High output (output saturation)
- Erratic output with or without flow present
- Incorrect output (with known flow rate)
- No output or low output with flow present
- Low total (missing pulses)
- High total (extra pulses)

If one or more of these conditions exist, and you have checked other potential sources (K-factor, service type, lower and upper range values, 4–20mA trim, pulse scaling factor, process temperature, pipe ID), refer to Section 5: Troubleshooting. Remember that the factory default settings can be re-established at any time with Filter Restore. If problems persist after signal processing adjustments, consult the factory.

Optimize flow range

Automatically sets the 8600D filter levels, Low Flow Cutoff (LFC), Trigger Level, and Low Pass Corner Frequency, to optimum settings based on the process density and process fluid type.

Primary Variable (PV)

The actual measured variable rate in the line. On the bench, the PV value should be zero. Check the units on the PV to make sure they are configured correctly. See PV Units if the units format is not correct. Use the Process Variable Units function to select the units for your application.

Low flow cutoff

Shown in engineering units.
Signal/trigger level ratio (Sig/Tr)

A variable that indicates the flow signal strength to trigger level ratio. This ratio indicates if there is enough flow signal strength for the meter to work properly. For accurate flow measurement, the ratio should be greater than 4:1. Values greater than 4:1 will allow increased filtering for noisy applications. For ratios greater than 4:1, with sufficient density, the Auto Adjust Filter function can be utilized to optimize the measurable range of the flowmeter.

Ratios less than 4:1 may indicate applications with very low densities and/or applications with excessive filtering.

Auto adjust filter

A function that can be used to optimize the range of the flowmeter based on the density of the fluid. The electronics uses process density to calculate the minimum measurable flow rate, while retaining at least a 4:1 signal to the trigger level ratio. This function will also reset all of the filters to optimize the flowmeter performance over the new range. For a stronger signal select a density value that is lower than the actual flowing density.

Manual filter adjust

Allows you to manually adjust the following settings: Low Flow Cutoff, Low Pass Filter, and Trigger Level, while monitoring flow and or sig/tr.

Primary Variable (PV)

The actual measured variable. Check the units on the PV to make sure they are configured correctly. See PV Units if the units format is not correct. Use the Process Variable Units function to select the units for your application.

Signal/trigger level ratio (Sig/Tr)

A variable that indicates the flow signal strength to trigger level ratio. This ratio indicates if there is enough flow signal strength for the meter to work properly. For accurate flow measurement, the ratio should be greater than 4:1. Values greater than 4:1 will allow increased filtering for noisy applications. For ratios greater than 4:1, with sufficient density, the Optimize Flow Range function can be utilized to optimize the measurable range of the flowmeter.

Ratios less than 4:1 may indicate applications with very low densities and/or applications with excessive filtering.
Low flow cutoff

| FastKeys | 1, 4, 3, 2, 3 |

Enables you to adjust the filter for noise at no flow. It is set at the factory to handle most applications, but certain applications may require adjustment either to expand measurability or to reduce noise.

The Low Flow Cutoff offers two modes for adjustment:
- Increase Range
- Decrease No Flow Noise

It also includes a dead band such that once flow goes below the cutoff value, output does not return to the normal flow range until flow goes above the dead band. The dead band extends to approximately 20 percent above the low flow cutoff value. The dead band prevents the output from bouncing between 4mA and normal flow range if the flow rate is near the low flow cutoff value.

Low pass filter

| FastKeys | 1, 4, 3, 2, 4 |

Sets the low-pass filter corner frequency to minimize the effects of high frequency noise. It is factory set based on line size and service type. Adjustments may be required only if you are experiencing problems. See Section 5: Troubleshooting.

The Low Pass Filter corner frequency variable offers two modes for adjustment:
- Increase filtering
- Increase sensitivity

Trigger level

| FastKeys | 1, 4, 3, 2, 5 |

Configured to reject noise within the flow range while allowing normal amplitude variation of the vortex signal. Signals of amplitude lower than the Trigger Level setting are filtered out. The factory setting optimizes noise rejection in most applications. Trigger Level offers two modes for adjustment:
- Increase filtering
- Increase sensitivity

Note
Do not adjust this parameter unless directed to do so by a Rosemount Technical Support Representative.

Filter restore

| FastKeys | 1, 4, 3, 3 |

Enables you to return all of the signal conditioning variables to their default values. Should the filter settings get confused, select Filter Restore to restore the default settings and provide a new starting point.
Damping

Changes the response time of the flowmeter to smooth variations in output readings caused by rapid changes in input.

The appropriate damping setting can be determined based on the necessary response time, signal stability, and other requirements of the loop dynamics in your system.

PV damping

The default damping value is 2.0 seconds. Damping can be reset to any value between 0.2 and 255 seconds when PV is a flow variable or 0.4 to 32 seconds when PV is Process Temperature.

Flow damping

The default damping value is 2.0 seconds. Flow Damping can be reset to any value between 0.2 and 255 seconds.

Temperature damping

The default damping value is 2.0 seconds. Temperature Damping can be reset to any value between 0.4 and 32 seconds.

LFC response

Defines how the output of the Vortex meter will behave entering into and coming out of the Low Flow Cutoff. Options are stepped or damped. (See Technical Note 00840-0200-4004 for more information regarding Low Flow Measurement).

4.3.4 Device information

Information variables are used for identification of flowmeters in the field and to store information that may be useful in service situations. Information variables have no effect on flowmeter output or process variables.

Manufacturer

An informational variable provided by the factory. For the Rosemount 8600D, the Manufacturer is Rosemount.
Tag

| FastKeys | 1, 4, 4, 2 |

The quickest variable to identify and distinguish between flowmeters. Flowmeters can be tagged according to the requirements of your application. The tag may be up to eight characters long.

Descriptor

| FastKeys | 1, 4, 4, 3 |

A longer user-defined variable to assist with more specific identification of the particular flowmeter. It is usually used in multi-flowmeter environments and provides 16 characters.

Message

| FastKeys | 1, 4, 4, 4 |

Provides an even longer user-defined variable for identification and other purposes. It provides 32 characters of information and is stored with the other configuration data.

Date

| FastKeys | 1, 4, 4, 5 |

A user-defined variable that provides a place to save a date, typically used to store the last date that the transmitter configuration was changed.

Write protect

| FastKeys | 1, 4, 4, 6 |

A read-only informational variable that reflects the setting of the hardware security switch. If Write Protect is ON, configuration data are protected and cannot be changed from a HART-based communicator or control system. If Write Protect is OFF, configuration data may be changed using the communicator or control system.

Transmitter options

| FastKeys | 1, 4, 4, 7 |

Indicates if Internal Flow Simulation option is enabled.

Revision numbers

| FastKeys | 1, 4, 4, 8 |

Fixed informational variables that provide the revision number for different elements of your Field Communicator and Rosemount 8600D. These revision numbers may be required when calling the factory for support. Revision numbers can only be changed at the factory and are provided for the following elements:
Universal rev

| FastKeys | 1, 4, 4, 8, 1 |

Designates the HART Universal Command specification to which the transmitter is designed to conform.

Transmitter rev

| FastKeys | 1, 4, 4, 8, 2 |

Designates the revision for Rosemount 8600D specific command identification for HART compatibility.

Software rev

| FastKeys | 1, 4, 4, 8, 3 |

Designates the internal software revision level for the Rosemount 8600D.

Hardware rev

| FastKeys | 1, 4, 4, 8, 4 |

Designates the revision level for the Rosemount 8600D hardware.

Final assembly number

| FastKeys | 1, 4, 4, 8, 5 |

Factory-set number that refers to the electronics of your flowmeter. The number is configured into the flowmeter for later reference.

Device ID

| FastKeys | 1, 4, 4, 8, 6 |

Factory-defined unique identifier for transmitter identification in the software. Device ID is not user changeable.
Section 5 Troubleshooting

Safety messages ... page 67
Troubleshooting tables .. page 68
Advanced troubleshooting ... page 69
Diagnostic messages on LCD ... page 73
Testing procedures .. page 75
Hardware replacement ... page 75
Return of material ... page 88

“Troubleshooting tables” on page 68 provides summarized troubleshooting suggestions for the most common problems that occur during operation. The symptoms of metering problems include:

- Communications problems with a HART-based communicator
- Incorrect 4–20 mA output
- Incorrect pulse output
- Error messages on HART-based communicator
- Flow in pipe but no transmitter output
- Flow in pipe with incorrect transmitter output
- Output with no actual flow

Note
The Rosemount 8600D sensor is extremely reliable and should not have to be replaced. Consult the factory before removing the sensor.

5.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Please refer to the following safety messages before performing any in this section.
5.2 Troubleshooting tables

The most common problems experienced by users of the Rosemount 8600D are listed in “Troubleshooting tables” on page 68 along with potential causes of the problem and suggested corrective actions. See the Advanced Troubleshooting section if the problem you are experiencing is not listed here.

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Corrective action</th>
</tr>
</thead>
</table>
| Communication problems with HART-based Communicator | • Check for a minimum of 10.8 Vdc at transmitter terminals.
• Check communications loop with HART-based communicator.
• Check for loop resistor (250 to 1000 ohms).
• Measure loop resistor value (R_{loop}) and source power supply voltage (V_{ps}). Check that $[V_{ps} - (R_{loop} \times 0.024)] > 10.8$ Vdc.
• Check for transmitter in multidrop mode.
• Check for transmitter in burst mode.
• Remove pulse connection if you have a three wire pulse installation.
• Replace electronics. |
| Incorrect 4–20 mA Output | • Check for minimum 10.8 Vdc at transmitter terminals.
• Check URV, LRV, Density, Special Units, LFC–compare these inputs with the sizing program results. Correct configuration.
• Perform 4–20 mA loop test.
• Check for corrosion on terminal block.
• Replace electronics if necessary.
• Refer to “Advanced troubleshooting” on page 69.
• See Appendix Appendix C Electronics Verification for electronics verification procedure. |
| Incorrect Pulse Output | • Check that 4–20 mA output is correct.
• Check pulse counter specifications.
• Check pulse mode and scaling factor. (Make sure scaling factor is not inverted).
• Perform pulse test.
• Select pulse scaling so that pulse output is less than 10,000Hz at URV. |
| Error Messages on HART-based Communicator | • See alphabetical listing in Table 5-1 on page 69. “Diagnostic messages” on page 69. |
5.3 Advanced troubleshooting

The Rosemount 8600D electronics provides several advanced troubleshooting features. These features enhance your ability to look inside the electronics and can be helpful for troubleshooting inaccurate readings. As shown in Figure 5-1, there are several test points located on the electronics.

5.3.1 Diagnostic messages

The following is a list of messages used by the Field Communicator and their corresponding descriptions.

<table>
<thead>
<tr>
<th>Message</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROM CHECKSUM ERROR</td>
<td>The EPROM memory checksum test has failed. The transmitter will remain in ALARM until the ROM checksum test passes.</td>
</tr>
<tr>
<td>NV MEM CHECKSUM ERROR</td>
<td>The User Configuration area in Nonvolatile EEPROM memory has failed the checksum test. It is possible to repair this checksum by verifying and reconfiguring ALL transmitter parameters. The transmitter will remain in ALARM until the EEPROM checksum test passes.</td>
</tr>
<tr>
<td>RAM TEST ERROR</td>
<td>Transmitter RAM memory test has detected a failed RAM location. The transmitter will remain in ALARM until the RAM test passes.</td>
</tr>
<tr>
<td>Message</td>
<td>Description</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DIGITAL FILTER ERROR</td>
<td>The digital filter in the transmitter electronics is not reporting. The transmitter will remain in ALARM until the digital signal processor resumes reporting flow data.</td>
</tr>
<tr>
<td>COPROCESSOR ERROR</td>
<td>If this occurs at power-up, the RAM/ROM test in the coprocessor has failed. If this occurs during normal operations, the coprocessor has reported either a math error or a negative flow. This is a FATAL error and the transmitter will remain in ALARM until reset.</td>
</tr>
<tr>
<td>SOFTWARE DETECTED ERROR</td>
<td>The software has detected corrupted memory. One or more of the software tasks has corrupted memory. This is a FATAL error and the transmitter will remain in ALARM until reset.</td>
</tr>
<tr>
<td>ELECTRONICS FAILURE</td>
<td>This is a summary error indication. This error will be reported if any of the following error conditions are present: 1. ROM Checksum Error 2. NV Memory Checksum Error 3. RAM Test Error 4. ASIC Interrupt Error 5. Digital Filter Error 6. Coprocessor Error 7. Software Detected Error</td>
</tr>
<tr>
<td>TRIGGER LEVEL OVERRANGE</td>
<td>The trigger level in the transmitter digital signal processing has been set beyond its limit. Use manual filter adjustment to “Increase Filtering” or “Increase Sensitivity” to bring the trigger level back within range.</td>
</tr>
<tr>
<td>LOW PASS FILT OVERRANGE</td>
<td>The low pass filter in the transmitter digital signal processing has been set beyond its limit. Use manual filter adjustment to “Increase Filtering” or “Increase Sensitivity” to bring the low pass filter adjustment back within range.</td>
</tr>
<tr>
<td>ELECTRONICS TEMP OUT OF LIMITS</td>
<td>The electronics temperature sensor within the transmitter is reporting a value out of range.</td>
</tr>
<tr>
<td>INVALID CONFIGURATION</td>
<td>Certain configuration parameters are out of range. Either they have not been properly configured, or they have been forced out of range as a result of a change to a related parameter. For example: When using mass flow units, changing the process density to a value too low could push the configured Upper Range Value beyond the sensor limit. In this case, the Upper Range Value would need to be reconfigured.</td>
</tr>
<tr>
<td>FACTORY EEPROM CONFIG ERROR</td>
<td>The factory configured values in non-volatile EEPROM memory have become corrupted. This is a FATAL error. The transmitter will remain in ALARM until reset.</td>
</tr>
<tr>
<td>LOW FLOW CUTOFF OVERRANGE</td>
<td>On start-up, the configured setting for the VDSP Low Flow Cutoff setting was found to be too high or too low. The increase range or decrease no flow command of the VDSP Low Flow Cutoff setting has not yet brought the setting into a valid range. Continue adjusting the Low Flow Cutoff to a valid value or use the Filter Restore Option.</td>
</tr>
<tr>
<td>T/C A/D ERROR</td>
<td>The ASIC responsible for the analog to digital conversion of the process temperature thermocouple and cold junction RTD has failed. If the problem persists, replace the transmitter electronics.</td>
</tr>
<tr>
<td>THERMOCOUPLE OPEN</td>
<td>The thermocouple that is used to measure the process temperature has failed. Check the connections to the transmitter electronics. If the problem persists, replace the thermocouple.</td>
</tr>
<tr>
<td>CJ RTD FAILURE</td>
<td>The RTD temperature sensing device for sensing the cold junction temperature has failed. If the problem persists, replace the transmitter electronics.</td>
</tr>
<tr>
<td>FLOW SIMULATION</td>
<td>The transmitter flow signal is being simulated by a signal generator internal to the transmitter. The actual flow through the meter body is NOT being measured.</td>
</tr>
<tr>
<td>SENSOR SIGNAL IGNORED</td>
<td>The transmitter flow signal is being simulated by a signal generator external to the transmitter. The actual flow through the meter body is NOT being measured.</td>
</tr>
<tr>
<td>LOW LOOP VOLTAGE</td>
<td>The voltage at the transmitter terminals has dropped to a level that is causing the internal voltage supplies to drop, reducing the capability of the transmitter to accurately measure a flow signal. Check the terminal voltage and either increase the power supply voltage or reduce loop resistance.</td>
</tr>
<tr>
<td>INTERNAL COMM FAULT</td>
<td>After several attempts, the microprocessor failed in communication with the Sigma-Delta ASIC. A power cycle may resolve the problem. Also, check the inter-board connector. If the problem persists, replace the transmitter electronics.</td>
</tr>
</tbody>
</table>
5.3.2 Electronics test points

As shown in Figure 5-1, there are several test points located on the electronics.

