
# Technical Information Levelflex FMP51, FMP52, FMP54

Guided wave radar





#### Application

- Rod, rope or coax probe
- Process connection: Starting 3/4" thread, flange or process connections for hygiene requirements (Tri-Clamp, 11851)
- Process temperature: -196 to +450 °C (-320 to +842 °F)
- Process pressure: -1 to +400 bar (-14.5 to +5800 psi)
- Maximum measuring range: Rod 10 m (33 ft); rope 45 m (148 ft); coax 6 m (20 ft)
- Accuracy: ±2 mm (±0.08 in)
- International explosion protection certificates; WHG; marine approval; steam boiler approval; EN10204-3.1
- Linearity protocol (3-point, 5-point)

#### Your benefits

- Reliable measurement even for changing product and process conditions
- HistoROM data management for easy commissioning, maintenance and diagnostics
- Highest reliability due to Multi-Echo Tracking
- Hardware and software developed according to IEC 61508 (up to SIL3)
- Seamless integration into control or asset management systems
- Intuitive user interface in national languages
- $\blacksquare$  Bluetooth® wireless technology for commissioning, operation and maintenance via free iOS / Android app SmartBlue
- Easy proof test for SIL and WHG
- Heartbeat Technology™



# Table of contents

| Important document information                            |          | Electromagnetic compatibility (EMC)                  | 75         |
|-----------------------------------------------------------|----------|------------------------------------------------------|------------|
|                                                           |          | Process                                              | 76         |
| Function and system design                                | . 5      | Process temperature range                            |            |
| Measuring principle                                       |          | Process pressure range                               |            |
| Measuring system                                          |          | Dielectric constant (DC)                             |            |
| <b>5</b> -,                                               |          | Extension of the rope probes due to temperature      | 77         |
| Input                                                     |          |                                                      |            |
| Measured variable                                         |          |                                                      | 78         |
| Measuring range                                           | 13       |                                                      | 78         |
| Blocking distance                                         | 15       |                                                      | 86         |
| Measuring frequency spectrum                              | 15       | Surface roughness of AlloyC coated flanges           | 86         |
|                                                           |          | Shortening probes                                    |            |
| Output                                                    | 16       |                                                      | 87         |
| Output signal                                             | 16       | Materials: Housing GT18 (stainless steel, corrosion- | 0.0        |
| Signal on alarm                                           |          | resistant)                                           |            |
| Linearization                                             | 17       | Materials: GT19 housing (plastic)                    | 05         |
| Galvanic isolation                                        | 17       | coated)                                              | 90         |
| Protocol-specific data                                    | 18       |                                                      | 92         |
|                                                           |          | Materials: Probe                                     | 93         |
| Power supply                                              | 23       | Materials: Mounting bracket                          |            |
| Terminal assignment                                       |          | Materials: Adapter and cable for remote sensor       | 97         |
| Device plugs                                              |          | Materials: Weather protection cover                  |            |
| Power supply                                              |          | F                                                    |            |
| Power consumption                                         |          | 0                                                    | 00         |
| Current consumption                                       |          | Operability                                          |            |
| Power supply failure                                      | 37       | Operating concept                                    |            |
| Potential equalization                                    | 37       | Local operation                                      | TUC        |
| Terminals                                                 | 37       | Operation with remote display and operating module   | 1 00       |
| Cable entries                                             | 37       | FHX50                                                |            |
| Cable specification                                       | 37       |                                                      | 101        |
| Overvoltage protection                                    | 38       |                                                      | 102<br>105 |
|                                                           |          |                                                      | 106        |
| Performance characteristics                               | 39       | Supply date inventory management software            | 100        |
| Reference operating conditions                            |          | Coult Contract and I amount of                       |            |
| Reference accuracy                                        | 39       | Certificates and approvals                           |            |
| Resolution                                                | 42       | CE mark                                              |            |
| Response time                                             |          | RoHS                                                 |            |
| Influence of ambient temperature                          | 42       | RCM-Tick marking                                     |            |
| Influence of gas phase                                    | 43       |                                                      | 109<br>109 |
| Gas phase compensation with external pressure sensor      |          | Functional safety                                    |            |
| (PROFIBUS PA / FOUNDATION Fieldbus)                       | 43       | Overfill prevention                                  |            |
| Gas phase compensation using reference signal (option for |          | *                                                    | 109        |
| FMP54)                                                    | 44       |                                                      | 109        |
|                                                           |          |                                                      | 110        |
| Installation                                              | 46       |                                                      | 110        |
| Installation conditions                                   | 46       |                                                      | 110        |
|                                                           |          | Pressure equipment with allowable pressure           |            |
| On anating can dition at Farring name at                  | 60       |                                                      | 110        |
| Operating conditions: Environment                         | 68       | Pressure equipment with allowable pressure >         |            |
| Ambient temperature                                       |          |                                                      | 110        |
| Ambient temperature limits                                | 68<br>75 |                                                      | 110        |
| Storage temperature                                       | 75<br>75 |                                                      | 111        |
| Altitude according to IEC61010-1 Ed.3                     | 75<br>75 |                                                      | 111        |
| Degree of protection                                      | 75       | CRN approval                                         | 111        |
| Vibration resistance                                      | 75       | 1                                                    | 112        |
| Cleaning the probe                                        | 75       | Test, certificate                                    | 113        |
| organing are proper                                       | , _      |                                                      |            |

2

| Hard-copy product documentation    | 113 |
|------------------------------------|-----|
| Other standards and guidelines     |     |
| Ordering information               | 115 |
| Ordering information               | 115 |
| 3-point linearity protocol         | 116 |
| 5-point linearity protocol         | 117 |
| Customer-specific configuration    | 119 |
| Tagging (TAG)                      | 119 |
| A 1: ti                            | 120 |
| Application packages               | 120 |
| Heartbeat Diagnostics              | 120 |
| Heartbeat Verification             | 121 |
| Heartbeat Monitoring               | 122 |
| Accessories                        | 123 |
| Device-specific accessories        |     |
| Communication-specific accessories |     |
| Service-specific accessories       | 136 |
| System components                  | 136 |
|                                    | 100 |
| Supplementary documentation        | 136 |
| Brief Operating Instructions (KA)  |     |
| Operating Instructions (BA)        |     |
| Safaty Instructions (XA)           | 136 |

## Important document information

#### Symbols used

#### Safety symbols

#### **▲** DANGER

This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury.

#### **WARNING**

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury.

#### **A** CAUTION

This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.

#### NOTICE

This symbol contains information on procedures and other facts which do not result in personal injury.

#### **Electrical symbols**

#### \_\_\_

Direct current



Alternating current



Direct current and alternating current



#### **Ground connection**

A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system.



#### Protective earth (PE)

Ground terminals that must be connected to ground prior to establishing any other connections. The ground terminals are located on the inside and outside of the device.

- Interior ground terminal; protective earth is connected to the mains supply.
- Exterior ground terminal; device is connected to the plant grounding system.

#### Symbols for certain types of information and graphics

#### **✓** Permitted

Procedures, processes or actions that are permitted

#### **⋉** Forbidden

Procedures, processes or actions that are forbidden

#### H Tip

Indicates additional information



Reference to documentation

Reference to graphic



Notice or individual step to be observed

#### 1., 2., 3.

Series of steps

Result of a step

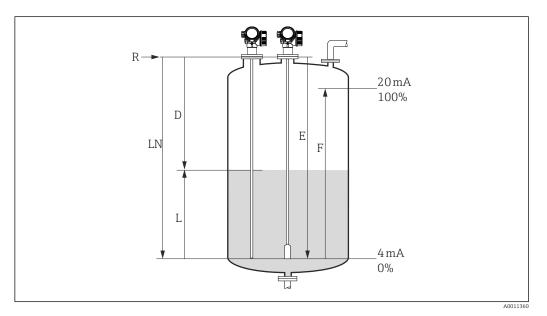
#### 1, 2, 3, ...

Item numbers

#### A, B, C, ...

Views

#### Temperature resistance of the connection cables


Specifies the minimum value of the temperature resistance of the connection cables

# Function and system design

#### Measuring principle

#### **General principles**

The Levelflex is a "downward-looking" measuring system that functions according to the time-of-flight method (ToF). The distance from the reference point to the product surface is measured. High-frequency pulses are injected to a probe and led along the probe. The pulses are reflected by the product surface, received by the electronic evaluation unit and converted into level information. This method is also known as TDR (time domain reflectometry).



- eals 1 Parameters for level measurement with guided wave radar
- LN Probe length
- D Distance
- L Level
- R Reference point of measurement
- E Empty calibration (= zero)
- F Full calibration (= span)
- If the  $\varepsilon_r$  value is less than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight (0 to 250 mm (0 to 9.84 in) from the probe end), (lower blocking distance).
- ho The reference point **R** of the measurement is located at the process connection.

#### Dielectric constant

The dielectric constant (DC) of the medium directly affects the degree of reflection of the high-frequency pulses. In the case of large DC values, such as with water or ammonia, there is strong pulse reflection while, in the case of low DC values, such as with hydrocarbons, pulse reflection is weak.

#### Input

The reflected pulses are transmitted from the probe to the electronics. Here, a microprocessor evaluates the signals and identifies the level echo which was caused by the reflection of the high-frequency pulses at the product surface. This clear signal detection system benefits from over 30 years of experience with pulse time-of-flight procedures that have gone into the development of the PulseMaster® software.

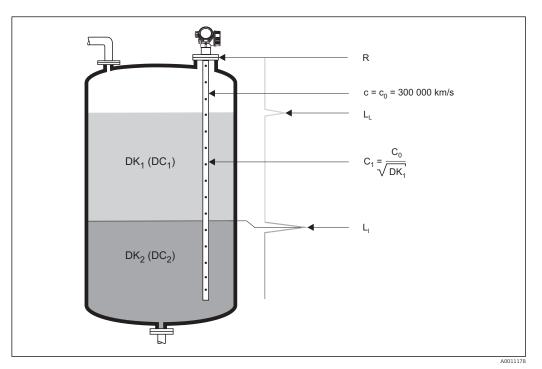
The distance D to the product surface is proportional to the time of flight t of the impulse:

 $D = c \cdot t/2$ .

with c being the speed of light.

Based on the known empty distance E, the level L is calculated:

L = E - D


The Levelflex has functions for interference echo suppression that can be activated by the user. They guarantee that interference echoes from internal fixtures and struts, for example, are not interpreted as level echoes.

