Specifications

Contact Design: One normally open (N.O.) and one normally closed (N.C.), isolated contacts

Contact Ratings: 8A @ 110 VAC resistive, 5Amps @ 30 VDC resistive

Contact Life: Mechanical - 10 million operations. Electrical - 100,000 operations minimum at rated load

Electronics Module: Solid state components epoxy encapsulated in a black nylon shell

Supply Voltage: 24 VAC, 115 VAC or 230 VAC models +10% -15%, 50/60 Hz.

Supply Current: Relays energized - 1.7 VA.

Secondary Circuit: 17XXX0 - 13 VAC RMS voltage on probes, 4 mA (nominal)

17HXXX0 - 13 VDC RMS voltage on probes, 4 MA (nominal)

Sensitivity: Models operate from 0-470,000 ohms maximum specific resistance (factory set)

Temperature: -40° to 150° F ambient.

Terminals: Size 6 pan head screws with captivated wire clamping plate.

Listings: FM File #1G9A1.AX - Approved for use in Class I or II, Division 1, Groups A-G hazardous atmospheres.

Location: The control must be situated in a non-hazardous area where an explosive atmosphere will not exist at any time.

Wiring:
1. Intrinsically safe wiring must be kept separate from non-intrinsically safe wiring.
2. Intrinsically safe and non-intrinsically safe wiring may occupy the same enclosure or raceway if they are at least 2 inches (50 mm) apart and separately bed down. Inside panels, field wiring terminals for intrinsically safe circuits must be separated by at least 2 inches (50 mm) from non-intrinsically safe terminals.
3. Wire the control device(s) to the Series 17 relay as shown in the specific application wiring diagram on the inside pages. A separate rigid metallic conduit should be used to enclose the conductors of the intrinsically safe circuit.
4. An approved seal should be used at the point where the intrinsically safe control circuit wiring enters the hazardous area.

Use the following chart as a guide for maximum wire runs for differential level service (3-wire) field wiring.

<table>
<thead>
<tr>
<th>Model</th>
<th>Sensitivity (K-ohms/Probe Voltage)</th>
<th>Primary Voltage (VAC)</th>
<th>Primary Voltage (VDC)</th>
<th>Sensitivity Resistor (Ohm Valve)</th>
</tr>
</thead>
<tbody>
<tr>
<td>170000</td>
<td>3.3/A.C.</td>
<td>5000</td>
<td>1000</td>
<td>Jumper</td>
</tr>
<tr>
<td>170010</td>
<td>4.7/A.C.</td>
<td>3500</td>
<td>1000</td>
<td>4.7K</td>
</tr>
<tr>
<td>170020</td>
<td>10/A.C.</td>
<td>1750</td>
<td>1000</td>
<td>10K</td>
</tr>
<tr>
<td>170050</td>
<td>22/A.C.</td>
<td>1000</td>
<td>1000</td>
<td>22K</td>
</tr>
<tr>
<td>170150</td>
<td>47/A.C.</td>
<td>500</td>
<td>500</td>
<td>47K</td>
</tr>
<tr>
<td>170200</td>
<td>100/A.C.</td>
<td>250</td>
<td>250</td>
<td>100K</td>
</tr>
<tr>
<td>170250</td>
<td>220/A.C.</td>
<td>100</td>
<td>100</td>
<td>220K</td>
</tr>
<tr>
<td>170300</td>
<td>470/A.C.</td>
<td>50</td>
<td>50</td>
<td>470K</td>
</tr>
<tr>
<td>17H0000</td>
<td>D.C.</td>
<td>5000</td>
<td>1000</td>
<td>Jumper</td>
</tr>
</tbody>
</table>

*Longer distances may be possible. Consult factory for assistance.

Ordering Information:

17 X X X X

- **Enclosure:** 0- none, 1- NEMA 1, 4- NEMA 4, 7- NEMA 7
- **Sensitivity (Ohms):** C- 3.3K D- 4.7K E- 10K, F- 22K G- 47K H- 100K J- 220K K- 470K
- **Voltage:** 50/60Hz 1- 120 VAC, 2- 240 VAC, 3- 24 VAC
- **Mode of Operation:** A- Direct, B- Inverse

17H X X X X

- **Enclosure:** 0- none, 1- NEMA 1, 4- NEMA 4, 7- NEMA 7
- **Sensitivity (Ohms):** C- 3.3K D- 4.7K E- 10K, F- 22K G- 47K H- 100K J- 220K K- 470K
- **Voltage:** 1- 120 VAC, 2- 240 VAC, 3- 24 VAC
- **Mode of Operation:** A- Direct, B- Inverse

D.C. on probe sensing circuit
Single Level Service: Conductance Actuated

1) Connect terminals 1 & 2 to appropriate VAC supply line.
2) Install sensitivity resistor between terminals RH & H and metallic jumper between terminals H & L. The resistor value determines the control sensitivity. (See chart on Pg. 1)
3) Connect terminal L to the electrode.
4) Wire contacts 3-4 normally open and 5-6 normally closed into load circuit as required.

Note: Jumper and resistors must be installed as shown to insure proper operation.

Differential Level Service: Conductance Actuated

1) Connect terminals 1 & 2 to appropriate VAC supply line.
2) Install sensitivity resistor between terminals RH & H and RL & L. The resistor value determines the control sensitivity. (See chart on Pg. 1) Both resistors must be of equal value.
3) Connect terminal H to high electrode and terminal L to low electrode.
4) Wire contacts 3-4 normally open and 5-6 normally closed into load circuit as required.

Note: Jumper and resistors must be installed as shown to insure proper operation.

Single Input (Non-Latching): Pilot Contact Actuated

1) Connect terminals 1 & 2 to appropriate VAC supply line.
2) Install metallic jumper between terminals RH & H and terminals H & L.
3) Wire contacts 3-4 normally open and 5-6 normally closed into load circuit as required.
4) Connect the pilot contact to terminals G and L.

Note: Jumper and resistors must be installed as shown to insure proper operation.

Dual Input (Latching): Pilot Contact Actuated

1) Connect terminals 1 & 2 to appropriate VAC supply line.
2) Install metallic jumpers between terminals RH & H and terminals RL & L.
3) Wire contacts 3-4 normally open and 5-6 normally closed into load circuit as required.
4) Connect the latch pilot contact to terminals G & H and the unlatch pilot contact to terminals G & L.

Note: Jumper and resistors must be installed as shown to insure proper operation.