Figure 5-1. Electronics Test Points

![Electronics Test Points Diagram]

- **A. Ground**
- **B. Test freq IN**
- **C. TP1**
The electronics is capable of internally generating a flow signal that may be used to simulate a sensor signal to perform electronics verification with a Handheld Communicator or AMS interface.

The simulated signal amplitude is based on the transmitter required minimum process density. The signal being simulated can be one of several profiles—a simulated signal of constant frequency or a simulated signal representative of a ramping flow rate. The electronics verification procedure is described in detail in Appendix C: Electronics Verification.

To verify the electronics, you can input a frequency on the “TEST FREQ IN” and “GROUND” pins to simulate flow via an external signal source such as a frequency generator. To analyze and/or troubleshoot the electronics, an oscilloscope (set for AC coupling) and a Handheld Communicator or AMS interface are required. Figure 5-2 is a block diagram of the signal as it flows from the sensor to the microprocessor in the electronics.

Figure 5-2. Signal Flow

![Signal Flow Diagram]

5.3.3 TP1

TP1 is the vortex shedding signal after it has gone through the charge amplifier and low pass filter stages and into the input of the sigma delta A-to-D converter ASIC in the electronics. The signal strength at this point will be in the mV to Volt range.

TP1 is easily measured with standard equipment.

Figures 5-3, 5-4, and 5-5 show ideal (clean) waveforms and waveforms that may cause the output to be inaccurate. Please consult the factory if the waveform you detect is not similar in principle to these waveforms.

Figure 5-3. Clean Signals

![Clean Signals Diagram]

A. Vortex signal (TP1)
5.4 Diagnostic messages on LCD

In addition to the output, the LCD indicator displays diagnostic messages for troubleshooting the flowmeter. These messages are as follows:

SELFTEST

The flowmeter is in the process of performing an electronics self test.
FAULT_ROM

The flowmeter electronics has undergone an EPROM checksum fault. Contact your Field Service Center.

FAULT_EEROM

The flowmeter electronics has undergone an EEPROM checksum fault. Contact your Field Service Center.

FAULT_RAM

The flowmeter electronics has undergone a RAM test fault. Contact your Field Service Center.

FAULTASIC

The flowmeter electronics has undergone a digital signal processing ASIC update fault. Contact your Field Service Center.

FAULT_CONFIG

The flowmeter electronics has lost critical configuration parameters. This message will be followed by information detailing the missing configuration parameters. Contact your Field Service Center.

FAULT_COPRO

The flowmeter electronics has detected a fault in the math coprocessor. Contact your Field Service Center.

FAULT_SFTWR

The flowmeter electronics has detected a non-recoverable fault in the software operation. Contact your Field Service Center.

FAULT_LOOPV

The flowmeter electronics has detected insufficient voltage to power the sensor board. Most likely the cause is low voltage at transmitter 4–20 mA terminals. Contact your Field Service Center.

FAULT_SDCOM

The flowmeter electronics has detected an unexpected sigma-delta ASIC communications fault. Contact your Field Service Center.

FAULT_SDPLS

The flowmeter electronics has detected a loss of flow data from the sigma-delta ASIC. Contact your Field Service Center.
FAULT_COEFF

The area of NV memory used to store the curve fit coefficients for the coprocessor calculation does not contain valid date. This date can only be loaded at the factory. Contact your Field Service Center.

FAULT_TACO (MTA option only)

The ASIC responsible for the analog to digital conversion of the process temperature has failed. Contact your Field Service Center.

FAULT_TC (MTA option only)

The temperature sensor that is used to measure the process temperature has failed. Contact your Field Service Center.

FAULT_RTD (MTA option only)

The RTD for cold junction compensation has failed. Contact your Field Service Center.

SIGNAL_SIMUL

The transmitter flow signal is being simulated by a signal generator internal to the transmitter. The actual flow through the meter body is NOT being measured.

SENSOR_OFFLINE

The transmitter flow signal is being simulated by a signal generator external to the transmitter. The actual flow through the meter body is NOT being measured.

FAULT_LOOPV

The voltage at the transmitter terminals has dropped to a level that is causing the internal voltage supplies to drop, reducing the capability of the transmitter to accurately measure a flow signal. Check the terminal voltage and either increase the power supply voltage or reduce loop resistance.

5.5 Testing procedures

Use the test functions to verify that the flowmeter is functioning properly, or when you suspect component failure or a problem with loop performance, or when instructed to do so as part of a troubleshooting procedure. Initiate each test with a HART-based communications device. See “Diagnostics/service” on page 47 for details.

5.6 Hardware replacement

The following procedures will help you disassemble and assemble the Rosemount 8600D hardware if you have followed the troubleshooting guide earlier in this section of the manual and determined that hardware components need to be replaced.
5.6.1 Replacing the terminal block in the housing

To replace the Field Terminal Block in the housing, you will need a small screwdriver. Use the following procedure to replace the terminal block in the housing of the Rosemount 8600D.

- **Note**: Remove power before removing the electronics cover.

Remove the terminal block

1. Turn off the power to the Rosemount 8600D.
2. Unscrew the cover.

Figure 5-6. Terminal Block Assembly

A. Cover
B. O-ring
C. Terminal block
D. Captive screws (3x)

3. Disconnect the wires from the field terminals. Be sure to secure them out of the way.
4. Remove the ground screw if transient protection (Option T1) is installed.
5. Loosen the three captive screws.
6. Pull outward on the terminal block to remove it from the housing.

Install the terminal block

1. Align the socketed holes on the back side of the terminal block over the pins protruding from the bottom of the housing cavity in the terminal block side of the electronics housing.
2. Slowly press the terminal block into place. Do not force the block into the housing. Check the screw alignment if it does not glide into place.
3. Tighten the three captive screws to anchor the terminal block.
4. Connect the wires to the appropriate field terminals.
5. Reinstall and tighten the transient ground screw if you have the transient option (Option T1).
6. Screw on and tighten the cover.

5.6.2 Replacing the electronics boards

The Rosemount 8600D electronics boards may need to be replaced if they have been damaged or otherwise become dysfunctional. Use the following procedures to replace electronics boards in the Rosemount 8600D. You will need a small Phillips head screwdriver and pliers.

Note
The electronics boards are electrostatically sensitive. Be sure to observe handling precautions for static-sensitive components.

Note
Remove power before removing the electronics cover.

Remove the electronics boards

1. Turn off the power to the Rosemount 8600D.
2. Unscrew and remove the electronics board compartment cover. (Unscrew and remove the LCD cover if you have the LCD option).

⚠️ See Safety Messages on page 67 for complete warning.
A. Electronics boards

3. If the meter has the LCD indicator option, loosen the two screws. Remove the LCD and the connector from the electronics board.

4. Loosen the three captive screws that anchor the electronics.

5. Use pliers or a flathead screwdriver to carefully remove the sensor cable clip from the electronics.

6. Remove thermocouple if MTA option installed.

7. Use the handle molded into the black plastic cover to slowly pull the electronics boards out of the housing.
Install the electronics boards

1. Verify that power to the Rosemount 8600D is off.
2. Align the sockets on the bottom of the two electronics boards over the pins protruding from the bottom of the housing cavity.
3. Carefully guide the sensor cable through the notches on the edge of the circuit boards.
4. Slowly press the boards into place. Do not force the boards down. Check the alignment if they do not glide into place.
5. Carefully insert sensor cable clip into electronics board.
6. Tighten the three captive screws to anchor the two electronics boards. Ensure that the SST washer is under the screw in the 2 o’clock position.
7. Reinsert jumpers into proper location.
8. If the meter has LCD option, insert the connector header into the LCD board.
 a. Remove jumpers from the electronics board.
 b. Put the connector through the bezel on the electronics board.
 c. Carefully press the LCD onto the electronics board.
 d. Tighten the two screws that retain the LCD indicator.
 e. Insert the alarm and security jumpers in the correct location.
9. Replace the electronics board compartment cover.

5.6.3 Replacing the electronics housing

The Rosemount 8600D electronics housing can be replaced easily when necessary. Use the following procedure:

Tools needed
- \(\frac{3}{32} \)-in. (4 mm) hex wrench
- \(\frac{5}{16} \)-in. (8 mm) open end wrench
- Screwdriver to disconnect wires
- Tools to disconnect conduit

Note
Remove power before removing the electronics housing.

Remove the electronics housing

1. Turn off the power to the Rosemount 8600D.
2. Remove the terminal block side cover.
3. Disconnect the wires and conduit from the housing.

⚠️ See Safety Messages on page 67 for complete warning.
4. Use a 5/32-in. (4 mm) hex wrench to loosen the housing rotation screws (at the base of the electronics housing) by turning screws clockwise (inward) until they clear the bracket.

5. Slowly pull the electronics housing no more than 1.5-in. (40 mm) from the top of the bracket.

6. Loosen the sensor cable nut from the housing with a 5/16-in. (8 mm) open end wrench.

Note
Lift the electronics housing until the sensor cable nut is exposed. Do not pull the housing more than 1.5-in. (40 mm) from the top of the bracket. Damage to the sensor may occur if this sensor cable is stressed.

Install the electronics housing

1. Verify that power to the Rosemount 8600D is off.
2. Screw the sensor cable nut onto the base of the housing.
3. Tighten the sensor cable nut with a 5/16-in. (8 mm) open end wrench.
4. Place the electronics housing into the top of the bracket.
5. Tighten the housing rotation screws with a hex 5/32-in. (4 mm) wrench.
6. Place the access cover on the bracket (if applicable).
7. Tighten the screw on the access cover.
8. Connect conduit and wires.
9. Replace the terminal block cover.
10. Apply power.

5.6.4 Replacing the sensor

The sensor for the Rosemount 8600D is a sensitive instrument that should not be removed unless there is a problem with it. If you must replace the sensor, follow these procedures closely. Please consult the factory before removing the sensor.

Note
Be sure to fully check all other troubleshooting possibilities before removing the sensor.

Note that the sensor is a complete assembly and cannot be further disassembled.
Tools needed
- 5/32-in. (4 mm) hex wrench
- 5/16-in. (8 mm) open end wrench
- 5 mm hex wrench
- Suction or compressed air device
- Small, soft bristle brush
- Cotton swabs
- Appropriate cleaning liquid: water or cleaning agent

1. De-pressurize the flow line.
2. Remove the electronics housing (see “Replacing the electronics housing” on page 79).

Removable bracket

3. Loosen the four bracket anchor bolts with a 5 mm hex wrench (See Figure 5-8).

Figure 5-8. Removable Bracket Assembly

A. Bracket anchor bolts
B. Sensor bolts

4. Remove the bracket.
5. Loosen Sensor bolts with 5 mm hex wrench.
6. Remove sensor bolts, sensor, and gasket.
Cleaning the sealing surface

Before installing a sensor in the meter body, clean the sealing surface by completing the following procedure. The gaskets around the sensor are used to seal in the process fluid.

1. Use a suction or compressed air device to remove any loose particles from the sealing surface and other adjacent areas in the sensor.

Note
Do not scratch or deform any part of the sensor.

2. Carefully brush the sealing surface clean with a soft bristle brush.

3. Moisten a cotton swab with an appropriate cleaning liquid.

4. Wipe the sealing surface. Repeat several times if necessary with a clean cotton swab until there is minimal dirt residue picked up by the cotton swab.

Figure 5-9. Sensor Sealing Surface

A. Sealing surface

5. Place new gasket on sealing surface.

6. Place new sensor on gasket.

7. Screw the sensor assembly in place. Tighten the bolts, in a crosswise sequence, with a 5 mm hex wrench to 70.8 in-lb (8 N-m).

8. Place the bracket into position.
9. Tighten the four bolts that anchor the bracket in place with a 5 mm hex wrench.

10. Install the flowmeter electronics housing. See “Replacing the electronics housing” on page 79.

5.6.5 Remote electronics procedure

If the Rosemount 8600D electronics housing is mounted remotely, some replacement procedures are different than for the flowmeter with integral electronics. The following procedures are exactly the same:

- Replacing the Terminal Block in the Housing (see page 76).
- Replacing the Electronics Boards (see page 77).
- Replacing the Sensor (see page 80).

To disconnect the coaxial cable from the meter body and electronics housing, follow the instructions below.

Disconnect the coaxial cable at the meter

1. Remove the access cover on the meter body bracket if present.

2. Loosen the three housing rotation screws at the base of the meter adapter with a 5/32-in. hex wrench by turning the screws clockwise (inward) until they clear the bracket.