#### Output

The Levelflex is preadjusted at the factory to the probe length ordered so that in most cases only the application parameters that automatically adapt the device to the measuring conditions need to be entered. For models with a current output, the factory adjustment for zero point E and span F is 4 mA and 20 mA, for digital outputs and the display module 0 % and 100 %. A linearization function with max. 32 points, based on a table entered either manually or semi-automatically, can be activated locally or remotely. This function allows the level to be converted into units of volume or mass, for example.

#### Interface measurement

When the high-frequency pulses hit the surface of the medium, only a percentage of the transmission pulse is reflected. In the case of media with a low  $DC_1$ , in particular, the other part penetrates the medium. The pulse is reflected once more at the interface point to a second medium with a higher  $DC_2$ . The distance to the interface layer now can also be determined taking into account the delayed time-of-flight of the pulse through the upper medium.



■ 2 Interface measurement with the guided radar

LL Level complete

LI Level interface

R Reference point of measurement

In addition, the following general conditions must be observed for interface measurement:

- The DC of the upper medium must be known and constant <sup>1)</sup>. The DC can be determined with the aid of the DC manual CP00019F or the "DC Values App". In addition, if the interface thickness is existing and known, the DC can be calculated automatically via FieldCare.
- The DC of the upper medium may not be greater than 10.
- The DC difference between the upper medium and lower medium must be >10.
- The upper medium must have a minimum thickness of 60 mm (2.4 in).
- Emulsion layers in the area of the interface can strongly attenuate the signal. However, emulsion layers up to 50 mm (2 in) are admissible.
- For dielectric constants (DC values) of many media commonly used in various industries refer to:
  - the Endress+Hauser DC manual (CP01076F)
  - the Endress+Hauser "DC Values App" (available for Android and iOS)

<sup>1)</sup> For FMP55: Under certain conditions measurement is possible even with a changing DC. For details please contact your Endress+Hauser representative.

#### Life cycle of the product

#### Design

- Universal measuring principle
- Measurement is unaffected by product properties
- Hardware and software developed according to SIL IEC 61508
- Genuine, direct interface measurement

#### **Procurement**

- As the global market leader in level measurement, Endress+Hauser guarantees the security of your investment
- Worldwide support and service

#### Installation

- No special tools are required
- Protection against reverse polarity
- Modern, detachable terminals
- Main electronics protected by a separate connection compartment

#### Commissioning

- Fast, menu-quided commissioning in just 6 steps
- Plain text display in local language reduces the risk of error or confusion
- Direct local access to all parameters
- Printed Brief Operating Instructions in the device onsite

#### Operation

- Multi-echo tracking: Reliable measurement thanks to self-learning echo search algorithms taking
  into account the short-term and long-term history and plausibility of the detected signals to
  suppress interference echoes.
- In accordance with NAMUR NE107

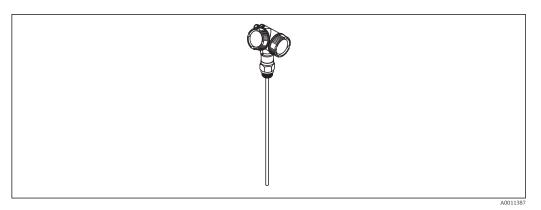
#### Maintenance

- HistoROM: Data backup for device settings and measured values
- Exact device and process diagnostics to assist fast decisions with clear information regarding remedial action
- Intuitive, menu-guided operating concept in local language saves costs for training, maintenance and operation
- Cover of the electronics compartment can also be opened in the hazardous area

#### Retirement

- Order code translation for subsequent models
- RoHS-compliant (Restriction of certain Hazardous Substances), unleaded soldering of electronic components
- Environmentally friendly recycling approach

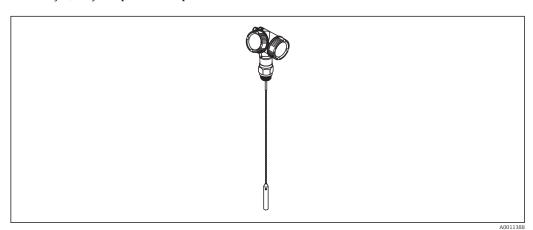
#### Measuring system


#### General notes on probe selection

- Rod probes or coax probes should normally be used for liquids. Rope probes are used in liquids for measuring ranges > 10 m (33 ft) (for FMP52: > 4 m (13 ft)) or if the distance from the ceiling does not permit the installation of rigid probes.
- $\blacksquare$  For interface measurement, ideally coax probes or rod probes are used in the bypass/stilling well.
- Coax probes are suitable for liquids with a viscosity of up to approx. 500 cst. The vast majority of liquefied gases can be measured with coax probes, from a dielectric constant of 1.4. Furthermore, installation conditions, such as nozzles, internal fixtures in the tank etc., have no effect on the measurement when a coax probe is used. A coax probe offers maximum EMC safety when used in plastic tanks.

#### Probe selection

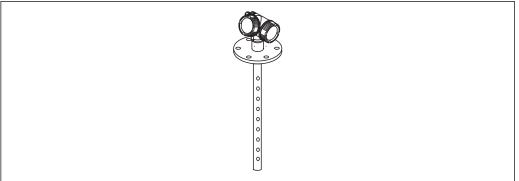
#### FMP51


For level measurement and interface measurement in liquids



■ 3 Rod probe

#### Rod probe


- Maximum probe length
  - 4 m (13 ft); inseparable rod probes
  - 10 m (33 ft); separable rod probes
- Material:
  - 316L; inseparable and separable rod probes
  - Alloy C; only inseparable rod probes



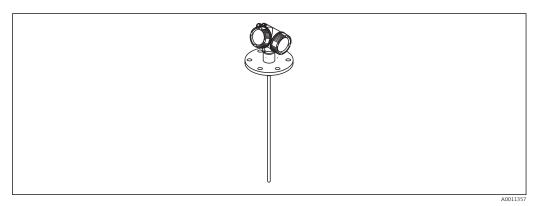
■ 4 Rope probe with centering rod

#### Rope probe

- Maximum probe length 45 m (148 ft)
- Material:
  - 316L
  - Alloy C



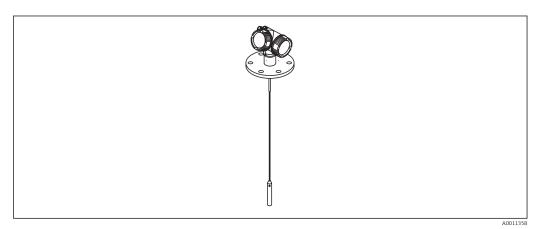
A0011


■ 5 Coax probe

#### Coax probe

- Maximum probe length 6 m (20 ft)
- Material:
  - 316L, multiple holes
  - Alloy C, one hole

#### FMP52


For level measurement and interface measurement in corrosive liquids



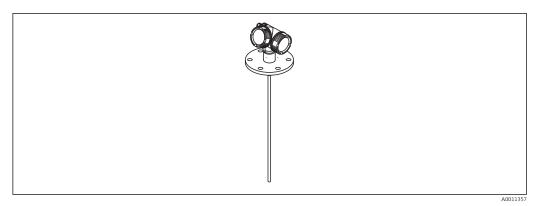
■ 6 Rod probe

#### Rod probe

- Maximum probe length 4 m (13 ft)
- Material: PFA>316L



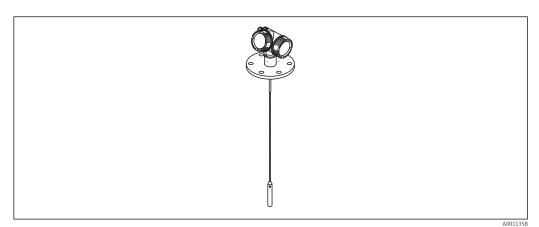
 $\blacksquare$  7 Rope probe with centering rod


#### Rope probe

- Maximum probe length 45 m (148 ft)
- Material: PFA>316L

#### FMP54

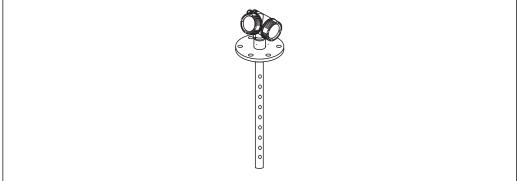
For level measurement and interface measurement in liquids


10



₽8 Rod probe

#### Rod probe


- Maximum probe length 4 m (13 ft)
- Material: 316L



**₽** 9 Rope probe with centering rod

- Rope probe

  Maximum probe length 45 m (148 ft)
- Material: 316L



■ 10 Coax probe

- Coax probe

  Maximum probe length
  6 m (20 ft)

  Material:
  316L, multiple holes

# Input

| Measured variable | The measured variable is the distance between the reference point and the product surface.                        |
|-------------------|-------------------------------------------------------------------------------------------------------------------|
|                   | The level is calculated based on "E", the empty distance entered.                                                 |
|                   | Optionally, the level can be converted to other variables (volume, mass) by linearization (32 points).            |
| Measuring range   | The following table describes the media groups and the possible measuring range as a function of the media group. |