3. Slowly pull the meter adapter no more than 1.5-in. (40 mm) from the top of the bracket.

4. Loosen and disconnect the sensor cable nut from the union using a 3/16-in. open end wrench.

Note

Do not pull the adapter more than 1.5-in. (40 mm) from the top of the bracket. Damage to the sensor may occur if the sensor cable is stressed.
Detach the meter adapter

The above instructions will provide access to the meter body. Use the following steps if it is necessary to remove the coaxial cable:

1. Loosen and remove the two screws that hold the union onto the meter adapter and pull the union away from the adapter.
2. Loosen and remove the sensor cable nut from the other end of the union.

3. Loosen and disconnect the conduit adapter or cable gland from the meter adapter.

Attach the meter adapter

1. If you are using a conduit adapter or cable gland, slide it over the plain end of the coaxial cable (the end without a ground wire).

2. Slide the meter adapter over the coaxial cable end.

3. Use a 5/16-in. (8 mm) open end wrench to securely tighten the sensor cable nut onto one end of the union.

4. Place the union onto the two screws extending out of the meter adapter and tighten the two screws.

Connect the coaxial cable at the meter body

1. Pull the sensor cable out of the bracket slightly and securely tighten the sensor cable nut onto the union.

Note

Do not stretch the sensor cable over 1.5-in. (40 mm) beyond the top of the bracket. Damage to the sensor may occur if the sensor cable is stressed.

2. Place the meter adapter into the top of the bracket and line up the screw holes.

3. Use a hex wrench to turn the three adapter screws counterclockwise (outward) to engage the bracket.

4. Tighten the conduit adapter or cable gland into the meter adapter.

5.6.6 Coaxial cable at the electronics housing

Remove the coaxial cable from the electronics housing

1. Loosen the two housing screws from the housing adapter.

2. Remove the housing adapter from the housing.

3. Loosen and remove the coaxial cable nut from the base of the electronics housing.

4. Remove the coaxial cable ground connection from the housing base by loosening the housing base screw that is connecting it to the housing base.
5. Loosen the conduit adapter (or cable gland) from the housing adapter.

Attach the coaxial cable

1. Route the coaxial cable through the conduit (if you are using conduit).
2. Place a conduit adapter over the end of the coaxial cable.
3. Remove the housing adapter from the electronics housing (if attached).
4. Slide the housing adapter over the coaxial cable.
5. Remove one of the four housing base screws that is in closest proximity to the ground connection.
6. Re-install the housing base screw by passing it through the ground connection.
7. Attach and securely tighten the coaxial cable nut to the connection on the electronics housing.
8. Align the housing adapter with the housing base and attach with the two housing adapter screws.

9. Tighten the conduit adapter to the housing adapter.

5.6.7 Changing the housing orientation

The entire electronics housing may be rotated in 90 degree increments for easy viewing. Use the following steps to change the housing orientation:

1. Loosen the screw on the access cover on the bracket (if present) and remove the cover.

2. Loosen the three housing rotation set screws at the base of the electronics housing with a 5/32-in. (4 mm) hex wrench by turning the screws clockwise (inward) until they clear the bracket.

3. Slowly pull the electronics housing out of the bracket.

4. Unscrew the sensor cable from the housing with a 5/16-in. open end wrench.

Note
Do not pull the housing more than 1.5-in. (40 mm) from the top of the bracket until the sensor cable is disconnected. Damage to the sensor may occur if this sensor cable is stressed.

5. Rotate the housing to the desired orientation.

6. Hold it in this orientation while you screw the sensor cable onto the base of the housing.

Note
Do not rotate the housing while the sensor cable is attached to the base of the housing. This will stress the cable and may damage the sensor.

7. Place the electronics housing into the top of the bracket.

8. Use a hex wrench to turn the four housing rotation screws counterclockwise to engage the bracket.

5.6.8 Temperature sensor replacement (MTA option only)

Replacement of the temperature sensor should only be necessary in the event of a failure. Use the following procedure for replacement.

Note
Disconnect power before replacing temperature sensor.

1. Turn off power to Rosemount 8600D.

2. Remove temperature sensor from meter body by using a 1/2-in. open end wrench. Refer to the procedure on page 81 to remove the bracket.
3. Remove temperature sensor from electronics by using a 2.5 mm allen wrench to remove cap head screw from electronics.

4. Gently pull temperature sensor from electronics.

Note
Use plant approved procedure for removing a temperature sensor from a thermowell.

5. Insert new temperature sensor into electronics housing using care to align pin and cap head screw to align connector pins.

6. Tightening cap head screw with 2.5 mm allen wrench.

7. Slide bolt and ferrule assembly onto temperature sensor and hold into place.

8. Insert temperature sensor into hole in the top of meter body until it reaches the bottom of the hole. Hold it in place and tighten bolt with ½-in. open end wrench until ¼ turns past finger tight to seat ferrule.

9. Put the bracket back on, attach the four bolts, and tighten.

10. Reapply power to Rosemount 8600D.

5.7 Return of material

To expedite the return process, call the Rosemount North American Response Center at 800-654-RSMT (7768) toll-free number. This center, available 24 hours a day, will assist you with any needed information or materials.

The center will ask for product model and serial numbers, and will provide a Return Material Authorization (RMA) number. The center will also ask for the name of the process material to which the product was last exposed.

Caution
People who handle products exposed to a hazardous substance can avoid injury if they are informed and understand the hazard. If the product being returned was exposed to a hazardous substance as defined by OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous substance identified must be included with the returned goods.

The Rosemount North American Response Center will detail the additional information and procedures necessary to return goods exposed to hazardous substances.
Appendix A Specifications and Reference Data

A.1 Specifications

The following specifications are for the Rosemount 8600D except where noted.

A.2 Functional specifications

Process fluids

Liquid, gas, and steam applications. Fluids must be homogeneous and single-phase.

Line sizes

Flanged style

1, 1½, 2, 3, 4, 6, and 8 inches (DN 25, 40, 50, 80, 100, 150, and 200)

Pipe schedules

Process piping Schedules 10, 40, 80, and 160.

Note

The appropriate bore diameter of the process piping must be entered using the Field Communicator or AMS Device Manager. Meters will be shipped from the factory at the Schedule 40 default value unless otherwise specified.

Measurable flow rates

Capable of processing signals from flow applications which meet the sizing requirements below.

To determine the appropriate flowmeter size for an application, process conditions must be within the Reynolds number and velocity limitations for the desired line size provided in Table A-1, Table A-2, and Table A-3.

Note

Consult your local sales representative to obtain a computer sizing program that describes in greater detail how to specify the correct flowmeter size for an application.

The Reynolds number equation shown below combines the effects of density (ρ), viscosity (μ_{cp}), pipe inside diameter (D), and flow velocity (V).

$$R_D = \frac{VD\rho}{\mu_{cp}}$$

Table A-1. Minimum Measurable Meter Reynolds Numbers

<table>
<thead>
<tr>
<th>Meter Sizes (Inches / DN)</th>
<th>Reynolds Number Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 through 4/25 through 100</td>
<td>5000 minimum</td>
</tr>
<tr>
<td>6 through 8/150 through 200</td>
<td></td>
</tr>
</tbody>
</table>

Table A-2. Minimum Measurable Meter Velocities$^{(1)}$

<table>
<thead>
<tr>
<th></th>
<th>Feet per Second</th>
<th>Meters per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquids</td>
<td>$\frac{36}{\rho}$</td>
<td>$\frac{54}{\rho}$</td>
</tr>
<tr>
<td>Gases</td>
<td>$\frac{454}{\rho}$</td>
<td>$\frac{54}{\rho}$</td>
</tr>
</tbody>
</table>

The ρ is the process fluid density at flowing conditions in lb/ft3 for ft/s and kg/m3 for m/s.

1. Velocities are referenced to schedule 40 pipe.
Specifications and Reference Data

October 2016

Reference Manual
00809-0100-4860, Rev BD

Table A-3. Maximum Measurable Meter Velocities(1)
(Use the smaller of the two values)

<table>
<thead>
<tr>
<th></th>
<th>Feet per Second</th>
<th>Meters per Second</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquids</td>
<td>80,000/ρ or 25</td>
<td>14,340,000/ρ or 7.6</td>
</tr>
<tr>
<td>Gases</td>
<td>80,000/ρ or 250</td>
<td>14,340,000/ρ or 76</td>
</tr>
</tbody>
</table>

The ρ is the process fluid density at flowing conditions in lb/ft³ for ft/s and kg/m³ for m/s

1. Velocities are referenced to schedule 40 pipe.

Process temperature limits

Standard
-58 to 482 °F (–50 to 250 °C)

Output signals

4–20 mA digital HART signal
Superimposed on 4–20 mA signal

Optional scalable pulse output
0 to 10000 Hz; transistor switch closure with adjustable scaling via HART communications; capable of switching up to 30 Vdc, 120 mA maximum.

Analog output adjustment

Engineering units and lower and upper range values are user-selected. Output is automatically scaled to provide 4 mA at the selected lower range value, 20 mA at the selected upper range value. No frequency input is required to adjust the range values.

Scalable frequency adjustment

The scalable pulse output can be set to a specific velocity, volume, or mass (i.e. 1 pulse = 1 lb). The scalable pulse output can also be scaled to a specific rate of volume, mass, or velocity (i.e. 100 Hz = 500 lb/hr).

Ambient temperature limits

Operating
-58 to 185 °F (–50 to 85 °C)
-4 to 185 °F (–20 to 85 °C) for flowmeters with local indicator

Storage
-58 to 250 °F (–50 to 121 °C)
-50 to 185 °F (–46 to 85 °C) for flowmeters with local indicator

Pressure limits

Flange style meter
Rated for ASME B16.5 (ANSI) Class 150, 300, EN 1092 PN 16, 40, and 63

Power supply

HART analog
External power supply required. Flowmeter operates on 10.8 to 42 Vdc terminal voltage (with 250-ohm minimum load required for HART communications, 16.8 Vdc power supply is required)

Power consumption

One watt maximum

Load limitations (HART analog)

Maximum loop resistance is determined by the voltage level of the external power supply, as described by:

\[
R_{\text{max}} = 41.7(V_{ps} - 10.8)
\]

\[
V_{ps} = \text{Power Supply Voltage (Volts)}
\]

\[
R_{\text{max}} = \text{Maximum Loop Resistance (Ohms)}
\]

Note

HART Communication requires a minimum loop resistance of 250 ohms.
Optional LCD Indicator

The optional LCD indicator is capable of displaying:

- Primary Variable
- Velocity Flow
- Volumetric Flow
- Mass Flow
- Percent of Range
- Analog Output
- Totalizer
- Shedding Frequency
- Pulse Output Frequency (if applicable)
- Electronics Temperature
- Process Temperature (MTA Option Only)
- Calculated Process Density (MTA Option Only)

If more than one item is selected, the display will scroll through all items selected.

Enclosure rating

FM Type 4X; IP66

Permanent pressure loss

The approximate permanent pressure loss (PPL) from the Rosemount 8600D flowmeter is calculated for each application in the Vortex sizing software available from your local Rosemount representative. The PPL is determined using the equation:

\[
PPL = \frac{A \times \rho_f \times Q^2}{D^4}
\]

where:
- \(PPL \) = Permanent Pressure loss (psi or kPa)
- \(\rho_f \) = Density at operating conditions (lb/ft\(^3\) or kg/m\(^3\))
- \(Q \) = Actual volumetric flow rate (Gas = ft\(^3\)/min or m\(^3\)/hr; Liquid = gal/min or l/min)
- \(D \) = Flowmeter bore diameter (in. or mm)
- \(A \) = Constant depending on meter style, fluid type and flow units. Determined per following table:

<table>
<thead>
<tr>
<th>Meter Style</th>
<th>English Units</th>
<th>SI Units</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(A_{Liquid})</td>
<td>(A_{Gas})</td>
</tr>
<tr>
<td>8600DF</td>
<td>(3.4 \times 10^{-5})</td>
<td>(1.9 \times 10^{-3})</td>
</tr>
</tbody>
</table>

Table A-4. Determining the PPL

Minimum upstream pressure (Liquids)

Flow metering conditions that would allow cavitation, the release of vapor from a liquid, should be avoided. This flow condition can be avoided by remaining within the proper flow range of the meter and by following appropriate system design.

For some liquid applications, incorporation of a back pressure valve should be considered. To prevent cavitation, the minimum upstream pressure should be:

\[
P = 2.9 \times \Delta P + 1.3 \times p_v \text{ or } P = 2.9 \times \Delta P + p_v + 0.5 \text{ psia (3.45 kPa)} \text{ (use the smaller of the two results)}
\]

\(p_v \) = Liquid vapor pressure at operating conditions (psia or kPa abs)

\(\Delta P \) = Pressure loss across the meter (psi or kPa abs)

Failure mode alarm

HART analog

If self-diagnostics detect a gross flowmeter failure, the analog signal will be driven to the values below:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3.75</td>
</tr>
<tr>
<td>High</td>
<td>21.75</td>
</tr>
<tr>
<td>NAMUR Low</td>
<td>3.60</td>
</tr>
<tr>
<td>NAMUR High</td>
<td>22.6</td>
</tr>
</tbody>
</table>

High or low alarm signal is user-selectable through the fail mode alarm jumper on the electronics. NAMUR-compliant alarm limits are available through the C4 or CN Option. Alarm type is field configurable also.

Saturation output values

When the operating flow is outside the range points, the analog output continues to track the operating flow until reaching the saturation value listed below; the output does not exceed the listed saturation value regardless of the operating flow. The NAMUR-Compliant Saturation Values are available through the C4 or CN option. Saturation type is field configurable.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>3.9</td>
</tr>
<tr>
<td>High</td>
<td>20.8</td>
</tr>
<tr>
<td>NAMUR Low</td>
<td>3.8</td>
</tr>
<tr>
<td>NAMUR High</td>
<td>20.5</td>
</tr>
</tbody>
</table>
Damping
Flow Damping adjustable between 0.2 and 255 seconds.
Process Temperature Damping adjustable between 0.4 and 32 seconds (MTA Option Only).

Response time
Three vortex shedding cycles or 300 ms, whichever is greater, maximum required to reach 63.2% of actual input with the minimum damping (0.2 seconds).

Turn-on time
HART analog
Less than four (4) seconds plus the response time to rated accuracy from power up (less than 7 seconds with the MTA Option).

Transient protection
The optional transient terminal block prevents damage to the flowmeter from transients induced by lightning, welding, heavy electrical equipment, or switch gears. The transient protection electronics are located in the terminal block.