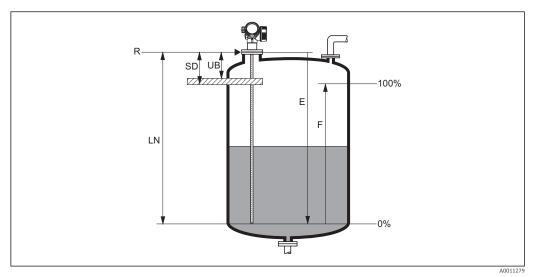
| Levelflex FMP51, FMP54 |                   |                                                                                                         |                                                                           |                               |             |  |  |
|------------------------|-------------------|---------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------|-------------|--|--|
|                        |                   |                                                                                                         |                                                                           | Measuring range <sup>1)</sup> |             |  |  |
| Media group            | $\epsilon_{ m r}$ | Typical liquids                                                                                         | Bare metallic<br>rod probes                                               | Bare metallic rope probes     | Coax probes |  |  |
| 1                      | 1.4 to 1.6        | Liquefied gases, e.g. N2, CO2                                                                           | On re                                                                     | equest                        | 6 m (20 ft) |  |  |
| 2                      | 1.6 to 1.9        | <ul><li>Liquefied gas, e.g. propane</li><li>Solvents</li><li>Freon</li><li>Palm oil</li></ul>           | ■ One-piece: 4 m (13 ft) 15 to 22 m (49 to 72 ft) Separable: 10 m (33 ft) |                               | 6 m (20 ft) |  |  |
| 3                      | 1.9 to 2.5        | Mineral oils, fuels                                                                                     | <ul><li>One-piece: 4 m (13 ft)</li><li>Separable: 10 m (33 ft)</li></ul>  | 22 to 32 m (72 to 105 ft)     | 6 m (20 ft) |  |  |
| 4                      | 2.5 to 4          | <ul><li>Benzene, styrene, toluene</li><li>Furan</li><li>Naphthalene</li></ul>                           | <ul><li>One-piece: 4 m (13 ft)</li><li>Separable: 10 m (33 ft)</li></ul>  | 32 to 42 m<br>(105 to 138 ft) | 6 m (20 ft) |  |  |
| 5                      | 4 to 7            | <ul><li>Chlorobenzene, chloroform</li><li>Nitrocellulose lacquers</li><li>Isocyanate, aniline</li></ul> | <ul><li>One-piece: 4 m (13 ft)</li><li>Separable: 10 m (33 ft)</li></ul>  | 42 to 45 m<br>(138 to 148 ft) | 6 m (20 ft) |  |  |
| 6                      | > 7               | <ul><li>Aqueous solutions</li><li>Alcohols</li><li>Ammonia</li></ul>                                    | <ul><li>One-piece: 4 m (13 ft)</li><li>Separable: 10 m (33 ft)</li></ul>  | 45 m (148 ft)                 | 6 m (20 ft) |  |  |

<sup>1)</sup> The measuring range for interface measurements is limited to  $10 \ m$  (33 ft).

|             | Levelflex FMP52   |                                                                                                         |                          |                            |  |  |
|-------------|-------------------|---------------------------------------------------------------------------------------------------------|--------------------------|----------------------------|--|--|
|             |                   |                                                                                                         | Measuring range 1)       |                            |  |  |
| Media group | $\epsilon_{ m r}$ | Typical liquids                                                                                         | PFA-coated<br>rod probes | PFA-coated rope probes     |  |  |
| 1           | 1.4 to 1.6        | Liquefied gases, e.g. N <sub>2</sub> , CO <sub>2</sub>                                                  | -                        | -                          |  |  |
| 2           | 1.6 to 1.9        | <ul><li>Liquefied gas, e.g. propane</li><li>Solvents</li><li>Freon</li><li>Palm oil</li></ul>           | 4 m (13 ft)              | 9 to 14 m (30 to 46 ft)    |  |  |
| 3           | 1.9 to 2.5        | Mineral oils, fuels                                                                                     | 4 m (13 ft)              | 14 to 21 m (46 to 69 ft)   |  |  |
| 4           | 2.5 to 4          | <ul><li>Benzene, styrene, toluene</li><li>Furan</li><li>Naphthalene</li></ul>                           | 4 m (13 ft)              | 21 to 28 m (69 to 92 ft)   |  |  |
| 5           | 4 to 7            | <ul><li>Chlorobenzene, chloroform</li><li>Nitrocellulose lacquers</li><li>Isocyanate, aniline</li></ul> | 4 m (13 ft)              | 28 to 32 m (92 to 105 ft)  |  |  |
| 6           | > 7               | <ul><li>Aqueous solutions</li><li>Alcohols</li><li>Acids, alkalis</li></ul>                             | 4 m (13 ft)              | 32 to 45 m (105 to 148 ft) |  |  |

<sup>1)</sup> The measuring range for interface measurement is limited to 10 m.




- The formation of buildup, particularly of moist products, can reduce the maximum possible measuring range.
- Due to the high rate of diffusion of ammonia, a gas-tight bushing <sup>2)</sup> is recommended for measurements in this medium.

14

<sup>2)</sup> Always included in FMP54, optionally available for FMP51/52

#### Blocking distance

The upper blocking distance (= UB) is the minimum distance from the reference point of the measurement (mounting flange) to the maximum level.



■ 11 Definition of blocking distance and safety distance

- R Reference point of measurement
- LN Probe length
- UB Upper blocking distance
- *E* Empty calibration (= zero)
- F Full calibration (= span)
- SD Safety distance

#### Blocking distance (factory setting):

- For coax probes: 0 mm (0 in)
- For rod and rope probes up to 8 m (26 ft): 200 mm (8 in)
- For rod and rope probes over 8 m (26 ft): 0.025 × probe length
- The specified blocking distances are factory-preset on delivery. These settings can be changed depending on the application.

For rod and rope probes, the blocking distance can generally be reduced to 100 mm (4 in) for media with DC > 7.

No blocking distance applies for applications in a bypass/stilling well.

A reliable measurement cannot be quaranteed within the blocking distance.

A safety distance SD can be defined in addition to the blocking distance. The device generates a warning if the level rises to enter this safety distance.

# Measuring frequency spectrum

100 MHz to 1.5 GHz

## **Output**

#### Output signal

#### **HART**

Signal coding:

FSK ±0.5 mA over current signal

• Data transmission rate:

1200 Bit/s

• Galvanic isolation:

Yes

#### Bluetooth® wireless technology

Device version:

Order code 610 "Accessory mounted", option NF "Bluetooth"

• Operation / configuration:

Via the *SmartBlue* app

• Range under reference conditions:

> 10 m (33 ft)

• Encryption:

Encrypted communication and password encryption prevent incorrect operation by unauthorized persons

#### PROFIBUS PA

Signal coding:

Manchester Bus Powered (MBP)

Data transmission rate:
 31.25 kBit/s, Voltage mode

• Galvanic isolation:

Yes

#### **FOUNDATION Fieldbus**

Signal coding:

Manchester Bus Powered (MBP)

Data transmission rate:

31.25 kBit/s, Voltage mode

• Galvanic isolation:

Yes

#### Switch output



For HART devices, the switch output is available as an option.

Function:

Open collector switch output

Switching behavior:

Binary (conductive or non-conductive), switches when the programmable switch-on point/switch-off point is reached

Failure mode:

Non-conductive

• Electrical connection data:

 $U = 16 \text{ to } 35 \text{ V}_{DC}$ , I = 0 to 40 mA

• Internal resistor:

 $R_I < 880 \Omega$ 

The voltage drop at this internal resistor must be taken into account when planning the configuration. For example, the resulting voltage at a connected relay must be sufficient to switch the relay.

• Insulation voltages:

Floating, insulation voltage 1350  $\,V_{DC}$  in relation to power supply and 500  $\,V_{AC}$  ground

Switch point:

User-programmable, separate for switch-on point and switch-off point

Switching delay:

User-programmable in the 0 to 100 s range, separate for switch-on point and switch-off point

■ Scan rate:

Corresponds to the measuring cycle

- Signal source / device variables:
  - Level linearized
  - Distance
  - Terminal voltage
  - Electronic temperature
  - Relative echo amplitude
  - Diagnostic values, advanced diagnostic blocks
  - Only for active interface measurement
- Signal source / device variables for active interface measurement:
  - Interface linearized
  - Interface distance
  - Upper interface distance
  - Relative interface amplitude
- Number of switch cycles:

Unlimited

#### Signal on alarm

Depending on the interface, failure information is displayed as follows:

- Current output
  - Choice of failure mode (in accordance with NAMUR Recommendation NE 43):
     Minimum alarm: 3.6 mA

Maximum alarm (= factory setting): 22 mA

- Failure mode with user-configurable value: 3.59 to 22.5 mA
- Local display
  - Status signal (as per NAMUR Recommendation NE 107)
  - Plain text display
- Operating tool via digital communication (HART, PROFIBUS PA, FOUNDATION Fieldbus) or service interface (CDI)
  - Status signal (as per NAMUR Recommendation NE 107)
  - Plain text display

#### Linearization

The device's linearization function allows the user to convert the measured value to any length or volume units. Linearization tables for calculating the volume in cylindrical vessels are preprogrammed into the device. Other tables of up to 32 value pairs can be entered manually or semi-automatically.

#### Galvanic isolation

All circuits for the outputs are galvanically isolated from each other.

## Protocol-specific data

## HART

| Manufacturer ID                    | 17 (0x11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Device type ID                     | 0x1122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HART specification                 | 7.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Device description files (DTM, DD) | Information and files under:  • www.endress.com  • www.fieldcommgroup.org                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| HART load                          | min. 250 Ω                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| HART device variables              | The measured values can be freely assigned to the device variables.  Measured values for PV (primary variable)  Level linearized  Distance  For active interface measurement:  Interface  Interface distance  Upper interface thickness  Relative interface amplitude  Electronic temperature  Relative echo amplitude  Measured values for SV, TV, QV (second, third and fourth variable)  Level linearized  Distance  For active interface measurement:  Interface linearized  Interface distance  Upper interface thickness  Absolute interface amplitude  Relative interface amplitude  Relative interface amplitude  Relative echo amplitude  Relative echo amplitude  Relative echo amplitude  Relative echo amplitude  Calculated Er value |
| Supported functions                | <ul> <li>Burst mode</li> <li>Additional transmitter status</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

## Wireless HART data

| Minimum starting voltage  | 17.5 V |
|---------------------------|--------|
| Start-up current          | 4 mA   |
| Starting time             | 80 s   |
| Minimum operating voltage | 17.5 V |
| Multidrop current         | 4.0 mA |
| Time for connection setup | 30 s   |

#### PROFIBUS PA

| Manufacturer ID     | 17 (0x11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ident number        | 0x1558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Profile version     | 3.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| GSD file            | Information and files under:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| GSD file version    | <ul><li>www.endress.com</li><li>www.profibus.org</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Output values       | Analog Input:  ■ Level linearized  ■ Distance  ■ For active interface measurement:  ■ Interface  ■ Interface distance  ■ Upper interface thickness  ■ Absolute interface amplitude  ■ Absolute interface amplitude  ■ Terminal voltage  ■ Electronic temperature  ■ Absolute echo amplitude  ■ Relative echo amplitude  ■ Relative echo amplitude  ■ Calculated ε <sub>r</sub> value  Digital Input:  ■ Extended diagnostic blocks  ■ Status output PFS Block                                                                                                                                                                                                               |
| Input values        | Analog Output:  Analog value from PLC (for sensor block, external pressure and temperature)  Analog value from PLC to be indicated on the display  Digital Output:  Extended diagnostic block  Level Limiter  Sensor Block Measurement On  Sensor Block Save History On  Status output                                                                                                                                                                                                                                                                                                                                                                                      |
| Supported functions | <ul> <li>Identification &amp; Maintenance         Simple device identification via control system and nameplate</li> <li>Automatic Ident Number Adoption         GSD compatibility mode with predecessor Levelflex M FMP4x</li> <li>Physical Layer Diagnostics         Installation check of the PROFIBUS segment and the Levelflex M FMP4x using terminal voltage and message monitoring</li> <li>PROFIBUS upload/download         Reading and writing parameters is up to ten times faster with PROFIBUS upload/download</li> <li>Condensed status         Simplest and self-explanatory diagnostic information by categorizing diagnostic messages that occur</li> </ul> |

#### FOUNDATION Fieldbus

| Manufacturer ID                     | 0x452B48                                                         |  |
|-------------------------------------|------------------------------------------------------------------|--|
| Device type                         | 0x1028                                                           |  |
| Device revision                     | 0x01                                                             |  |
| DD revision                         | Information and files under:                                     |  |
| CFF revision                        | <ul><li>www.endress.com</li><li>www.fieldcommgroup.org</li></ul> |  |
| Device Tester Version (ITK version) | 6.0.1                                                            |  |
| ITK Test Campaign Number            | IT085300                                                         |  |
| Link Master capability (LAS)        | Yes                                                              |  |

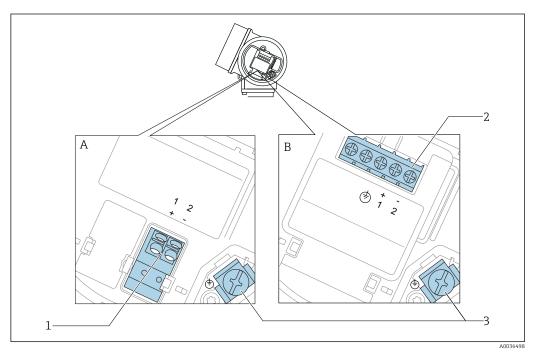
| Choice of "Link Master" and "Basic Device" | Yes; Factory setting: Basic Device                                                           |
|--------------------------------------------|----------------------------------------------------------------------------------------------|
| Node address                               | Factory setting: 247 (0xF7)                                                                  |
| Supported functions                        | The following methods are supported:  Restart  ENP Restart  Setup  Linearization  Self Check |
| Virtual Communication Relationships (VCRs) |                                                                                              |
| Number of VCRs                             | 44                                                                                           |
| Number of link objects in VFD              | 50                                                                                           |
| Permanent entries                          | 1                                                                                            |
| Client VCRs                                | 0                                                                                            |
| Server VCRs                                | 10                                                                                           |
| Source VCRs                                | 43                                                                                           |
| Sink VCRs                                  | 0                                                                                            |
| Subscriber VCRs                            | 43                                                                                           |
| Publisher VCRs                             | 43                                                                                           |
| Device Link Capabilities                   |                                                                                              |
| Slot time                                  | 4                                                                                            |
| Min. delay between PDU                     | 8                                                                                            |
| Max. response delay                        | 20                                                                                           |

#### Transducer Blocks

| Block                                    | Contents                                                                                                                                                                                                    | Output values                                                                                                                 |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Setup Transducer Block                   | Contains all the parameters for standard commissioning                                                                                                                                                      | <ul> <li>Level or volume (channel 1)</li> <li>(depending on the block configuration)</li> <li>Distance (channel 2)</li> </ul> |
| Advanced Setup<br>Transducer Block       | Contains all the parameters for more accurate measurement configuration                                                                                                                                     | No output values                                                                                                              |
| Display Transducer Block                 | Contains parameters to configure the onsite display                                                                                                                                                         | No output values                                                                                                              |
| Diagnostic Transducer<br>Block           | Contains diagnostic information                                                                                                                                                                             | No output values                                                                                                              |
| Advanced Diagnostic<br>Transducer Block  | Contains parameters for advanced diagnostics                                                                                                                                                                | No output values                                                                                                              |
| Expert Configuration<br>Transducer Block | Contains parameters that require the user to have in-depth knowledge of the operation of the device in order to configure the parameters appropriately                                                      | No output values                                                                                                              |
| Expert Information<br>Transducer Block   | Contains parameters that provide information about the state of the device                                                                                                                                  | No output values                                                                                                              |
| Service Sensor<br>Transducer Block       | Contains parameters that can only be accessed by Endress+Hauser Service                                                                                                                                     | No output values                                                                                                              |
| Service Information<br>Transducer Block  | Contains parameters that provide Endress+Hauser<br>Service with information about the state of the<br>device                                                                                                | No output values                                                                                                              |
| Data Transfer<br>Transducer Block        | Contains parameters for backing up the device configuration in the display module and for writing the saved configuration to the device. Access to these parameters is reserved for Endress+Hauser Service. | No output values                                                                                                              |

#### Function blocks

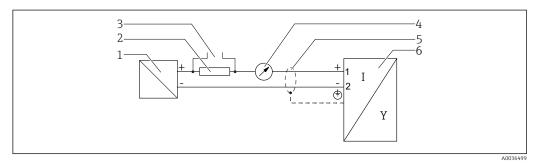
| Block                                | Contents                                                                                                                                                                                                                                                                            | Number of permanent blocks | Number of instantiatable blocks | Execution time | Functionality |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|----------------|---------------|
| Resource Block                       | The Resource Block contains all the data that uniquely identify the device. It is an electronic version of a nameplate of the device.                                                                                                                                               | 1                          | 0                               | -              | Enhanced      |
| Analog Input<br>Block                | The AI Block receives the measuring data from the Sensor Block (selectable via a channel number), and makes the data available to other blocks at its output.                                                                                                                       | 2                          | 3                               | 25 ms          | Enhanced      |
| Discrete Input<br>Block              | The Discrete Input Block receives a discrete value (e.g. indicator that measuring range has been exceeded) and makes the value available for other blocks at the output.                                                                                                            | 1                          | 2                               | 20 ms          | Standard      |
| Multiple<br>Analog Output<br>Block   | The Multiple Analog Output<br>Block is used to transmit analog<br>values from the bus to the device.                                                                                                                                                                                | 1                          | 0                               | 20 ms          | Standard      |
| Multiple<br>Discrete<br>Output Block | The Multiple Discrete Output<br>Block is used to transmit discrete<br>values from the bus to the device.                                                                                                                                                                            | 1                          | 0                               | 20 ms          | Standard      |
| PID Block                            | The PID Block is used as a proportional-integral-derivative controller and can be used universally for closed-loop-control in the field. It enables cascade mode and feedforward control.                                                                                           | 1                          | 1                               | 25 ms          | Standard      |
| Arithmetic<br>Block                  | The Arithmetic Block is designed to permit simple use of popular measurement math functions. The user does not have to know how to write equations. The math algorithm is selected by name, chosen by the user for the function to be performed.                                    | 1                          | 1                               | 25 ms          | Standard      |
| Signal<br>Characterizer<br>Block     | The Signal Characterizer Block has two sections, each with an output value that is a non-linear function of the input value. The non-linear function is generated by a single look-up table with 21 arbitrary x-y pairs.                                                            | 1                          | 1                               | 25 ms          | Standard      |
| Input Selector<br>Block              | The Input Selector Block facilitates the selection of up to four inputs and generates an output value based on the configured action. This block normally receives its inputs from AI Blocks. The block enables the selection of maximum, minimum, average and 'first good' values. | 1                          | 1                               | 25 ms          | Standard      |


| Block                 | Contents                                                                                                                                                                                                                                                                                                                                                                                           | Number of permanent blocks | Number of instantiatable blocks | Execution time | Functionality |
|-----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|----------------|---------------|
| Integrator<br>Block   | The Integrator Block integrates a variable as a function of the time or accumulates the counts from a Pulse Input Block. The Block can be used as a totalizer that totalizes until a reset, or as a batch totalizer whereby the integrated value is compared against a target value generated before or during the control routine and generates a binary signal when the target value is reached. | 1                          | 1                               | 25 ms          | Standard      |
| Analog Alarm<br>Block |                                                                                                                                                                                                                                                                                                                                                                                                    | 1                          | 1                               | 25 ms          | Standard      |

Up to 20 blocks can be instantiated in the device altogether, including the blocks already instantiated.

# **Power supply**

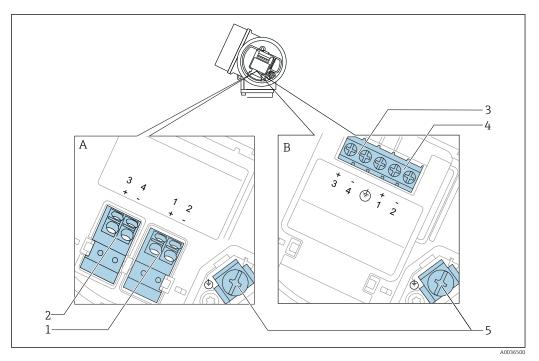
#### Terminal assignment


#### Terminal assignment 2-wire: 4-20 mA HART



■ 12 Terminal assignment 2-wire: 4-20 mA HART

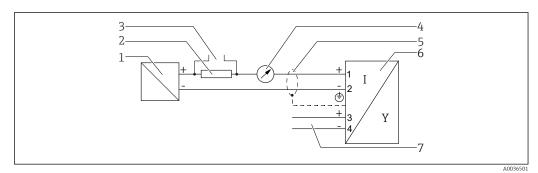
- A Without integrated overvoltage protection
- B With integrated overvoltage protection
- 1 Connection 4-20 mA HART passive: terminals 1 and 2, without integrated overvoltage protection
- $2\qquad \textit{Connection 4-20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection}$
- 3 Terminal for cable screen


#### Block diagram 2-wire: 4-20 mA HART



■ 13 Block diagram 2-wire: 4-20 mA HART

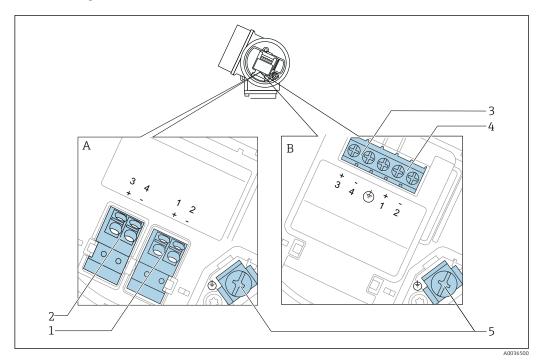
- 1 Active barrier with power supply (e.g. RN221N); observe terminal voltage
- HART communication resistor ( $\geq 250~\Omega$ ); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device