The transient terminal block meets the following specifications:
IEEE C62.41 - 2002 Category B
3 kA crest (8.3 30 μs)
6 kV crest (1.2 3 50 μs)
6 kV/0.5 kA (0.5 μs, 100 kHz, ringing)

Security lockout
When the security lockout jumper is enabled, the electronics will not allow you to modify parameters that affect flowmeter output.

Output testing
Current source
Flowmeter may be commanded to set the current to a specified value between 4 and 20 mA.

Frequency source
Flowmeter may be commanded to set the frequency to a specified value between 0 and 10000 Hz.

Low flow cutoff
Adjustable over entire flow range. Below selected value, output is driven to 4 mA and zero pulse output frequency.

Humidity limits
Operates in 0–95% relative humidity under non-condensing conditions (tested to IEC 60770, Section 6.2.11).

Overrange capability
HART analog
Analog signal output continues to 105 percent of span, then remains constant with increasing flow. The digital and pulse outputs will continue to indicate flow up to the upper sensor limit of the flowmeter and a maximum pulse output frequency of 10400 Hz.

Flow calibration
Meter bodies are flow-calibrated and assigned a unique calibration factor (K-factor) at the factory. The calibration factor is entered into the electronics, enabling interchangeability of electronics and/or sensors without calculations or compromise in accuracy of the calibrated meter body.

A.3 Typical flow ranges
Tables A-5 through A-12 show typical flow ranges for some common process fluids with default filter settings. Consult your local sales representative to obtain a computer sizing program that describes in greater detail the flow range for an application.
Table A-5. Typical pipe velocity ranges for 8600D\(^{(1)}\)

<table>
<thead>
<tr>
<th>Process Line Size (Inches/ DN)</th>
<th>Vortex Meter</th>
<th>Liquid Velocity Ranges</th>
<th>Gas Velocity Ranges</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(ft/s)</td>
<td>(m/s)</td>
</tr>
<tr>
<td>1/25</td>
<td>8600DF010</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
<tr>
<td>11/2 / 40</td>
<td>8600DF015</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
<tr>
<td>2 / 50</td>
<td>8600DF020</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
<tr>
<td>3 / 80</td>
<td>8600DF030</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
<tr>
<td>4 / 100</td>
<td>8600DF040</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
<tr>
<td>6 / 150</td>
<td>8600DF060</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
<tr>
<td>8 / 200</td>
<td>8600DF080</td>
<td>0.70 to 25.0</td>
<td>0.21 to 7.6</td>
</tr>
</tbody>
</table>

1. Table A-5 is a reference of pipe velocities that can be measured for the standard Rosemount 8600D. It does not consider density limitations, as described in Table A-2 and Table A-3. Velocities are referenced in schedule 40 pipe.

Table A-6. Water Flow Rate Limits for the Rosemount 8600D\(^{(1)}\)

<table>
<thead>
<tr>
<th>Process Line Size (Inches/ DN)</th>
<th>Vortex Meter</th>
<th>Minimum and Maximum Measurable Water Flow Rates*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gallons/Minute</td>
</tr>
<tr>
<td>1/25</td>
<td>8600DF010</td>
<td>2.96 to 67.3</td>
</tr>
<tr>
<td>11/2 / 40</td>
<td>8600DF015</td>
<td>4.83 to 158</td>
</tr>
<tr>
<td>2 / 50</td>
<td>8600DF020</td>
<td>7.96 to 261</td>
</tr>
<tr>
<td>3 / 80</td>
<td>8600DF030</td>
<td>17.5 to 576</td>
</tr>
<tr>
<td>4 / 100</td>
<td>8600DF040</td>
<td>30.2 to 992</td>
</tr>
<tr>
<td>6 / 150</td>
<td>8600DF060</td>
<td>68.5 to 2251</td>
</tr>
<tr>
<td>8 / 200</td>
<td>8600DF080</td>
<td>119 to 3898</td>
</tr>
</tbody>
</table>

*Conditions: 77 °F (25 °C) and 14.7 psia (1.01 bar absolute)

1. Table A-6 is a reference of flow rates that can be measured for the standard Rosemount 8600D. It does not consider density limitations, as described in Table A-2 and Table A-3.

Table A-7. Air Flow Rate Limits at 59 °F (15 °C)–Line Sizes 1- through 2-in.

<table>
<thead>
<tr>
<th>Process Pressure</th>
<th>Flow Rate Limits</th>
<th>Minimum and Maximum Air Flow Rates for line sizes 1-in./DN 25 through 2-inch/DN 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1-in./DN 25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosemount 8600D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACFM</td>
</tr>
<tr>
<td>0 psig (0 bar G)</td>
<td>max min</td>
<td>79.2</td>
</tr>
<tr>
<td>50 psig (3.45 bar G)</td>
<td>max min</td>
<td>79.2</td>
</tr>
<tr>
<td>100 psig (6.89 bar G)</td>
<td>max min</td>
<td>79.2</td>
</tr>
<tr>
<td>200 psig (13.8 bar G)</td>
<td>max min</td>
<td>79.2</td>
</tr>
<tr>
<td>300 psig (20.7 bar G)</td>
<td>max min</td>
<td>79.2</td>
</tr>
<tr>
<td>400 psig (27.6 bar G)</td>
<td>max min</td>
<td>73.0</td>
</tr>
<tr>
<td>500 psig (34.5 bar G)</td>
<td>max min</td>
<td>66.0</td>
</tr>
</tbody>
</table>
Table A-8. Air Flow Rate Limits at 59 °F (15 °C)–Line Sizes 3- through 4-in.

<table>
<thead>
<tr>
<th>Process Pressure</th>
<th>Flow Rate Limits</th>
<th>Minimum and Maximum Air Flow Rates for line sizes 3-in./DN 80 through 4-in./DN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>3-in./DN 80</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosemount 8600D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACFM</td>
</tr>
<tr>
<td>0 psig (0 bar G)</td>
<td>max</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>66.8</td>
</tr>
<tr>
<td>50 psig (3.45 bar G)</td>
<td>max</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>31.8</td>
</tr>
<tr>
<td>100 psig (6.89 bar G)</td>
<td>max</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>23.9</td>
</tr>
<tr>
<td>150 psig (10.3 bar G)</td>
<td>max</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>20.0</td>
</tr>
<tr>
<td>200 psig (13.8 bar G)</td>
<td>max</td>
<td>770</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>20.0</td>
</tr>
<tr>
<td>300 psig (20.7 bar G)</td>
<td>max</td>
<td>718</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>20.0</td>
</tr>
<tr>
<td>400 psig (27.6 bar G)</td>
<td>max</td>
<td>625</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>20.0</td>
</tr>
<tr>
<td>500 psig (34.5 bar G)</td>
<td>max</td>
<td>560</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>20.0</td>
</tr>
</tbody>
</table>

Table A-9. Air Flow Rate Limits at 59 °F (15 °C)–Line Sizes 6- through 8-in.

<table>
<thead>
<tr>
<th>Process Pressure</th>
<th>Flow Rate Limits</th>
<th>Minimum and Maximum Air Flow Rates for line sizes 6-in./DN 150 through 8-in./DN 200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6-in./DN 150</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rosemount 8600D</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ACFM</td>
</tr>
<tr>
<td>0 psig (0 bar G)</td>
<td>max</td>
<td>3009</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>261</td>
</tr>
<tr>
<td>50 psig (3.45 bar G)</td>
<td>max</td>
<td>3009</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>124</td>
</tr>
<tr>
<td>100 psig (6.89 bar G)</td>
<td>max</td>
<td>3009</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>93.3</td>
</tr>
<tr>
<td>150 psig (10.3 bar G)</td>
<td>max</td>
<td>3009</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>78.2</td>
</tr>
<tr>
<td>200 psig (13.8 bar G)</td>
<td>max</td>
<td>3009</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>78.2</td>
</tr>
<tr>
<td>300 psig (20.7 bar G)</td>
<td>max</td>
<td>2807</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>78.2</td>
</tr>
<tr>
<td>400 psig (27.6 bar G)</td>
<td>max</td>
<td>2442</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>78.2</td>
</tr>
<tr>
<td>500 psig (34.5 bar G)</td>
<td>max</td>
<td>2188</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>78.2</td>
</tr>
</tbody>
</table>
Notes
The Rosemount 8600D measures the volumetric flow under operating conditions (i.e. the actual volume at the operating pressure and temperature–acfm or acmh), as shown above. However, gas volumes are strongly dependent on pressure and temperature. Therefore, gas quantities are typically stated in standard or normal conditions (e.g. SCFM or NCMH). (Standard conditions are typically 59 °F and 14.7 psia. Normal conditions are typically 0 °C and 1 bar abs.)
The flow rate limits in standard conditions are found using the equations below:
Standard Flow Rate = Actual Flow Rate X Density Ratio
Density Ratio = Density at Actual (Operating) Conditions / Density at Standard Conditions

Table A-10. Saturated Steam Flow Rate Limits(1)–Line Sizes 1- through 2-in.

<table>
<thead>
<tr>
<th>Process Pressure</th>
<th>Flow Rate Limits</th>
<th>Minimum and Maximum Saturated Steam Flow Rates for line sizes 1-in./DN 25 through 2-in./DN 50</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-in./DN 25</td>
<td>1½-in./DN 40</td>
</tr>
<tr>
<td>15 psig (1,03 bar G)</td>
<td>max</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>34.8</td>
</tr>
<tr>
<td>25 psig (1,72 bar G)</td>
<td>max</td>
<td>449</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>39.9</td>
</tr>
<tr>
<td>50 psig (3,45 bar G)</td>
<td>max</td>
<td>711</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>50.1</td>
</tr>
<tr>
<td>100 psig (6,89 bar G)</td>
<td>max</td>
<td>1221</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>65.7</td>
</tr>
<tr>
<td>150 psig (10,3 bar G)</td>
<td>max</td>
<td>1724</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>78.1</td>
</tr>
<tr>
<td>200 psig (13,8 bar G)</td>
<td>max</td>
<td>2225</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>88.7</td>
</tr>
<tr>
<td>300 psig (20,7 bar G)</td>
<td>max</td>
<td>3229</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>107</td>
</tr>
<tr>
<td>400 psig (27,6 bar G)</td>
<td>max</td>
<td>4244</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>125</td>
</tr>
<tr>
<td>500 psig (34,5 bar G)</td>
<td>max</td>
<td>5277</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>156</td>
</tr>
</tbody>
</table>

1. Assumes steam quality is 100%
Table A-11. Saturated Steam Flow Rate Limits\(^{(1)}\)–Line Sizes 3- through 4-in.

<table>
<thead>
<tr>
<th>Process Pressure</th>
<th>Flow Rate Limits</th>
<th>3-in./DN 80</th>
<th>4-in./DN 100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>15 psig (1,03 bar G)</td>
<td>max</td>
<td>3330</td>
<td>1510</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>298</td>
<td>135</td>
</tr>
<tr>
<td>25 psig (1,72 bar G)</td>
<td>max</td>
<td>4370</td>
<td>1982</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>341</td>
<td>155</td>
</tr>
<tr>
<td>50 psig (3,45 bar G)</td>
<td>max</td>
<td>6914</td>
<td>3136</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>429</td>
<td>195</td>
</tr>
<tr>
<td>100 psig (6,89 bar G)</td>
<td>max</td>
<td>11874</td>
<td>5386</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>562</td>
<td>255</td>
</tr>
<tr>
<td>150 psig (10,3 bar G)</td>
<td>max</td>
<td>16763</td>
<td>7603</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>668</td>
<td>303</td>
</tr>
<tr>
<td>200 psig (13,8 bar G)</td>
<td>max</td>
<td>21630</td>
<td>9811</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>759</td>
<td>344</td>
</tr>
<tr>
<td>300 psig (20,7 bar G)</td>
<td>max</td>
<td>31389</td>
<td>14237</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>914</td>
<td>415</td>
</tr>
<tr>
<td>400 psig (27,6 bar G)</td>
<td>max</td>
<td>41258</td>
<td>18714</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>1073</td>
<td>487</td>
</tr>
<tr>
<td>500 psig (34,5 bar G)</td>
<td>max</td>
<td>51297</td>
<td>23267</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>1334</td>
<td>605</td>
</tr>
</tbody>
</table>

1. Assumes steam quality is 100%

Table A-12. Saturated Steam Flow Rate Limits\(^{(1)}\)–Line Sizes 6- through 8-in.

<table>
<thead>
<tr>
<th>Process Pressure</th>
<th>Flow Rate Limits</th>
<th>6-in./DN 150</th>
<th>8-in./DN 200</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lb/hr</td>
<td>kg/hr</td>
</tr>
<tr>
<td>15 psig (1,03 bar G)</td>
<td>max</td>
<td>13013</td>
<td>5903</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>1163</td>
<td>528</td>
</tr>
<tr>
<td>25 psig (1,72 bar G)</td>
<td>max</td>
<td>17080</td>
<td>7747</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>1333</td>
<td>605</td>
</tr>
<tr>
<td>50 psig (3,45 bar G)</td>
<td>max</td>
<td>27019</td>
<td>12255</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>1676</td>
<td>760</td>
</tr>
<tr>
<td>100 psig (6,89 bar G)</td>
<td>max</td>
<td>46405</td>
<td>21049</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>2197</td>
<td>996</td>
</tr>
<tr>
<td>150 psig (10,3 bar G)</td>
<td>max</td>
<td>65611</td>
<td>29761</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>2610</td>
<td>1184</td>
</tr>
<tr>
<td>200 psig (13,8 bar G)</td>
<td>max</td>
<td>84530</td>
<td>38342</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>2965</td>
<td>1345</td>
</tr>
<tr>
<td>300 psig (20,7 bar G)</td>
<td>max</td>
<td>122666</td>
<td>55640</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>3572</td>
<td>1620</td>
</tr>
<tr>
<td>400 psig (27,6 bar G)</td>
<td>max</td>
<td>161236</td>
<td>73135</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>4192</td>
<td>1901</td>
</tr>
<tr>
<td>500 psig (34,5 bar G)</td>
<td>max</td>
<td>200468</td>
<td>90931</td>
</tr>
<tr>
<td></td>
<td>min</td>
<td>5212</td>
<td>2364</td>
</tr>
</tbody>
</table>

1. Assumes steam quality is 100%
A.4 Performance specifications

The following performance specifications are for all Rosemount models except where noted. Digital performance specifications applicable to Digital HART output.