#### Terminal assignment 2-wire: 4-20 mA HART, switch output



🖻 14 Terminal assignment 2-wire: 4-20 mA HART, switch output

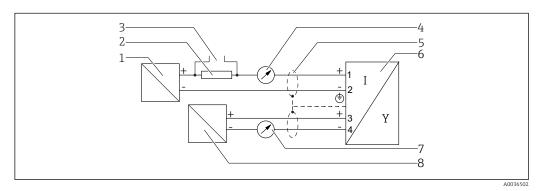
- A Without integrated overvoltage protection
- *B* With integrated overvoltage protection
- 1 Connection 4-20 mA HART passive: terminals 1 and 2, without integrated overvoltage protection
- 2 Connection switch output (Open Collector): terminals 3 and 4, without integrated overvoltage protection
- 3 Connection switch output (Open Collector): terminals 3 and 4, with integrated overvoltage protection
- 4 Connection 4-20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable screen


#### Block diagram 2-wire: 4-20 mA HART, switch output



■ 15 Block diagram 2-wire: 4-20 mA HART, switch output

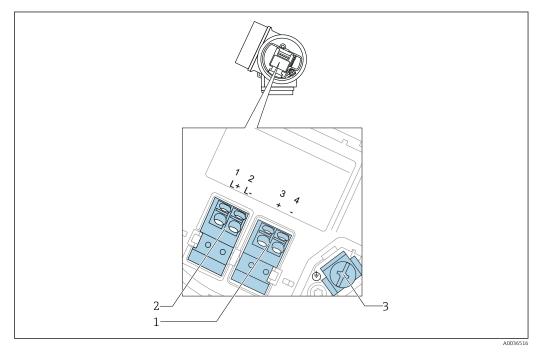
- 1 Active barrier with power supply (e.g. RN221N); observe terminal voltage
- 2 HART communication resistor ( $\geq 250 \Omega$ ); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Switch output (Open Collector)


#### Terminal assignment 2-wire: 4-20 mA HART, 4-20 mA



🛮 16 💮 Terminal assignment 2-wire: 4-20 mA HART, 4-20 mA

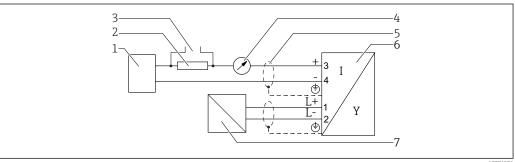
- A Without integrated overvoltage protection
- *B* With integrated overvoltage protection
- 1 Connection current output 1, 4-20 mA HART passive: terminals 1 and 2, without integrated overvoltage protection
- 2 Connection current output 2, 4-20 mA: terminals 3 and 4, without integrated overvoltage protection
- 3 Connection current output 2, 4-20 mA: terminals 3 and 4, with integrated overvoltage protection
- 4 Connection current output 1, 4-20 mA HART passive: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable screen


#### Block diagram 2-wire: 4-20 mA HART, 4-20 mA



🛮 17 💮 Block diagram 2-wire: 4-20 mA HART, 4-20 mA

- $1 \qquad \textit{Active barrier with power supply (e.g. RN221N); observe terminal voltage} \\$
- 2 HART communication resistor ( $\geq 250 \Omega$ ); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- 7 Analog display device; observe maximum load
- Active barrier with power supply (e.g. RN221N), current output 2; observe terminal voltage

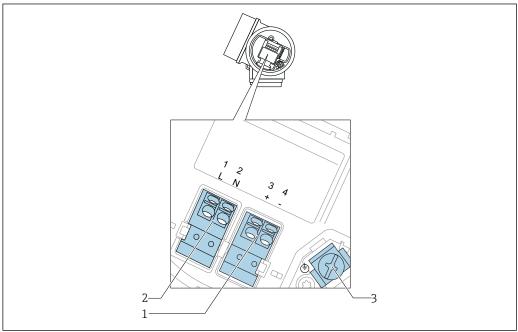

#### Terminal assignment 4-wire: 4-20 mA HART (10.4 to 48 $V_{DC}$ )



€ 18 Terminal assignment 4-wire: 4-20 mA HART (10.4 to 48  $V_{DC}$ )

- Connection 4-20 mA HART (active): terminals 3 and 4 1
- Connection supply voltage: terminals 1 and 2
- Terminal for cable screen

#### Block diagram 4-wire: 4-20 mA HART (10.4 to 48 $V_{DC}$ )




■ 19 Block diagram 4-wire: 4-20 mA HART (10.4 to 48  $V_{DC}$ )

- Evaluation unit, e.g. PLC
- HART communication resistor ( $\geq 250~\Omega$ ); observe maximum load 2
- Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem) 3
- 4 Analog display device; observe maximum load
- 5 Cable screen; observe cable specification
- 6 Measuring device
- Supply voltage; observe terminal voltage, observe cable specification

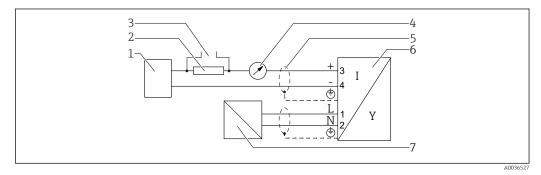
26

#### Terminal assignment 4-wire: 4-20 mA HART (90 to 253 V<sub>AC</sub>)



A0036519

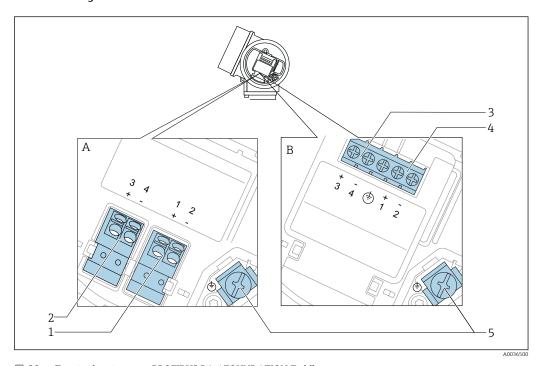
 $\blacksquare$  20 Terminal assignment 4-wire: 4-20 mA HART (90 to 253  $V_{AC}$ )


- Connection 4-20 mA HART (active): terminals 3 and 4
- 2 Connection supply voltage: terminals 1 and 2
- 3 Terminal for cable screen

#### **A** CAUTION

#### To ensure electrical safety:

- ► Do not disconnect the protective connection.
- ▶ Disconnect the supply voltage before disconnecting the protective earth.
- Connect protective earth to the internal ground terminal (3) before connecting the supply voltage. If necessary, connect the potential matching line to the external ground terminal.
- In order to ensure electromagnetic compatibility (EMC): Do **not** only ground the device via the protective earth conductor of the supply cable. Instead, the functional grounding must also be connected to the process connection (flange or threaded connection) or to the external ground terminal.
- An easily accessible power switch must be installed in the proximity of the device. The power switch must be marked as a disconnector for the device (IEC/EN61010).

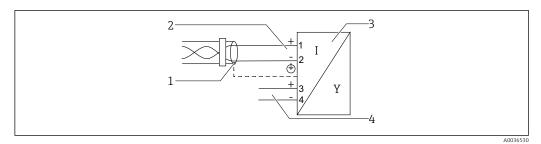

#### Block diagram 4-wire: 4-20 mA HART (90 to 253 V<sub>AC</sub>)



 $\blacksquare$  21 Block diagram 4-wire: 4-20 mA HART (90 to 253  $V_{AC}$ )

- 1 Evaluation unit, e.g. PLC
- 2 HART communication resistor ( $\geq 250 \Omega$ ); observe maximum load
- 3 Connection for Commubox FXA195 or FieldXpert SFX350/SFX370 (via VIATOR Bluetooth modem)
- 4 Analog display device; observe maximum load
- 5 Cable scree; observe cable specification
- 6 Measuring device
- 7 Supply voltage; observe terminal voltage, observe cable specification

#### Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

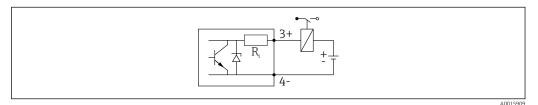



■ 22 Terminal assignment PROFIBUS PA / FOUNDATION Fieldbus

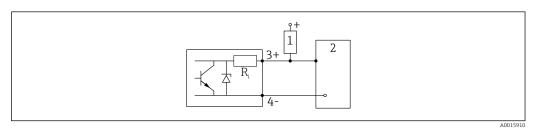
- A Without integrated overvoltage protection
- *B* With integrated overvoltage protection
- 1 Connection PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, without integrated overvoltage protection
- 2 Connection switch output (Open Collector): terminals 3 and 4, without integrated overvoltage protection
- 3 Connection switch output (Open Collector): terminals 3 and 4, with integrated overvoltage protection
- 4 Connection PROFIBUS PA / FOUNDATION Fieldbus: terminals 1 and 2, with integrated overvoltage protection
- 5 Terminal for cable screen

28

## Block diagram PROFIBUS PA / FOUNDATION Fieldbus




■ 23 Block diagram PROFIBUS PA / FOUNDATION Fieldbus


- Cable screen; observe cable specifications Connection PROFIBUS PA / FOUNDATION Fieldbus 2
- Measuring device
- Switch output (open collector)

#### Connection examples for the switch output

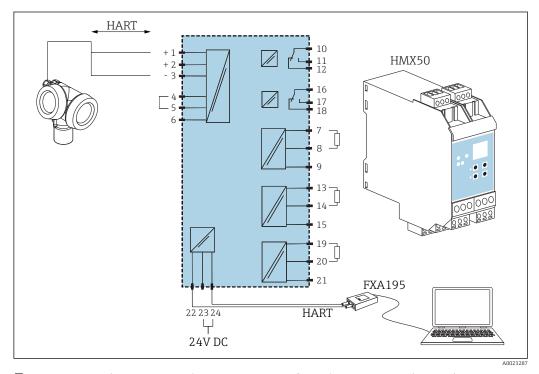
For HART devices, the switch output is available as an option.



■ 24 Connection of a relay



■ 25 Connection to a digital input


- 1 Pull-up resistor
- 2 Digital input

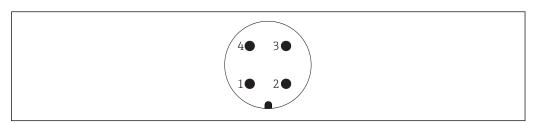
For optimum interference immunity we recommend to connect an external resistor (internal resistance of the relay or pull-up resistor) of  $< 1000 \,\Omega$ .