A.4.1 Flow accuracy

Includes linearity, hysteresis, and repeatability.

Liquids - for Reynolds Numbers over 20,000

- **Digital and pulse output**
 - ± 0.75% of rate
- **Analog output**
 - Same as pulse output plus an additional 0.025% of span

Gas and steam - for Reynolds Numbers over 15,000

- **Digital and pulse output**
 - ± 1% of rate
- **Analog output**
 - Same as pulse output plus an additional 0.025% of span

Accuracy limitations for gas and steam:

Max velocity of 100 ft/s (30.5 m/s)

Note

As the meter Reynolds Numbers decreases below the stated limit to 10,000 the accuracy error band will increase linearly to +/-3.0%. For Reynolds Numbers down to 5,000 the accuracy error band will increase linearly from +/-3.0% to +/-10.0%.

Process temperature accuracy

2.2 °F (1.2 °C).

Note

For remote mount installations, add ±0.018 °F/ft (±0.03 °C/m) of uncertainty to the temperature measurement.

Mass flow accuracy for temperature compensated mass flow

- **Digital and pulse output**
 - ± 2.5% of rate (Nominal)

 Nominal conditions include temperature variation in saturation and superheat at 150 psig (10 bar-g) and above.

 For pressure below 150 psig (10 bar-g), add 0.08% of uncertainty for every 15 psi (1 bar) below 150 psig (10 bar-g).

- **Analog output**
 - Same as pulse output plus an additional 0.025% of span

Repeatability

± 0.2% of actual flow rate

Stability

± 0.1% of rate over one year

Process temperature effect

Automatic K-factor correction with user-entered process temperature.

Table A-13 indicates the percent change in K-factor per 100 °F (55.5 °C) in process temperature from reference temperature of 77 °F (25 °C).

<table>
<thead>
<tr>
<th>Percent Change in K-Factor per 100 °F (55.5 °C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 77 °F (25 °C)</td>
</tr>
<tr>
<td>> 77 °F (25 °C)</td>
</tr>
</tbody>
</table>

Ambient temperature effect

- **Digital and pulse outputs**
 - No effect
- **Analog output**
 - ±0.1% of span from −58 to 185 °F (−50 to 85 °C)

Vibration effect

An output with no process flow may be detected if sufficiently high vibration is present.

The meter design will minimize this effect, and the factory settings for signal processing are selected to eliminate these errors for most applications.

If an output error at zero flow is still detected, it can be eliminated by adjusting the low flow cutoff, trigger level, or low-pass filter.

As the process begins to flow through the meter, most vibration effects are quickly overcome by the flow signal.

Vibration specifications

- **Integral aluminum housings and remote aluminum housings**

 At or near the minimum liquid flow rate in a normal pipe mounted installation, the maximum vibration should be 0.087-in. (2.21 mm) double amplitude displacement or 1 g acceleration, whichever is smaller. At or near the minimum gas flow rate in a normal pipe mounted installation, the maximum vibration should be 0.043-in. (1.09 mm) double amplitude displacement or 1/2 g acceleration, whichever is smaller.
Mounting position effect

Meter will meet accuracy specifications when mounted in horizontal, vertical, or inclined pipelines. Best practice for mounting in a horizontal pipe is to orient the shedder bar in the horizontal plane. This will prevent solids in liquid applications and liquid in gas/steam applications from disrupting the shedding frequency.

EMI/RFI effect

Meets EMC requirements to EU Directive 2004/108/EC.

HART analog
Output error less than ±0.025% of span with twisted pair from 80-1000 MHz for radiated field strength of 10 V/m; 1.4 - 2.0 GHz for radiated field strength of 3 V/m; 2.0 - 2.7 GHz for radiated field strength of 1 V/m. Tested per EN61326.

Digital HART
No effect on the values that are being given if using HART digital signal. Tested per EN61326.

Magnetic-field interference

HART analog
Output error less than ±0.025% of span at 30 A/m (rms). Tested per EN61326.

Series mode noise rejection

HART analog
Output error less than ±0.025% of span at 1 V rms, 60 Hz.

Common mode noise rejection

HART analog
Output error less than ±0.025% of span at 30 V rms, 60 Hz.

Power supply effect

HART analog
Less than 0.005% of span per volt

A.5 Physical specifications

NACE compliance

Note
Certificate of compliance for MR0175/ISO15156 requires Q15 as a separate line item.

Electrical connections

1/2 – 14 NPT or M20 3 1.5 conduit threads; screw terminals provided for 4–20 mA and pulse output connections; communicator connections permanently fixed to terminal block.

Non-wetted materials

Housing
Low-copper aluminum (FM Type 4X, CSA Type 4X, IP66)

Paint
Polyurethane

Cover O-rings
Buna-N

Temperature sensor (MTA option)
Type-N Thermocouple

Process-wetted materials

Meter body
CF-8M cast stainless.

Sensor material
CF-3M cast stainless.

Gasket
Graphite with Stainless Steel Insert

Process connections

Mounts between the following flange configurations:
ASME B16.5 (ANSI): Class 150, 300
EN 1092: PN 16, 40, 63

Mounting

Integral (standard)
Electronics are mounted on meter body.

Remote (optional)
Electronics may be mounted remote from the meter body. Interconnecting coaxial cable available in nonadjustable 10, 20, and 30 ft (3, 0, 6, 1, and 9, 1 m) lengths. Consult factory for non-standard lengths up to 75 ft (22, 9 m). Remote mounting hardware includes a pipe mount bracket with one u-bolt.

Temperature limitations for integral mounting
The maximum process temperature for integral mount electronics is dependent on the ambient temperature where the meter is installed. The electronics must not exceed 185 °F (85 °C).
Pipe length requirements
The vortex meter may be installed with a minimum of ten diameters (D) of straight pipe length upstream and five diameters (D) of straight pipe length downstream.

Rated Accuracy is based on the number of pipe diameter from an upstream disturbance. No K-factor correction is required if the meter is installed with 35 D upstream and 10 D downstream.

Tagging
The flowmeter will be tagged at no charge, according to customer requirements. All tags are stainless steel. The standard tag is permanently attached to the flowmeter. Character height is 1/16-in. (1.6 mm). A wired-on tag is available on request. Wire on tags can contain five lines with up to 28 characters per line.

Flow calibration information
Flowmeter calibration and configuration information is provided with every flowmeter. For a certified copy of flow calibration data, Option Q4 must be ordered in the model number.
A.6 Dimensional drawings

Figure A-1. Flanged-Style Flowmeter (1-through 8-in./25 through 200 mm Line Sizes)

Note
Dimensions are in inches (millimeters).
Table A-14. Flanged-Style Flowmeter (1-through 2-in./25 through 50 mm Line Sizes)

<table>
<thead>
<tr>
<th>Nominal Size in. (mm)</th>
<th>Flange Rating</th>
<th>Face-to-face A in. (mm)</th>
<th>Diameter B in. (mm)</th>
<th>C in. (mm)</th>
<th>Weight(1) lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25)</td>
<td>ANSI 150</td>
<td>5.9 (150)</td>
<td>0.95 (24,1)</td>
<td>9.8 (250)</td>
<td>12.3 (5,6)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>6.7 (170)</td>
<td>0.95 (24,1)</td>
<td>9.8 (250)</td>
<td>15.0 (6,8)</td>
</tr>
<tr>
<td></td>
<td>PN 16/40</td>
<td>6.1 (156)</td>
<td>0.95 (24,1)</td>
<td>9.8 (250)</td>
<td>13.6 (6,2)</td>
</tr>
<tr>
<td>1 1/2 (40)</td>
<td>ANSI 150</td>
<td>5.9 (150)</td>
<td>1.49 (37,8)</td>
<td>10.0 (253)</td>
<td>17.6 (8,0)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>7.1 (180)</td>
<td>1.49 (37,8)</td>
<td>10.0 (253)</td>
<td>23.0 (10,5)</td>
</tr>
<tr>
<td></td>
<td>PN 16/40</td>
<td>7.1 (180)</td>
<td>1.49 (37,8)</td>
<td>10.0 (253)</td>
<td>19.4 (8,8)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>ANSI 150</td>
<td>6.7 (170)</td>
<td>1.92 (48,8)</td>
<td>10.2 (260)</td>
<td>22.0 (10,1)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>7.1 (180)</td>
<td>1.92 (48,8)</td>
<td>10.2 (260)</td>
<td>26.1 (11,8)</td>
</tr>
<tr>
<td></td>
<td>PN 16/40</td>
<td>6.7 (170)</td>
<td>1.92 (48,8)</td>
<td>10.2 (260)</td>
<td>23.2 (10,5)</td>
</tr>
</tbody>
</table>

1. Add 0.2 lb (0.1 kg) for display option.

Table A-15. Flanged-Style Flowmeter (3-through 6-in./80 through 150 mm Line Sizes) (Refer to Figure A-1)

<table>
<thead>
<tr>
<th>Nominal Size in. (mm)</th>
<th>Flange Rating</th>
<th>Face-to-face A in. (mm)</th>
<th>Diameter B in. (mm)</th>
<th>C in. (mm)</th>
<th>Weight(1) lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (80)</td>
<td>ANSI 150</td>
<td>7.5 (190)</td>
<td>2.87 (72,9)</td>
<td>10.7 (273)</td>
<td>37.2 (16,9)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>8.8 (224)</td>
<td>2.87 (72,9)</td>
<td>10.7 (273)</td>
<td>46.5 (21,1)</td>
</tr>
<tr>
<td></td>
<td>PN 16/40</td>
<td>7.9 (200)</td>
<td>2.87 (72,9)</td>
<td>10.7 (273)</td>
<td>36.6 (16,6)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>ANSI 150</td>
<td>7.5 (190)</td>
<td>3.79 (96,3)</td>
<td>11.2 (285)</td>
<td>51.3 (23,3)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>8.7 (220)</td>
<td>3.79 (96,3)</td>
<td>11.2 (285)</td>
<td>71.5 (32,4)</td>
</tr>
<tr>
<td></td>
<td>PN 16</td>
<td>7.5 (190)</td>
<td>3.79 (96,3)</td>
<td>11.2 (285)</td>
<td>40.4 (18,2)</td>
</tr>
<tr>
<td></td>
<td>PN 40</td>
<td>8.7 (220)</td>
<td>3.79 (96,3)</td>
<td>11.2 (285)</td>
<td>49.5 (22,4)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>ANSI 150</td>
<td>9.8 (250)</td>
<td>5.7 (144,8)</td>
<td>12.3 (312)</td>
<td>81 (37)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>10.6 (270)</td>
<td>5.7 (144,8)</td>
<td>12.3 (312)</td>
<td>120 (55)</td>
</tr>
<tr>
<td></td>
<td>PN 16</td>
<td>9.8 (250)</td>
<td>5.7 (144,8)</td>
<td>12.3 (312)</td>
<td>66 (30)</td>
</tr>
<tr>
<td></td>
<td>PN 40</td>
<td>10.6 (270)</td>
<td>5.7 (144,8)</td>
<td>12.3 (312)</td>
<td>86 (39)</td>
</tr>
</tbody>
</table>

1. Add 0.2 lb (0.1 kg) for display option.
Table A-16. Flanged-Style Flowmeter (8-in. /200 mm Line Sizes) (Refer to Figure A-1)

<table>
<thead>
<tr>
<th>Nominal Size in. (mm)</th>
<th>Flange Rating</th>
<th>Face-to-face A in. (mm)</th>
<th>Diameter B in. (mm)</th>
<th>C in. (mm)</th>
<th>Weight(1) lb (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 (200)</td>
<td>ANSI 150</td>
<td>9.8 (250)</td>
<td>7.55 (191,8)</td>
<td>13.2 (335)</td>
<td>141.6 (64,2)</td>
</tr>
<tr>
<td></td>
<td>ANSI 300</td>
<td>11.4 (290)</td>
<td>7.55 (191,8)</td>
<td>13.2 (335)</td>
<td>198.7 (90.1)</td>
</tr>
<tr>
<td></td>
<td>PN 16</td>
<td>9.8 (250)</td>
<td>7.55 (191,8)</td>
<td>13.2 (335)</td>
<td>109.4 (49,6)</td>
</tr>
<tr>
<td></td>
<td>PN 40</td>
<td>12.2 (310)</td>
<td>7.55 (191,8)</td>
<td>13.2 (335)</td>
<td>156.5 (71,0)</td>
</tr>
</tbody>
</table>

1. Add 0.2 lb (0.1 kg) for display option.

Note
Consult factory for SST installation. Dimensions are in inches (millimeters).
Figure A-3. Flanged Style Remote Mount Flowmeters–Line Sizes 1-through 8-in. (25 through 200 mm)

Note
Dimensions are in inches (millimeters).

Table A-17. Remote Mount, Flanged Style Sensor Flowmeter Dimensions

<table>
<thead>
<tr>
<th>Nominal Size in. (mm)</th>
<th>E Flange Style in. (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (25)</td>
<td>6.5 (165)</td>
</tr>
<tr>
<td>1(\frac{1}{2}) (40)</td>
<td>6.8 (173)</td>
</tr>
<tr>
<td>2 (50)</td>
<td>7.2 (183)</td>
</tr>
<tr>
<td>3 (80)</td>
<td>7.8 (198)</td>
</tr>
<tr>
<td>4 (100)</td>
<td>8.3 (211)</td>
</tr>
<tr>
<td>6 (150)</td>
<td>9.5 (241)</td>
</tr>
<tr>
<td>8 (200)</td>
<td>10.4 (264)</td>
</tr>
</tbody>
</table>
Appendix B Product Certifications

Overview ... page 105
Product certifications .. page 105
Approved manufacturing locations page 105
International certifications (IECEx) page 105
Chinese certifications (NEPSI) page 106
European certifications (ATEX) page 108
EurAsian Conformity (EAC) ... page 109

B.1 Overview
This appendix contains information on approved manufacturing locations and certifications for the Rosemount™ 8600D Series Vortex Flowmeter.

B.2 Product certifications
B.2.1 Approved manufacturing locations
Emerson Process Management Flow Technologies Company, Ltd - Nanjing, Jiangsu Province, P.R. China

B.2.2 International certifications (IECEx)

I.S. certification
IEC 60079-0: 2011 Edition: 6.0
I7 Certification No. IECEx BAS 12.0053X
 Ex ia IIC T4 Ga (-60 °C ≤ Ta ≤ +70 °C)
 Ui = 30 VDC
 Ii = 185mA
 Pi = 1.0W
 Ci = 0μF
 Li = 0.97mH

Special Conditions for Safe Use (X):
1. When fitted with the 90V transient suppressors, the equipment is not capable of passing the 500V insulation test. This must be taken into account upon installation.
2. The enclosure may be made from aluminum alloy with a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion when located in Zone 0.
3. When the equipment is installed, particular precautions must be taken to ensure, taking into account the effect of process fluid temperature, that the ambient temperature of the electrical housing of the equipment meets the marked protection type temperature range.

Type 'n' certification
IEC 60079-0: 2011 Edition: 6.0
IEC 60079-15: 2010 Edition: 4
N7 Certification No. IECEx BAS 12.0054X
 Ex nA ic IIC T5 Gc (-40 °C ≤ Ta ≤ +70 °C)
 Maximum Working Voltage = 42Vdc

Special Conditions for Safe Use (X):
1. When fitted with the 90V transient suppressors, the equipment is not capable of passing the 500V insulation test. This must be taken into account upon installation.
2. When the equipment is installed, particular precautions must be taken to ensure, taking into account the effect of process fluid temperature, that the ambient temperature of the electrical housing of the equipment meets the marked protection type temperature range.

Flameproof certification
IEC 60079-0: 2007 Edition: 5
IEC 60079-26: 2006 Edition: 2
E7 Certification No. IECEx DEK 11.0022X
Integral Transmitter marked:
Ex d [ia Ga] IIC T6 Ga/Gb
Remote Transmitter marked:
Ex d [ia Ga] IIC T6 Gb
Remote Sensor marked:
Ex ia IIC T6 Ga

Ambient temperature range: -50 °C ≤ Ta ≤ 70 °C
Process temperature range: -202 °C to +427 °C
Power Supply: 42 Vdc Max.
Transmitter Um=250 V

Remote mounted sensor: in type of protection Ex ia IIC, only to be connected to the associated Model 8600D Vortex Flowmeter electronics.

The maximum length of the interconnecting cable is 152 m (500 ft).

Special Conditions for Safe Use (X):

1. For information regarding the dimensions of the flameproof joints, the manufacturer shall be contacted.
2. The Flowmeter is provided with special fasteners of property class A2-70 or A4-70.
3. Units marked with "Warning: Electrostatic Charging Hazard" may use non-conductive paint thicker than 0.2 mm. Precautions shall be taken to avoid ignition due to electrostatic charge of the enclosure.
4. When the equipment is installed, precautions must be taken to ensure, taken into account the effect of the process fluid temperature, that the ambient temperature of the electrical parts of the equipment lies between -50 °C and +70 °C.

B.2.3 Chinese certifications (NEPSI)

Flameproof certification
GB3836.1–2010
GB3836.2–2010
GB3836.4–2010
GB3836.20–2010

E3 Certification No. GYJ16.1280X
Ex d ia IIC T6 Gb/Ga (-50 °C ≤ Ta ≤ +70 °C)
Process temperature range: -202 °C to +427 °C
Power Supply: 42 Vdc Max.
Transmitter Um=250 V

Special Conditions for Safe Use (X):

1. The maximum allowable length of the interconnecting cable between transmitter and sensor is 152m. The cable shall also be provided by Rosemount Inc., or by Emerson Process Management Co., Ltd., or by Emerson Process Management Flow Technologies., Ltd.
2. Suitable heat-resisting cables rated at least +80 °C shall be used when the temperature of the cable entry exceed +60 °C.
3. Dimensions of flameproof joints are other than the relevant minimum or maximum specified in Table 3 of GB3836.2-2010. Please contact manufacturer for details.
4. The Flowmeter is provided with special fasteners of property class A2-70 or A4-70.
5. Any friction should be prevented in order to avoid the risk of electrostatic charge on the enclosure due to non-conductive paint.
6. The earthing terminal should be connected to the ground reliably at site.
7. Do not open when energized.
8. The cable entry holes have to be connected by means of suitable entry device or stopping plugs with type of protection of Ex db IIC, the cable entry device and stopping plugs are approved in accordance with GB3836.1-2010 and GB3836.2-2010, and which are covered by a separate examination certificate, any unused entry hole is to be fitted with type of protection of Ex db IIC flameproof stopping plug.
9. Users are forbidden to change the configuration to ensure the explosion protection performance of the equipment. Any faults shall be settled with experts from the manufacturer.
10. Precautions shall be taken to ensure that the electronic parts are within permissible ambient temperature considering the effect of the allowed fluid temperature.

106
I.S. certification
GB3836.1–2010
GB3836.4–2010
GB3836.20–2010
I3 Certification No. GYJ12.1239X
Ex ia IIC T4 Ga (-60 °C ≤ Ta ≤ +70 °C)
Ui = 30 Vdc
Ii = 185 mA
Pi = 1.0 W
Ci = 0μF
Li= 0.97mH
Special Conditions for Safe Use (X):
1. The maximum allowable length of the interconnecting cable between transmitter and sensor is 152m. The cable shall also be provided by manufacturer.
2. When transient protection terminal block (The Other Option is T1) applied to this product, during installation, users shall comply with Clause 12.2.4 in GB3836.15-2000 “Electrical apparatus for explosive gas atmospheres Part 15: Electrical installations in hazardous areas (other than mines).”
3. Suitable heat-resisting cables rated at least +80 °C shall be used when the temperature of the cable entry around exceed +60 °C.
4. Only be connected to the certified associated apparatus, the Vortex Flowmeter could be used in the explosive atmosphere. The connection should be complied with the requirements of the manual of the associated apparatus and the Vortex Flowmeter.
5. The enclosure should be taken to protect it from impact.
6. Any friction should be prevented in order to avoid the risk of electrostatic charge on the enclosure due to non-conductive paint.
7. The cable with shield is suitable for connection, and the shield should be connected to earth.
8. The enclosure shall be kept from the dust, but the dust shall not be blown by compressed air.
9. The cable entry holes have to be connected by means of suitable cable entry, the way of being installed shall be ensure that the equipment satisfies degree of protection IP66 according to GB4208-2008.
10. Users are forbidden to change the configuration to ensure the explosion protection performance of the equipment. Any faults shall be settled with experts from the manufacturer.
11. Precautions shall be taken to ensure that the electronic parts are within permissible ambient temperature considering the effect of the allowed fluid temperature.

Type ‘n’ certification
N3 Certification No. GYJ12.1240X
Ex nA ic IIC T5 Gc (-40 °C ≤ Ta ≤ +70 °C)
Maximum working voltage 42 Vdc
Special Conditions for Safe Use (X):
1. The maximum allowable length of the interconnecting cable between transmitter and sensor is 152m. The cable shall also be provided by the manufacturer.
2. Suitable heat-resisting cables rated at least +80°C shall be used when the temperature of the cable entry around exceed +60°C.
3. When transient protection terminal block (The Other Option is T1) applied to this product, during installation, users shall comply with Clause 12.2.4 in GB3836.15-2000 “Electrical apparatus for explosive gas atmospheres Part 15: Electrical installations in hazardous areas (other than mines).”
4. Any friction should be prevented in order to avoid the risk of electrostatic charge on the enclosure due to non-conductive paint.
5. Do not open when energized.
6. The cable entry holes have to be connected by means of suitable cable entry, the way of being installed shall be ensure that the equipment satisfies degree of protection IP54 according to GB4208-2008.
7. Users are forbidden to change the configuration to ensure the explosion protection performance of the equipment. Any faults shall be settled with experts from the manufacturer.

8. Precautions shall be taken to ensure that the electronic parts are within permissible ambient temperature considering the effect of the allowed fluid temperature.

B.2.4 European certifications (ATEX)

I.S. certification
EN 60079-0: 2012 + A11: 2013
EN 60079-11: 2012

I1 Certification No. Baseefa12ATEX0179X
ATEX Marking II 1 G
Ex ia IIC T4 G (-60 °C ≤ Ta ≤ +70 °C)
Ui = 30 VDC
Ii = 185 mA
Pi = 1.0 W
Ci = 0 uF
Li = 0.97 mH

Special Conditions for Safe Use (X):
1. When fitted with 90V transient suppressors, the equipment is not capable of passing the 500V isolation test. This must be taken into account upon installation.
2. The enclosure may be made from aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion when located in Zone 0.
3. When the equipment is installed, particular precautions must be taken to ensure the effect of process fluid temperature, that the ambient temperature of the electrical housing of the equipment meets the marked protection type temperature range.

Type ‘n’ certification
EN 60079-0: 2012 + A11: 2013
EN 60079-11: 2012
EN 60079-15: 2010

N1 Certification No. Baseefa12ATEX0180X
ATEX Marking II 3 G
Ex nA ic IIC T5 Gc (-40 °C ≤ Ta ≤ +70 °C)
Maximum Working Voltage = 42 Vdc

Special Conditions for Safe Use (X):
1. When fitted with 90V transient suppressors, the equipment is not capable of passing the 500V isolation test. This must be taken into account upon installation.
2. When the equipment is installed, particular precautions must be taken to ensure, taking into account the effect of process fluid temperature, that the ambient temperature of the electrical housing of the equipment meets the marked protection type temperature range.

Flameproof certification
EN 60079-0: 2009
EN 60079-1: 2007
EN 60079-11: 2012
EN 60079-26: 2007

E1 Certification No. DEKRA12ATEX0189X
Integral Transmitter marked:
ATEX Marking II 1/2 G
Ex d [ia Ga] IIC T6 Ga/Gb
Remote Transmitter marked:
ATEX Marking II 2 G
Ex d [ia Ga] IIC T6 Gb
Remote Sensor marked:
ATEX Marking II 1 G
Ex ia IIC T6 Ga

Ambient temperature range: -50 °C ≤ Ta ≤ +70 °C
Process temperature range: -202 °C to +427 °C
Maximum Working Voltage = 42 Vdc
Transmitter Um = 250V

Remote mounted sensor: in type of protection Ex ia IIC, only to be connected to the associated Model 8600D Vortex Flow meter electronics.

The maximum allowable length of the interconnecting cable is 152m (500ft.)
Special Conditions for Safe Use (X):

1. For information regarding the dimensions of the flameproof joints the manufacturer shall be contacted.
2. The Flowmeter shall be provided with special fasteners of property class A2-70 or A4-70.
3. Units marked with “Warning: Electrostatic Charging Hazard” may use non-conductive paint thicker than 0.2 mm. Precautions shall be taken to avoid ignition due to electrostatic charge on the enclosure.

B.2.5 EurAsian Conformity (EAC)

This section addresses compliance with the requirements of technical regulations of the Customs Union.

- TR CU 020/2011—Electromagnetic compatibility of technical means
- TR CU 032/2013—On the safety of equipment operating under excessive pressure
- TR CU 012/2011—About the safety of equipment for use in potentially explosive atmospheres

Ex marking:

Ga/Gb Ex d [ia] IIC T6 X (-50°C ≤ Ta ≤ 70°C)

Ex marking of the remote installation:

Electronics module:

1Ex d [ia Ga] IIC T6 Gb X (-50°C ≤ Ta ≤ 70°C)

Flow sensor:

0Ex ia IIC T6 Ga X (-50°C ≤ Ta ≤ 70°C)

Electrical parameters:

Maximum DC supply voltage (with output signal 4-20 mA HART/pulse) 42 V

Special conditions for safe use (X):

1. For flowmeters with Ex marking 0Ex ia IIC T6 Ga X, Ga / Gb Ex d [ia] IIC T6 X and transmitter with Ex marking 1Ex d [ia Ga] IIC T6 Gb X cabling in explosive area must be conducted according to requirements of IEC 60079-14-2011. Sheath cables must be designed for a maximum ambient temperature.
2. Remote installation should be made only with special coaxial cable provided by the manufacturer of flowmeters.
3. When the equipment is installed, particular precautions must be taken to ensure, taking into account the effect of process fluid temperature, that the ambient temperature of the electrical housing of the equipment meets the marked protection type temperature range.
4. Precautions shall be taken to avoid ignition due to electrostatic charge on the enclosure.

Type of protection “intrinsically safe circuit” level «ia»

Ex marking:

0Ex ia IIC T4 Ga X

Ambient temperature range:

Flowmeters with pulse output signals, 4-20 mA /HART (-60°C ≤ Ta ≤ 70°C)
Input intrinsically safe parameters

<table>
<thead>
<tr>
<th>Intrinsically safe parameters</th>
<th>Output signal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4-20mA/HART Pulse</td>
</tr>
<tr>
<td>(U_i, \text{ V})</td>
<td>30</td>
</tr>
<tr>
<td>(I_i, \text{ mA})</td>
<td>185</td>
</tr>
<tr>
<td>(P_i, \text{ W})</td>
<td>1</td>
</tr>
<tr>
<td>(U_i, \text{ uH})</td>
<td>970</td>
</tr>
<tr>
<td>(C_i, \text{ nF})</td>
<td>0</td>
</tr>
</tbody>
</table>

1. Applicable values \(U_i, I_i\) are limited by the maximum input power \(P_i\). It is not allowed to apply max values of \(U_i, I_i\) at the same time.

Special conditions for safe use (X):

1. Power supply of flowmeters with Ex marking 0Ex ia IIC T4 Ga X must be implemented through intrinsically safe barriers having certificate of conformity for appropriate subgroups of electrical equipment.
2. Inductance and capacitance of intrinsically safe circuits of flowmeters with Ex marking 0Ex ia IIC T4 Ga X, with given parameters connecting cables must not exceed maximum values shown on the intrinsically safe barrier from the side of explosive zone.
3. When the equipment is installed, particular precautions must be taken to ensure, taking into account the effect of process fluid temperature, that the ambient temperature of the electrical housing of the equipment meets the marked protection type temperature range.
4. When fitted with the 90V transient suppressors, the equipment is not capable of passing the 500V insulation test. This must be taken into account upon installation.