30

#### HART loop converter HMX50

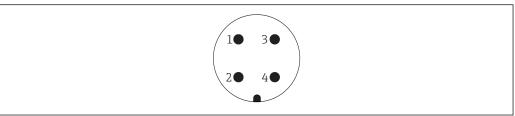
The dynamic variables of the HART protocol can be converted into individual 4 to 20 mA sections using the HART loop converter HMX50. The variables are assigned to the current output and the measuring ranges of the individual parameters are defined in the HMX50.




■ 26 Connection diagram for HART loop converter HMX50 (example: passive 2-wire device and current outputs connected as power source)

The HART loop converter HMX50 can be acquired using the order number 71063562.

Additional documentation: TI00429F and BA00371F.


## Device plugs

In device versions with a device plug (M12 or 7/8"), it is not necessary to open the housing in order to connect the signal cable.



**₽** 27 Pin assignment of M12 plug

- 1 Signal +
- Not assigned
- 3 Signal -
- Ground



A0011176

- 28 Pin assignment of 7/8" plug
- 1
- Signal Signal + 2
- 3 Not assigned
- Shielding

#### Power supply

An external power supply is required.



Various supply units can be ordered from Endress+Hauser.

#### 2-wire, 4-20mA HART, passive

2-wire; 4-20mA HART 1)

| "Approval" 2)                                                         | Terminal voltage U at the device | Maximum load R, depending on the supply voltage $\mbox{\bf U}_0$ at the supply unit |
|-----------------------------------------------------------------------|----------------------------------|-------------------------------------------------------------------------------------|
| <ul><li>Non-Ex</li><li>Ex nA</li><li>Ex ic</li><li>CSA GP</li></ul>   | 11.5 to 35 V <sup>3) 4)</sup>    | R [Ω]<br>500                                                                        |
| Ex ia / IS                                                            | 11.5 to 30 V <sup>4)</sup>       | 0                                                                                   |
| <ul> <li>Ex d / XP</li> <li>Ex ic[ia]</li> <li>Ex tD / DIP</li> </ul> | 13.5 to 30 V <sup>4) 5)</sup>    | R [Ω] 500 10 20 30 U <sub>0</sub> [V] 13.5 24.5                                     |

- 1) Feature 020 of the product structure: option A
- 2) Feature 010 of the product structure
- For ambient temperatures  $T_a \le -30$  °C (-22 °F) a minimum voltage of 14 V is required for the sartup of the device at the minimum error current (3,6 mA). For ambient temperatures  $T_a \ge 60$  °C (140 °F) a minimum voltage of 12V is required for the sartup of the device at the minimum error current (3,6 mA). The startup current can be parametrized. If the device is operated with a fixed current  $I \ge 4,5$  mA (HART multidrop mode), a voltage of  $U \ge 11,5$  V is sufficient throughout the entire range of ambient temperatures.
- 4) If the Bluetooth modem is used, the minimum supply voltage increases by 2 V.
- For ambient temperatures  $T_a \le -20$  °C (-4 °F) a minimum voltage of 16 V is required for the startup of the device at the minimum error current (3.6 mA).

2-wire; 4-20 mA HART, switch output 1)

| "Approval" <sup>2)</sup>                                                                                                                                   | Terminal voltage U at the device | Maximum load R, depending on the supply voltage $\mathbf{U}_0$ at the supply unit |
|------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|-----------------------------------------------------------------------------------|
| <ul> <li>Non-Ex</li> <li>Ex nA</li> <li>Ex nA[ia]</li> <li>Ex ic</li> <li>Ex ic[ia]</li> <li>Ex d[ia] / XP</li> <li>Ex ta / DIP</li> <li>CSA GP</li> </ul> | 13.5 to 35 V <sup>3) 4)</sup>    | R [Ω]<br>500                                                                      |
| <ul> <li>Ex ia / IS</li> <li>Ex ia + Ex d[ia] / IS + XP</li> </ul>                                                                                         | 13.5 to 30 V <sup>3) 4)</sup>    | 0 10 20 30 U <sub>0</sub> [V] 10 13.5 24.5 35                                     |

- 1) Feature 020 of the product structure: option B
- 2) Feature 010 of the product structure
- For ambient temperatures  $T_a \le -30$  °C (-22 °F) a minimum voltage of 16 V is required for the startup of the device at the minimum error current (3.6 mA).
- 4) If the Bluetooth modem is used, the minimum supply voltage increases by 2 V.

2-wire; 4-20mA HART, 4-20mA 1)

| "Approval" 2) | Terminal voltage U at the device | Maximum load R, depending on the supply voltage $\mbox{\bf U}_0$ at the supply unit |
|---------------|----------------------------------|-------------------------------------------------------------------------------------|
| any           | Channel 1:                       |                                                                                     |
|               | 13.5 to 30 V <sup>3) 4) 5)</sup> | R [Ω]                                                                               |
|               |                                  | 0 U <sub>0</sub> [V] 10 20 30 U <sub>0</sub> [V] 13.5 24.5                          |
|               | Channel 2:                       |                                                                                     |
|               | 12 to 30 V                       | R [Ω] 500 10 20 30 U <sub>0</sub> [V] 12 23                                         |

- 1) Feature 020 of the product structure: option C
- 2) Feature 010 of the product structure
- For ambient temperatures  $T_a \le -30 \,^{\circ}\text{C}$  (-22 °F) a minimum voltage of 16 V is required for the startup of the device at the minimum error current (3.6 mA).
- For ambient temperatures  $T_a \le -40$  °C (-40 °F), the maximum terminal voltage must be restricted to U  $\le 28$  V.
- 5) If the Bluetooth modem is used, the minimum supply voltage increases by 2 V.

| Polarity reversal protection                      | Yes                     |
|---------------------------------------------------|-------------------------|
| Admissible residual ripple at f = 0 to 100 Hz     | $U_{SS} < 1 \text{ V}$  |
| Admissible residual ripple at f = 100 to 10000 Hz | U <sub>SS</sub> < 10 mV |

#### 4-wire, 4-20mA HART, active

| "Power supply; Output" 1)                | Terminal voltage                                          | Maximum load R <sub>max</sub> |
|------------------------------------------|-----------------------------------------------------------|-------------------------------|
| <b>K:</b> 4-wire 90-253VAC; 4-20mA HART  | 90 to 253 $V_{AC}$ (50 to 60 Hz), overvoltage category II | 500 Ω                         |
| <b>L:</b> 4-wire 10,4-48VDC; 4-20mA HART | 10.4 to 48 V <sub>DC</sub>                                |                               |

1) Feature 020 of the product structure

#### PROFIBUS PA, FOUNDATION Fieldbus

| "Power supply; Output" 1)                                                           | "Approval" <sup>2)</sup>                                                                                                                                   | Terminal voltage        |
|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| E: 2-wire; FOUNDATION Fieldbus, switch output G: 2-wire; PROFIBUS PA, switch output | <ul> <li>Non-Ex</li> <li>Ex nA</li> <li>Ex nA[ia]</li> <li>Ex ic</li> <li>Ex ic[ia]</li> <li>Ex d[ia] / XP</li> <li>Ex ta / DIP</li> <li>CSA GP</li> </ul> | 9 to 32 V <sup>3)</sup> |
|                                                                                     | <ul><li>Ex ia / IS</li><li>Ex ia + Ex d[ia] / IS + XP</li></ul>                                                                                            | 9 to 30 V <sup>3)</sup> |

- Feature 020 of the product structure Feature 010 of the product structure 1)
- 2)
- Input voltages up to 35 V will not spoil the device.

| Polarity sensitive                              | No  |
|-------------------------------------------------|-----|
| FISCO/FNICO compliant according to IEC 60079-27 | Yes |

#### Power consumption

| "Power supply; Output" 1)             | Power consumption |
|---------------------------------------|-------------------|
| A: 2-wire; 4-20mA HART                | < 0.9 W           |
| B: 2-wire; 4-20mA HART, switch output | < 0.9 W           |
| C: 2-wire; 4-20mA HART, 4-20mA        | < 2 x 0.7 W       |
| K: 4-wire 90-253VAC; 4-20mA HART      | 6 VA              |
| L: 4-wire 10,4-48VDC; 4-20mA HART     | 1.3 W             |

1) Feature 020 of the product structure

#### **Current consumption**

#### HART

| Nominal current                  | $3.6\ to\ 22\ mA,$ the start-up current for multidrop mode can be parametrized (is set to $3.6\ mA$ on delivery) |
|----------------------------------|------------------------------------------------------------------------------------------------------------------|
| Breakdown signal<br>(NAMUR NE43) | adjustable: 3.59 to 22.5 mA                                                                                      |

#### PROFIBUS PA

| Nominal current                                      | 14 mA |
|------------------------------------------------------|-------|
| Failure current FDE (Fault Disconnection Electronic) | 0 mA  |

#### FOUNDATION Fieldbus

| Device basic current                                 | 15 mA |
|------------------------------------------------------|-------|
| Failure current FDE (Fault Disconnection Electronic) | 0 mA  |

#### **FISCO**

| U <sub>i</sub> | 17.5 V |
|----------------|--------|
| I <sub>i</sub> | 550 mA |
| P <sub>i</sub> | 5.5 W  |
| C <sub>i</sub> | 5 nF   |
| Li             | 10 µН  |

#### Power supply failure

- Configuration is retained in the HistoROM (EEPROM).
- Error messages (incl. value of operated hours counter) are stored.

#### Potential equalization

No special measures for potential equalization are required.



If the device is designed for hazardous areas, observe the information in the documentation "Safety Instructions" (XA).