K8 Combination of E8, I8, N8

B.2.6 Canadian Standards Association (CSA)

E6 Explosion proof- Intrinsically safe for Class I, Division 1, Groups B, C, and D;
Ex d[ia] IIC T6 Gb / Class I, Zone 1, AExd[ia] IIC T6 Gb
Dust-ignition proof for class II/III, Division 1, Groups E, F, and G;
Temperature code T6 (-50°C ≤ Ta ≤ 70°C)
Factory sealed; Dual Seal; Enclosure Type 4X, IP66
Install per drawing 08800-0112

I6 Intrinsically safe for use in Class I, II, III, Division 1, Groups A, B, C, D, E, F, and G;
Ex ia IIC T4 Ga SECURITE INTRINSEQUE; Class I, Zone 0
Non-incendive for Class I, Division 2, Groups A, B, C, D;
Temperature Code T4 (-50°C ≤ Ta ≤ 70°C) 4-20 mA
HART Dual Seal; Enclosure Type 4X, IP66
Install per drawing 08800-0112
Combined Canadian Certifications (CSA)

K6 E6 and I6 Combination

Special Conditions for safe use (X):

1. When fitted with 90V transient suppressors (T1 Option), the equipment is not capable of passing the 500V insulation test. This must be taken into account upon installation.
2. The Model 8600D Vortex Flowmeter when ordered with aluminum electronics housing is considered to constitute a potential risk of ignition by impact or friction. Care should be taken into account during installation and use to prevent impact and friction.

N8 Type of protection «n» and “intrinsically safe” level «ic»
Ex marking:
2Ex nA ic IIC T5 Gc X (-40°C ≤ Ta ≤ 70°C)
Electrical parameters:
The maximum DC voltage (with output 4-20 mA HART/pulse) 42V
Electronics verification of the Rosemount 8600D can be done by either utilizing the internal signal simulation capability or by applying an external signal source to the “TEST FREQ IN” and “GROUND” pins.

C.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Refer to the following safety messages before performing any operation in this section.

⚠️ WARNING

Explosions could result in death or serious injury.

- Do not remove the transmitter cover in explosive atmospheres when the circuit is alive.
- Before connecting a HART®-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- Verify the operating atmosphere of the transmitter is consistent with the appropriate hazardous locations certifications.
- Both transmitter covers must be fully engaged to meet explosion-proof requirements.

Failure to follow these installation guidelines could result in death or serious injury.

- Make sure only qualified personnel perform the installation.

⚠️ CAUTION

Remove power before removing the electronics housing.
C.2 **Electronics verification**

Electronics functionality can be verified via two different verification methods:

- Flow Simulation Mode
- Using an External Frequency Generator

Both methods require the use of a Field Communicator or AMS. It is not required to disconnect the sensor to perform the electronics verification since the transmitter is capable of disconnecting the sensor signal at the input to the electronics. Should the user choose to physically disconnect the sensor from the electronics, refer to Replacing the electronics housing on page 79.

C.2.1 **Electronics verification using flow simulation mode**

Electronics verification can be done by utilizing the internal flow simulation functionality. This functionality is available as model option code DS1 at the time of order. The Rosemount 8600D is capable of simulating either a fixed flow rate or a varying flow rate. The amplitude of the simulated flow signal is based on the minimum required process density for the given line size and service type. Either type of simulation (fixed or varying) will effectively disconnect the Rosemount 8600D sensor from the electronics charge amplifier input (see Figure 5-2 on page 72) and replace it with the simulated flow signal.

C.2.2 **Fixed flow rate simulation**

The fixed flow simulation signal can be entered in either percent of range or flow rate in the current engineering units. The resulting flow rate and/or shedding frequency can be continuously monitored via a Field Communicator or AMS.

C.2.3 **Varying flow rate simulation**

The profile of the varying flow simulation signal is a repetitive triangular waveform as illustrated in Figure C-1. The minimum and maximum flowrate can be entered in either percent of range or entered as a flow rate in the current engineering units. The ramp time can be entered in seconds from a minimum of 0.6 seconds to a maximum of 34951 seconds. The resulting flow rate and/or shedding frequency can be continuously monitored via a Field Communicator or AMS.

Note
To manually disconnect the sensor for precautionary measures, see Replacing the electronics housing on page 79 for details.
C.2.4 **Electronics verification using an external frequency generator**

If an external frequency source is desirable, then test points on the electronics are available (see Figure C-2).

Tools needed
- Field Communicator or AMS
- Standard sinewave function generator

1. Remove the electronics compartment cover.
2. Remove the two screws and the LCD indicator if applicable.
3. Connect a Field Communicator or AMS to the loop.

<table>
<thead>
<tr>
<th>FastKeys</th>
<th>1, 2, 4, 3, 2</th>
</tr>
</thead>
</table>

4. Access the flow simulation menu on the communicator and select “Sim Flow External.” This item is used with an External Frequency Generator. This will effectively disconnect the Rosemount 8600D sensor input from the charge amplifier input of the electronics (see Figure 5-2 on page 72). The simulated flow and/or the shedding frequency values will now be accessible via the Field Communicator or AMS.

5. Connect the sinewave generator to the “TEST FREQ IN” and “GROUND” points as shown in Figure C-2.

<table>
<thead>
<tr>
<th>FastKeys</th>
<th>1, 2, 4, 3, 2</th>
</tr>
</thead>
</table>

6. Set the sinewave generator amplitude to 2Vpp±10%.
7. Select the desired sinewave generator frequency.
8. Verify the generator frequency against the frequency displayed on the Field Communicator or AMS.

<table>
<thead>
<tr>
<th>FastKeys</th>
<th>1, 2, 4, 4</th>
</tr>
</thead>
</table>

10. Reconnect the LCD indicator option (if applicable) to the electronics board by replacing and tightening the two screws.

11. Replace and tighten the electronics compartment cover.

Note
To manually disconnect the sensor for precautionary measures, see Replacing the electronics housing on page 79 for details.

Figure C-2. Test Frequency Output and Chassis Ground Points.

C.2.5 Calculating output variables with known input frequency

Use the following equations with a known input frequency for verification of a flow rate or 4–20 mA output within a given calibrated range. Select the proper equation depending on if you are verifying a flow rate, mass flow rate, 4–20 mA output, or special units. Example calculations starting on page 116 may clarify how these equations are used.

To verify a flow rate

For a given frequency \(F \) (Hz), and K-factor (compensated), find the flow rate \(Q \):

\[
Q = \frac{F \text{ (Hz)}}{(K \times C_x)}
\]

where \(C_x \) is the unit conversion (Table C-1 on page 116).
To verify a standard or normal flow rate

\[Q = F(\text{Hz}) \times \left(\frac{(\text{Density Ratio})}{(K \times C_x)} \right) \]

To verify a mass flow rate

For a given mass frequency \(F \) (Hz), and K-factor (compensated), find the mass flow rate \(M \):

\[M = \frac{F}{(K/\rho) \cdot C} \]

where \(C \) is the unit conversion and \(\rho \) is density at operating conditions:

\[M = \frac{F(\text{Hz})}{(KC_x)} \]

where \(C_x \) is the unit conversion using density \((\rho) \) (Table C-1 on page 116).

To verify a 4–20 mA output

For a given input frequency \(F \) (Hz), and K-factor (compensated), find output current \(I \):

\[I = \left(\frac{(F(\text{Hz})/K \times C_x) - LRV}{URV - LRV} \right)^{16} + 4 \]

where \(C_x \) is the unit conversion (Table C-1 on page 116), URV is the upper range value (user units), and LRV is the lower range value (user units).

To verify a special units output

For special units, first divide the special unit-conversion factor into the base unit factor \(C_x \).

\[C_{20} = C_x / \text{sp. units conv. factor} \] (Table C-1 on page 116).

Unit conversion table (user units to GPS)

Use the following table to assist with calculated frequencies when using user defined units.
Table C-1. Unit Conversions

<table>
<thead>
<tr>
<th>C_x</th>
<th>Units (act)</th>
<th>Conversion Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_1</td>
<td>gal/s</td>
<td>1.00000E+00</td>
</tr>
<tr>
<td>C_2</td>
<td>gal/m</td>
<td>1.66667E-02</td>
</tr>
<tr>
<td>C_3</td>
<td>gal/h</td>
<td>2.77778E-04</td>
</tr>
<tr>
<td>C_4</td>
<td>Impgal/s</td>
<td>1.20095E+00</td>
</tr>
<tr>
<td>C_5</td>
<td>Impgal/m</td>
<td>2.00158E-02</td>
</tr>
<tr>
<td>C_6</td>
<td>Impgal/h</td>
<td>3.33597E-04</td>
</tr>
<tr>
<td>C_7</td>
<td>L/s</td>
<td>2.64172E-01</td>
</tr>
<tr>
<td>C_8</td>
<td>L/m</td>
<td>4.40287E-03</td>
</tr>
<tr>
<td>C_9</td>
<td>L/h</td>
<td>7.33811E-05</td>
</tr>
<tr>
<td>C_{10}</td>
<td>CuMtr/m</td>
<td>4.40287E-00</td>
</tr>
<tr>
<td>C_{11}</td>
<td>CuMtr/h</td>
<td>7.33811E-02</td>
</tr>
<tr>
<td>C_{12}</td>
<td>CuFt/m</td>
<td>1.24675E-01</td>
</tr>
<tr>
<td>C_{13}</td>
<td>CuFt/h</td>
<td>2.07792E-03</td>
</tr>
<tr>
<td>C_{14}</td>
<td>bbl/h</td>
<td>1.16667E-02</td>
</tr>
<tr>
<td>C_{15}</td>
<td>kg/s</td>
<td>$C_{10} \times 60/\rho$</td>
</tr>
<tr>
<td>C_{16}</td>
<td>kg/h</td>
<td>C_{11}/ρ</td>
</tr>
<tr>
<td>C_{17}</td>
<td>lb/h</td>
<td>C_{13}/ρ</td>
</tr>
<tr>
<td>C_{18}</td>
<td>shTon/h</td>
<td>$C_{17} \times 2000$</td>
</tr>
<tr>
<td>C_{19}</td>
<td>mTon/h</td>
<td>$C_{16} \times 1000$</td>
</tr>
<tr>
<td>C_{20}</td>
<td>SPECIAL</td>
<td>$C_{2} \times 1000$</td>
</tr>
</tbody>
</table>

r = operating density

* Special Units Conversion Factor

C.3 Examples

The following examples illustrate the flowrate calculations that may be necessary for your application. There are water, saturated steam, and natural gas applications represented in the examples. The first set of three examples is in English units. The second set of three examples is in SI units.

C.3.1 English units

Example 1 (English units)

Fluid = Water \hspace{1cm} URV = 500 gpm

Line size = 3 in. \hspace{1cm} LRV = 0 gpm

Line pressure = 100 psig \hspace{1cm} \(C_2 = 1.66667E-02 \) (from Table C-1 on page 116)
Vortex Frequency = 75 Hz

K-factor (compensated) = 10.79 (via Field Communicator or AMS)

\[
Q = \frac{F(\text{Hz})}{(K \times C_2)}
\]

\[
= \frac{75.00}{(10.79 \times 0.0166667)}
\]

\[
= 417.1 \text{ gpm}
\]

Therefore, an input frequency of 75.00 Hz represents a flow rate of 417.1 gpm in this application.

For a given input frequency, you may also determine the current output. Use the above example with an input frequency of 75.00 Hz:

URV = 500 gpm LRV = 0 gpm \(F_{\text{in}} = 75.00 \text{ Hz} \)

\[
I = \left(\frac{F(\text{Hz})}{(K \times C_2)} - \text{LRV} \right) \times \left(\frac{16}{0} \right) + 4
\]

\[
I = \left(\frac{75.00}{(10.79 \times 0.0166667)} - 0 \right) \times \left(\frac{16}{500 - 0} \right) + 4
\]

\[
= 17.35 \text{ mA}
\]

Therefore, an input frequency of 75.00 Hz represents a current output of 17.35 mA.

Example 2 (English units)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>= Saturated Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line size</td>
<td>= 3 in.</td>
</tr>
<tr>
<td>Line pressure</td>
<td>= 500 psia</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>= 467 °F</td>
</tr>
<tr>
<td>Viscosity</td>
<td>= 0.017 cp</td>
</tr>
<tr>
<td>K-factor (compensated)</td>
<td>= 10.678 (via Field Communicator or AMS)</td>
</tr>
</tbody>
</table>

\[
M = \frac{F(\text{Hz})}{(K \times C_{17})}
\]

\[
= \frac{400}{(10.678 \times C_{13}/\rho)}
\]

\[
= \frac{400}{(10.678 \times (0.00207792/1.078))}
\]

\[
= \frac{400}{(10.678 \times 0.0019276)}
\]

\[
= 19433.6 \text{ lb/hr}
\]

Therefore, an input frequency of 400 Hz represents a flow rate of 19433.6 lb/hr in this application.
For a given input frequency, you may also determine the current output. Use the Example 2 on page 117 with an input frequency of 300 Hz:

\[I = \left(\frac{F(\text{Hz}) \times (K \times C_{20}) - \text{LRV}}{\text{URV} - \text{LRV}} \right) \times (16) + 4 \]

\[I = \left(\frac{300 \times (10.678 \times 0.0019276) - 0}{40000 - 0} \right) \times (16) + 4 \]

\[= 9.83 \text{ mA} \]

Therefore, an input frequency of 300.00 Hz represents a current output of 9.83 mA.

Example 3 (English units)

- **Fluid**: Natural gas
- **URV**: 5833 SCFM
- **Line size**: 3 in.
- **LRV**: 0 SCFM
- **Line pressure**: 140 psig
- **C20**: C12/10.71 (Density Ratio)
- **Operating Temperature**: 50 °F
- **Density (\(\rho \))**: 0.549 lb/cu-ft (oper)
- **Viscosity**: 0.01 cp
- **Input Frequency**: 700 Hz
- **K-factor (compensated)**: 10.678 (via Field Communicator or AMS)

\[Q = \frac{F(\text{Hz}) \times (K \times C_{20})}{(C_{20} \times 10.71)} \]

\[= 700/[(10.797 \times 0.124675/10.71)] \]

\[= 5569.4 \text{ SCFM} \]

Therefore, an input frequency of 700.00 Hz represents a flow rate of 5569.4 SCFM in this application.