#### **Terminals**

## Without integrated overvoltage protection

Plug-in spring terminals for wire cross-sections 0.5 to 2.5 mm<sup>2</sup> (20 to 14 AWG)

With integrated overvoltage protection

Screw terminals for wire cross-sections 0.2 to 2.5 mm<sup>2</sup> (24 to 14 AWG)

## Cable entries

#### Connection of the power supply and signal cables

To be selected in feature 050 "Electrical connection":

- Coupling M20, material depends on approval:
  - For non-Ex, ATEX, IECEx, NEPSI Ex ia/ic:

Plastic M20x1.5 for cable Ø5 to 10 mm (0.2 to 0.39 in)

- For Dust-Ex, FM IS, CSA IS, CSA GP, Ex ec:
- For Ex db:

No cable gland available

- Thread
  - ½" NPT
  - G ½"
  - M20 × 1.5
- M12 plug / 7/8" plug

Only available for non-Ex, Ex ic, Ex ia

## Connection of remote display FHX50

| Feature 030 "Display, operation"                                     | Cable entry for connection of FHX50 |
|----------------------------------------------------------------------|-------------------------------------|
| L: "Prepared for display FHX50 + M12 connection"                     | M12 socket                          |
| M: "Prepared for display FHX50 + M16 cable gland, custom connection" | M12 cable gland                     |
| N: "Prepared for display FHX50 + NPT1/2 thread, custom connection"   | Thread NPT1/2                       |

## Cable specification

## Devices without integrated overvoltage protection

Pluggable spring-force terminals for wire cross-sections 0.5 to 2.5 mm<sup>2</sup> (20 to 14 AWG)

 $\blacksquare$  Devices with integrated overvoltage protection

Screw terminals for wire cross-sections 0.2 to 2.5 mm<sup>2</sup> (24 to 14 AWG)

■ For ambient temperature  $T_U \ge 60$  °C (140 °F): use cable for temperature  $T_U + 20$  K.

#### **HART**

- A normal device cable suffices if only the analog signal is used.
- A shielded cable is recommended if using the HART protocol. Observe grounding concept of the plant.
- For 4-wire devices: Standard device cable is sufficient for the power line.

#### PROFIBILS

Use a twisted, screened two-wire cable, preferably cable type A.



For further information on the cable specifications, see Operating Instructions BA00034S "PROFIBUS DP/PA: Guidelines for planning and commissioning", PNO Guideline 2.092 "PROFIBUS PA User and Installation Guideline" and IEC 61158-2 (MBP).

#### FOUNDATION Fieldbus

Endress+Hauser recommends using twisted, shielded two-wire cables.



For further information on the cable specifications, see Operating Instructions BA00013S "FOUNDATION Fieldbus Overview", FOUNDATION Fieldbus Guideline and IEC 61158-2 (MBP).

#### Overvoltage protection

If the measuring device is used for level measurement in flammable liquids which requires the use of overvoltage protection according to DIN EN 60079-14, standard for test procedures 60060-1 (10 kA, pulse 8/20  $\mu$ s), an overvoltage protection module has to be installed.

## Integrated overvoltage protection module

An integrated overvoltage protection module is available for 2-wire HART as well as PROFIBUS PA and FOUNDATION Fieldbus devices.

Product structure: Feature 610 "Accessory mounted", option NA "Overvoltage protection".

| Technical data                           |                |  |  |  |
|------------------------------------------|----------------|--|--|--|
| Resistance per channel                   | 2 × 0.5 Ω max. |  |  |  |
| Threshold DC voltage                     | 400 to 700 V   |  |  |  |
| Threshold impulse voltage                | < 800 V        |  |  |  |
| Capacitance at 1 MHz                     | < 1.5 pF       |  |  |  |
| Nominal arrest impulse voltage (8/20 μs) | 10 kA          |  |  |  |

## External overvoltage protection module

HAW562 or HAW569 from Endress+Hauser are suited as external overvoltage protection.



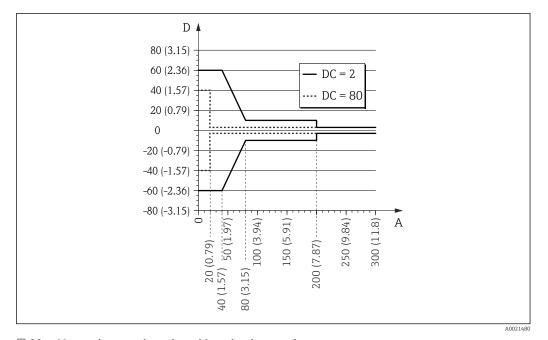
For detailed information please refer to the following documents:

- HAW562: TI01012K
- HAW569: TI01013K

## Performance characteristics

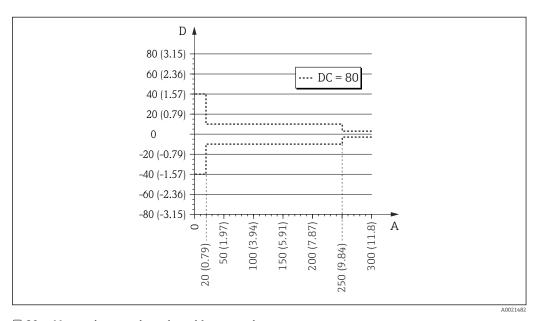
# Reference operating conditions

- Temperature =  $+24 \,^{\circ}\text{C} \, (+75 \,^{\circ}\text{F}) \, \pm 5 \,^{\circ}\text{C} \, (\pm 9 \,^{\circ}\text{F})$
- Pressure = 960 mbar abs. (14 psia)  $\pm 100$  mbar ( $\pm 1.45$  psi)
- Humidity =  $60 \% \pm 15 \%$
- Reflection factor ≥ 0.8 (water surface for coax probe, metal plate for rod and rope probe with min.
   1 m (40 in) diameter)
- Flange for rod or rope probe ≥ 300 mm (12 in) diameter
- Distance to obstacles ≥ 1 m (40 in)
- For interface measurement:
  - Coax probe
  - DC of lower medium = 80 (water)
  - DC of upper medium = 2 (oil)


## Reference accuracy

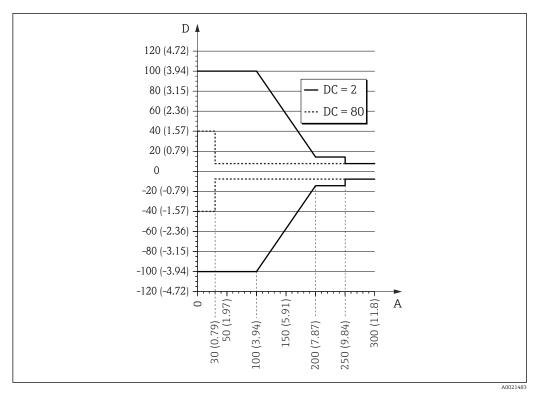
Typical data under reference operating conditions: DIN EN IEC 61298-2 / DIN EN IEC 60770-1; percentage values in relation to the span.

| Output:                                                                                | digital                                                                                                                                                                                                                    | analog 1) |
|----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Accuracy (sum of non-<br>linearity, non-repeatability<br>and hysteresis) <sup>2)</sup> | Level measurement:  • Measuring distance up to 15 m (49 ft): ±2 mm (±0.08 in) 3)  • Measuring distance > 15 m (49 ft): ±10 mm (±0.39 in)                                                                                   | ±0.02 %   |
|                                                                                        | Interface measurement:  • Measuring distance up to 500 mm (19.7 in):  ±20 mm (±0.79 in)  • Measuring distance > 500 mm (19.7 in): ±10 mm (±0.39 in)  • If thickness of upper medium < 100 mm (3.94 in):  ±40 mm (±1.57 in) |           |
| Non-repeatability 4)                                                                   | ≤1 mm (0.04 in)                                                                                                                                                                                                            |           |


- 1) Add error of the analog value to the digital value.
- 2) If the reference conditions are not met, the offset/zero point resulting from the installation conditions can be up to  $\pm 16$  mm ( $\pm 0.63$  in). This additional offset/zero point can be compensated for by entering a correction ("Level correction" parameter) during commissioning.
- 3) For probes with centering stars, the accuracy may deviate close to the centering stars.
- 4) The non-repeatability is already considered in the accuracy.

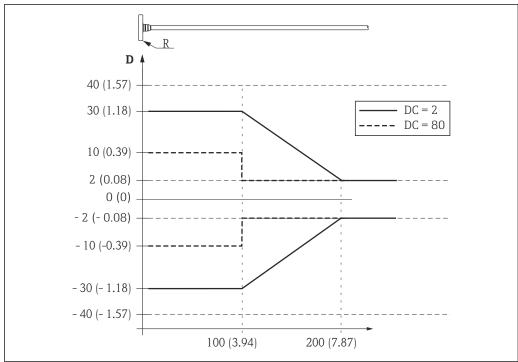
## Differing from this, the following measured error applies in the area of the lower probe end:




 $\blacksquare$  29 Measured error at the probe end for rod and coax probes

- A Distance from the probe end [mm(in)]
- D Measured error: Sum of non-linearity, non-repeatability and hysteresis




■ 30 Measured error at the probe end for rope probes

- A Distance from the probe end [mm(in)]
- D Measured error: Sum of non-linearity, non-repeatability and hysteresis



- Measured error at the probe end in the case of metal centering disks (product structure: feature 610 "Accessory mounted", version OA, OB or OC)
- A Distance from the probe end [mm(in)]
- D Measured error: Sum of non-linearity, non-repeatability and hysteresis
- If the DC value is less than 7 in the case of rope probes, measurement is not possible in the area of the tensioning weight (0 to 250 mm from the probe end), (lower blocking distance).

## The following measured error applies in the area of the upper probe end:



A00150

■ 32 Measured error at the upper probe end; engineering unit: mm (in)

- D Sum of non-linearity, non-repeatability and hysteresis
- R Reference point of measurement
- DC Dielectric constant

## Resolution

Digital: 1 mmAnalog: 1 μA

## Response time

The response time can be configured. The following step response times (in accordance with DIN EN IEC 61298-2 / DIN EN IEC 60770-1) <sup>3)</sup> are when damping is switched off:

| Level measurement                        |                               |         |  |  |  |
|------------------------------------------|-------------------------------|---------|--|--|--|
| Probe length Sampling rate Response time |                               |         |  |  |  |
| < 10 m (33 ft)                           | 3.6 measurements per second   | < 0.8 s |  |  |  |
| < 40 m (131 ft)                          | ≥ 2.7 measurements per second | < 1 s   |  |  |  |

| Interface measurement |                                          |         |  |  |  |
|-----------------------|------------------------------------------|---------|--|--|--|
| Probe length          | Probe length Sampling rate Response time |         |  |  |  |
| < 10 m (33 ft)        | ≥ 1.1 measurements per second            | < 2.2 s |  |  |  |

# Influence of ambient temperature

## The measurements are performed according to DIN EN IEC 61298-3 / DIN EN IEC 60770-1 $\,$

- Digital (HART, PROFIBUS PA, FOUNDATION Fieldbus): average  $T_K = 0.6 \text{ mm}/10 \text{ K}$  For FMP51 and FMP52 with a remote sensor, <sup>4)</sup> there is an additional offset error of  $\pm 0.3 \text{ mm}/10 \text{ K}$  ( $\pm 0.01 \text{ in}/10 \text{ K}$ ) per 1 m (3.3 ft) of the remote cable.
- Analog (current output):
  - Zero point (4 mA): average  $T_K = 0.02 \%/10 K$
- Span (20 mA): average  $T_K = 0.05 \%/10 K$

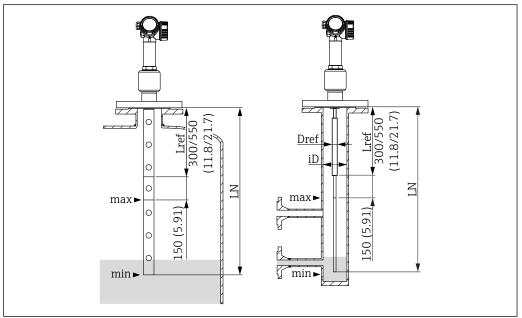
<sup>3)</sup> According to DIN EN IEC 61298-2 / DIN EN IEC 60770-1, the step response time is the time that elapses after an abrupt change in the input signal until the change in the output signal has adopted 90% of the steady-state value for the first time.