For a given input frequency, you may also determine the current output. Use the above example with an input frequency of 200 Hz.
URV = 5833 SCFM LRV = 0 SCFM \(F_{in}\text{(Hz)} = 200.00 \)

\[
I = \left(\frac{F(\text{Hz})/(K \times C_{20}) - \text{LRV}}{\text{URV} - \text{LRV}} \right) \times (16) + 4
\]

\[
I = \left(\frac{200/((10.797 \times 0.011641) - 0)}{5833 - 0} \right) \times (16) + 4
\]

= 8.36 mA

Therefore, an input frequency of 200 Hz represents a current output of 8.36 mA.
C.3.2 SI units

Example 1 (SI units)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>= Water</th>
<th>URV</th>
<th>= 2000 lpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line size</td>
<td>= 80 mm.</td>
<td>LRV</td>
<td>= 0 lpm</td>
</tr>
<tr>
<td>Line pressure</td>
<td>= 700 kPas</td>
<td>C₈</td>
<td>= 4.40287E-03 (from Table C-1 on page 116)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>= 60 °F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Frequency</td>
<td>= 80 Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>K-factor (compensated)</td>
<td>= 10.772 (via Field Communicator or AMS)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
M = \frac{F_{(Hz)}}{(K \times C_8)} = \frac{80}{(10.722 \times 0.00440287)} = 1694.6 \text{ lpm}
\]

Therefore, an input frequency of 80.00 Hz represents a flow rate of 1694.6 lpm in this application.

For a given input frequency, you may also determine the current output. Use the above example with an input frequency of 80.00 Hz:

\[
I = \left(\frac{F_{(Hz)}}{(K \times C_8)} - LRV \right) \times \left(16 \right) + 4
\]

\[
I = \left(\frac{80}{(10.772 \times 0.00440287) - 0} \right) \times \left(16 \right) + 4
\]

= 17.49 mA

Therefore, an input frequency of 80.00 Hz represents a current output of 17.49 mA.
Example 2 (SI units)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>= Saturated Steam</th>
</tr>
</thead>
<tbody>
<tr>
<td>URV</td>
<td>= 3600 kg/hr</td>
</tr>
<tr>
<td>Line size</td>
<td>= 80 mm.</td>
</tr>
<tr>
<td>Line pressure</td>
<td>= 700 kPas</td>
</tr>
<tr>
<td>C<sub>16</sub></td>
<td>= C<sub>11</sub>/ρ (from Table C-1 on page 116)</td>
</tr>
<tr>
<td>Operating Temperature</td>
<td>= 170 °F</td>
</tr>
<tr>
<td>Viscosity</td>
<td>= 0.015 cp</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>= 650 Hz</td>
</tr>
<tr>
<td>K-factor (compensated)</td>
<td>= 10.715 (via Field Communicator or AMS)</td>
</tr>
</tbody>
</table>

\[
M = \frac{F(Hz)}{(K \times C_{16})} = \frac{650}{(10.715 \times (0.0733811/4.169))} = \frac{650}{(10.715 \times 0.017602)} = 3446.4 \text{ kg/hr}
\]

Therefore, an input frequency of 650.00 Hz represents a flow rate of 3446.4 kg/hr in this application.

For a given input frequency, you may also determine the current output. Use the prior example with an input frequency of 275 Hz:

\[
I = \left(\frac{F(Hz)}{(K \times C_{16} - LRV)} \times (16) \right) + 4
\]

\[
I = \left(\frac{275}{((10.715 \times 0.017602) - 0)} \times (16) \right) + 4
\]

= 10.48 mA

Therefore, an input frequency of 275.00 Hz represents an output current of 10.48 mA.
Example 3 (SI units)

<table>
<thead>
<tr>
<th>Fluid</th>
<th>Natural gas</th>
</tr>
</thead>
<tbody>
<tr>
<td>URV</td>
<td>10,000 NCMH</td>
</tr>
<tr>
<td>Line size</td>
<td>80 mm</td>
</tr>
<tr>
<td>LRV</td>
<td>0 NCMH</td>
</tr>
<tr>
<td>Line pressure</td>
<td>1000 KPas</td>
</tr>
<tr>
<td>C_{20}</td>
<td>$C_1/10.48$</td>
</tr>
<tr>
<td>Operating</td>
<td>10 °F</td>
</tr>
<tr>
<td>Temperature</td>
<td>Density (ρ)</td>
</tr>
<tr>
<td>Viscosity</td>
<td>0.01 cp</td>
</tr>
<tr>
<td>Input Frequency</td>
<td>700 Hz</td>
</tr>
<tr>
<td>K-factor (compensated)</td>
<td>10.797 (via Field Communicator or AMS)</td>
</tr>
</tbody>
</table>

Therefore, an input frequency of 700.00 Hz represents a flow rate of 9259.2 NCMH in this application.

For a given input frequency, you may also determine the current output. Use the prior example with an input frequency of 375 Hz.

URV = 10000 NCMH LRV = 0 NCMH $F_{in}(Hz) = 375.00$

\[
I = \left(\frac{F(Hz)/(K \times C_{20}) - LRV}{URV - LRV} \right) \times (16) + 4
\]

\[
I = \left(\frac{375/(10.797 \times 0.0070020) - 0}{10000 - 0} \right) \times (16) + 4
\]

= 11.94 mA

Therefore, an input frequency of 375.00 Hz represents a current output of 11.94 mA.
Appendix D HART® Menu Tree

D.1 Overview

The Rosemount 8600D HART menu tree is shown in Figure D-1.
Table D-1. Rosemount 8600D HART Menu Tree

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PV</td>
<td>1. Test/Status</td>
<td>1. Tag</td>
<td>1. Characterize Meter</td>
<td>1. PV Damping</td>
</tr>
<tr>
<td>2. PV % Range</td>
<td>2. Loop Test</td>
<td>2. Process Config</td>
<td>2. Configure Outputs</td>
<td>- Auto Adjust Filter</td>
</tr>
<tr>
<td></td>
<td>5. D/A Trim</td>
<td>5. Mating Pipe ID</td>
<td></td>
<td>3. Sig/Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7. PV Unit</td>
<td>1. Optimize Flow Range</td>
<td>1. PV</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9. PV Damping</td>
<td>3. Filter Restore</td>
<td>3. Sig/Tr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4. Damping</td>
<td>4. Low Flow Cutoff</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5. LFC Response</td>
<td>5. Trigger Level</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. PV</td>
<td>1. View Status</td>
<td>1. PV</td>
<td>1. Poll Address</td>
<td>1. Universal Rev</td>
</tr>
<tr>
<td>2. PV % Range</td>
<td>2. Config Status</td>
<td>2. LFC</td>
<td>2. # of Req Preams</td>
<td>2. Transmitter Rev</td>
</tr>
<tr>
<td></td>
<td>5. Self Test</td>
<td>5. Trigger Level</td>
<td>5. Burst Option</td>
<td>5. Final Assembly</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7. Board Serial #</td>
</tr>
</tbody>
</table>

1. CJ Temp 2. CJ Temp Units 3. T/C Failure Mode

1. Min Electr Temp 2. Max Electr Temp

1. PV is 2. SV is 3. TV is 4. QV is

1. URV 2. LRV 3. PV Min Span 4. USL 5. LSL

1. USL 2. LSL 3. PV Min Span 4. USL 5. LSL

1. Transmitter Options | 2. Filter Restore | 3. Auto Adjust Filter |

1. PV 2. LFC 3. Sig/Tr 4. Auto Adjust Filter

1. Xmttr Var, Slot 1 2. Xmttr Var, Slot 2 3. Xmttr Var, Slot 3 4. Xmttr Var, Slot 4

1. Operating Conditions 2. Base Conditions 3. Exit

1. Density Ratio 2. Compensated K Factor

1. Transmitter Options | 2. Filter Restore | 3. Auto Adjust Filter |

1. PV 2. LFC 3. Sig/Tr 4. Auto Adjust Filter

1. Xmttr Var, Slot 1 2. Xmttr Var, Slot 2 3. Xmttr Var, Slot 3 4. Xmttr Var, Slot 4

1. Operating Conditions 2. Base Conditions 3. Exit

1. Density Ratio 2. Compensated K Factor

1. Transmitter Options | 2. Filter Restore | 3. Auto Adjust Filter |

1. PV 2. LFC 3. Sig/Tr 4. Auto Adjust Filter

1. Xmttr Var, Slot 1 2. Xmttr Var, Slot 2 3. Xmttr Var, Slot 3 4. Xmttr Var, Slot 4

1. Operating Conditions 2. Base Conditions 3. Exit

Index

A
Air Flow Rate Limits ... 93
Ambient Temperature Limits 90
Analog Output .. 90

B
Back Pressure ... 91
Basic Configuration
 Flow Units ... 15
 Service Type .. 12

C
Cable Connections ... 40
Cable Gland ... 33
Calibration ... 41, 92
Changing the Housing Orientation 87
Coaxial Cable
 Electronics Housing End 85
Commissioning .. 21, 67
Common Mode Noise Rejection 98
Conduit Connections ... 33
Cover O-rings ... 98

D
Damping .. 92
Digital-to-Analog Trim 50
Disassembly Procedure 76

E
Electrical Connections 98
Electrical considerations
 Grounding ... 34
 Electronics Boards Replacement 77
 Electronics Housing Replacement 79
 Electronics Mounting 32
 EMI/RFI Effect ... 98
 Enclosure Rating ... 91

F
Failure Mode ... 28
Failure Mode Alarm ... 91
Failure Mode Switch ... 27
Flange Bolt Torquing Sequence 32
Flange Bolts .. 31
Flanged-style Flowmeter Installation 31
Flanged-style Flowmeter Mounting 31
Flow Calibration ... 92
Flow Direction .. 30
Flow Rates ... 89
Flow Units ... 15
Flowmeter Grounding .. 32
Flowmeter Orientation .. 23
Flowmeter Sizing ... 23
Frequency Adjustment .. 90

G
Gaskets .. 30
General Considerations 23
Grounding the transmitter 34

H
Handling .. 29
Hardware Configuration 27
Hardware Replacement 75
 Electronics Boards 77
 Electronics Housing 79
 Remote Electronics 83
 Terminal Block ... 76
Hazardous Locations Certifications 97
High-Point Installation 33
Housing .. 98
Humidity Limits ... 92

I
Introduction .. 1

L
LCD Diagnostic Messages 73
LCD Indicator ... 91, 111
LCD Installation ... 43
Line Size Range Switch 87
Line Sizes .. 89
Load Limitations ... 90
Low Flow Cutoff .. 92

M
Magnetic-Field Interference 98
Measurable Flow Rates 89
Minimum Back Pressure 91
Mounting ... 40, 98
Mounting Position Effect 98

N
NACE Compliance .. 98
Non-Wetted Materials 98
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Signals</td>
<td>90</td>
</tr>
<tr>
<td>Output Testing</td>
<td>92</td>
</tr>
<tr>
<td>Overrange Capability</td>
<td>92</td>
</tr>
<tr>
<td>Paint</td>
<td>98</td>
</tr>
<tr>
<td>Performance Specifications</td>
<td>97</td>
</tr>
<tr>
<td>Physical Specifications</td>
<td>98</td>
</tr>
<tr>
<td>Power Supply</td>
<td>34, 90</td>
</tr>
<tr>
<td>Power Supply Effect</td>
<td>98</td>
</tr>
<tr>
<td>Power Supply Load Limitations</td>
<td>90</td>
</tr>
<tr>
<td>Pressure Limits</td>
<td>90</td>
</tr>
<tr>
<td>Process Connections</td>
<td>98</td>
</tr>
<tr>
<td>Process Temperature</td>
<td>90</td>
</tr>
<tr>
<td>Process Temperature Effect</td>
<td>97</td>
</tr>
<tr>
<td>Process Variables</td>
<td>4</td>
</tr>
<tr>
<td>Pulse Output</td>
<td>37</td>
</tr>
<tr>
<td>Remote Electronics</td>
<td>39</td>
</tr>
<tr>
<td>Remote Electronics Procedures</td>
<td>83</td>
</tr>
<tr>
<td>Repeatability</td>
<td>97</td>
</tr>
<tr>
<td>Response Time</td>
<td>92</td>
</tr>
<tr>
<td>Return of Material</td>
<td>87</td>
</tr>
<tr>
<td>Review</td>
<td>3</td>
</tr>
<tr>
<td>Reviewing Configuration Data</td>
<td>3</td>
</tr>
<tr>
<td>Safety</td>
<td>21, 67, 111</td>
</tr>
<tr>
<td>Saturation Output Values</td>
<td>91</td>
</tr>
<tr>
<td>Scalable Frequency Adjustment</td>
<td>90</td>
</tr>
<tr>
<td>Scaled D/A Trim</td>
<td>50, 51</td>
</tr>
<tr>
<td>Security Lockout</td>
<td>92</td>
</tr>
<tr>
<td>Sensor Installation</td>
<td>82</td>
</tr>
<tr>
<td>Sensor Replacement</td>
<td></td>
</tr>
<tr>
<td>Cleaning the Sensor Sealing Surface</td>
<td>82</td>
</tr>
<tr>
<td>Series Mode Noise Rejection</td>
<td>98</td>
</tr>
<tr>
<td>Service Type</td>
<td>12</td>
</tr>
<tr>
<td>Software Configuration</td>
<td></td>
</tr>
<tr>
<td>Basic Steps</td>
<td>41</td>
</tr>
<tr>
<td>Software Diagnostics</td>
<td>67</td>
</tr>
<tr>
<td>Stability</td>
<td>97</td>
</tr>
<tr>
<td>Temperature Limits</td>
<td>90</td>
</tr>
<tr>
<td>Terminal Block Replacement</td>
<td>76</td>
</tr>
<tr>
<td>Totalizer</td>
<td></td>
</tr>
<tr>
<td>Totalizer Control</td>
<td>8, 9</td>
</tr>
<tr>
<td>Transient Protection</td>
<td>44</td>
</tr>
<tr>
<td>Transient Protector</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>44</td>
</tr>
<tr>
<td>Transmitter Security</td>
<td>28</td>
</tr>
<tr>
<td>Transmitter Security Switch</td>
<td>27</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>87</td>
</tr>
<tr>
<td>Turn-on Time</td>
<td>92</td>
</tr>
<tr>
<td>Upstream/Downstream Piping</td>
<td>24</td>
</tr>
<tr>
<td>Vertical Installation</td>
<td>23</td>
</tr>
<tr>
<td>Vibration Effect</td>
<td>97</td>
</tr>
</tbody>
</table>