<sup>4)</sup> Product structure: feature 600, version MB, MC or MD)

## Influence of gas phase

High pressure reduces the speed of propagation of the measuring signals in the gas/vapor above the medium. This effect depends on the type of gas phase and its temperature. This results in a systematic measured error that increases with increasing distance between the reference point of the measurement (flange) and the surface of the product. The following table shows this measured error for a few typical gases/vapors (with regard to the distance, a positive value means that too large a distance is being measured):

| Gas phase | Tempe | erature | Pressure         |                  |                  |                    |                    |                    |
|-----------|-------|---------|------------------|------------------|------------------|--------------------|--------------------|--------------------|
|           | °C    | °F      | 1 bar (14.5 psi) | 10 bar (145 psi) | 50 bar (725 psi) | 100 bar (1450 psi) | 200 bar (2900 psi) | 400 bar (5800 psi) |
| Air       | 20    | 68      | 0.00 %           | 0.22 %           | 1.2 %            | 2.4 %              | 4.9 %              | 9.5 %              |
|           | 200   | 392     | -0.01 %          | 0.13 %           | 0.74 %           | 1.5 %              | 3.0 %              | 6.0 %              |
|           | 400   | 752     | -0.02 %          | 0.08 %           | 0.52 %           | 1.1 %              | 2.1 %              | 4.2 %              |
| Hydrogen  | 20    | 68      | -0.01 %          | 0.10 %           | 0.61 %           | 1.2 %              | 2.5 %              | 4.9 %              |
|           | 200   | 392     | -0.02 %          | 0.05 %           | 0.37 %           | 0.76 %             | 1.6 %              | 3.1 %              |
|           | 400   | 752     | -0.02 %          | 0.03 %           | 0.25 %           | 0.53 %             | 1.1 %              | 2.2 %              |


| Gas phase           | Tempe | rature | Pressure            |                   |                     |                     |                     |                     |                       |                       |
|---------------------|-------|--------|---------------------|-------------------|---------------------|---------------------|---------------------|---------------------|-----------------------|-----------------------|
|                     | °C    | °F     | 1 bar<br>(14.5 psi) | 2 bar<br>(29 psi) | 5 bar<br>(72.5 psi) | 10 bar<br>(145 psi) | 20 bar<br>(290 psi) | 50 bar<br>(725 psi) | 100 bar<br>(1450 psi) | 200 bar<br>(2900 psi) |
| Water               | 100   | 212    | 0.26 %              | -                 | -                   | -                   | -                   | -                   | -                     | -                     |
| vapor<br>(saturated | 120   | 248    | 0.23 %              | 0.50 %            | -                   | -                   | -                   | -                   | -                     | -                     |
| steam)              | 152   | 306    | 0.20 %              | 0.42 %            | 1.14 %              | -                   | -                   | -                   | -                     | -                     |
|                     | 180   | 356    | 0.17 %              | 0.37 %            | 0.99 %              | 2.10 %              | -                   | -                   | -                     | -                     |
|                     | 212   | 414    | 0.15 %              | 0.32 %            | 0.86 %              | 1.79 %              | 3.9 %               | -                   | -                     | -                     |
|                     | 264   | 507    | 0.12 %              | 0.26 %            | 0.69 %              | 1.44 %              | 3.0 %               | 9.2 %               | -                     | -                     |
|                     | 311   | 592    | 0.09 %              | 0.22 %            | 0.58 %              | 1.21 %              | 2.5 %               | 7.1 %               | 19.3 %                | -                     |
|                     | 366   | 691    | 0.07 %              | 0.18 %            | 0.49 %              | 1.01 %              | 2.1 %               | 5.7 %               | 13.2 %                | 76 %                  |

Gas phase compensation with external pressure sensor (PROFIBUS PA / FOUNDATION Fieldbus) PROFIBUS and FOUNDATION Fieldbus devices can receive the signal from an external pressure sensor over the bus and use it to automatically perform a pressure-dependent time-of-flight correction. In the case of saturated steam in the temperature range from  $100 \text{ to } 350 \,^{\circ}\text{C}$  (212 to  $662 \,^{\circ}\text{F}$ ), this makes it possible to reduce the distance measurement error of up to  $29 \,^{\circ}\text{M}$  (without compensation) to below  $3 \,^{\circ}\text{M}$  (with compensation).

Gas phase compensation using reference signal (option for FMP54)

At high pressures and temperatures, the speed of propagation of the microwave signals in the steam (polar media) is reduced above the liquid to be measured. This causes the Levelflex to display a level that is too low  $\rightarrow \ \cong \ 43$ .

An optional version of the FMP54 is available with an automatic gas phase compensation function that corrects this measured error (feature 540: "Application packages", option EF: "Gas phase comp.  $L_{ref}$  = 300mm" or EG: "Gas phase comp.  $L_{ref}$  = 550mm"). In this version, a difference in the diameter of the probe rod generates a reference reflection at the distance  $L_{ref}$  from the flange. This reference reflection must be at least 150 mm above the highest level. The current speed of propagation is measured on the basis of this shift in the reference reflection and the level value is corrected automatically.



A001453

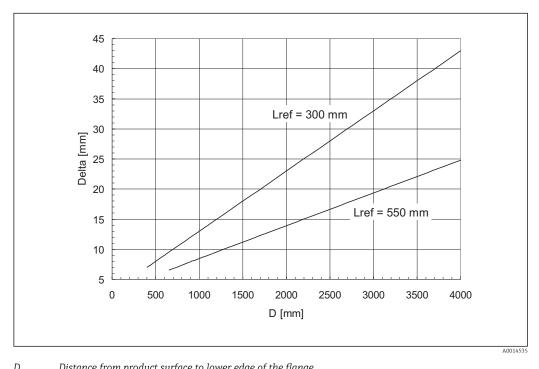
■ 33 FMP54 with reference signal for gas phase compensation; engineering unit: mm (in)

- **Coax probes** with reference reflection can be installed in any vessel (free in the tank or in a bypass). Coax probes are ready-mounted and adjusted at the factory and are ready for use without any additional parameter configuration.
- The use of **rod probes** is only recommended if the installation of a coax probe is not possible (e.g. if the bypass diameter is very small).

Rod probes with reference reflection are only suitable for installation in stilling wells and bypass chambers. The diameter  $D_{ref}$  of the probe rod in the area of the reference distance  $L_{ref}$  must be chosen to suit the pipe internal diameter iD, see the table below. The pipe must be cylindrical in the area of the reference distance  $L_{ref}$ ; cross-section changes, e.g. at flange connections, may not exceed 5% of the internal diameter iD.

In addition, following installation the settings must be checked by expert staff and corrected if necessary.

| Internal diameter iD of stilling well/bypass | Diameter $D_{\rm ref}$ of the rod probe in the area of the reference length $L_{\rm ref}$ |
|----------------------------------------------|-------------------------------------------------------------------------------------------|
| 40 mm (1.57") ≤ iD < 45 mm (1.77")           | 22 mm (0.87")                                                                             |
| 45 mm (1.77") ≤ iD < 70 mm (2.76")           | 25 mm (0.98")                                                                             |
| 70 mm (2.76") ≤ iD < 100 mm (3.94")          | 30 mm (1.18")                                                                             |


## Restrictions for coax and rod probes

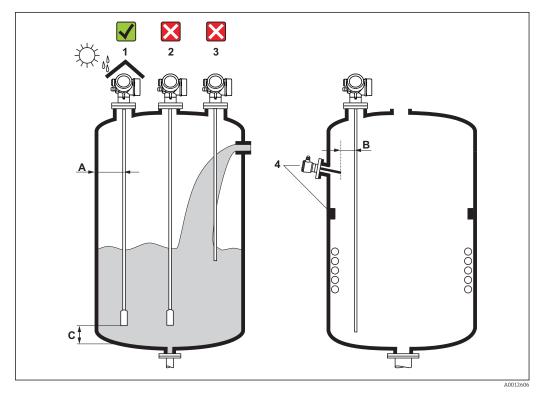
| Maximum probe length LN                                 | <ul> <li>For rod probes:         LN ≤ 4000 mm (157 in)</li> <li>For coax probes:         LN ≤ 6000 mm (236 in)</li> </ul> |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| Minimum probe length LN                                 | $LN > L_{ref} + 200 \text{ mm } (L_{ref} + 7.7")$                                                                         |
| Reference distance $L_{\rm ref}$                        | 300 mm (11.8") or 550 mm (21.7"), see feature 540 of the product structure                                                |
| Maximum level in relation to the flange sealing surface | L <sub>ref</sub> + 150 mm                                                                                                 |
| Minimum DC value of the medium                          | DC > 7                                                                                                                    |

## Area of application

Level measurements at high pressure and measuring ranges of up to a few meters in polar media with a dielectric constant DC > 7 (e.g. water or ammonia), which would produce a large measured error without compensation.

The measuring accuracy under reference conditions is higher the greater the reference distance  $L_{\text{ref}}$  and the smaller the measuring range:




D Distance from product surface to lower edge of the flange Delta Measured error

In the event of fast pressure changes, an additional error may occur as the measured reference distance is averaged with the time constant of the level measurement. Furthermore, states of non-equilibrium - due to heating for example - may result in density gradients within the medium and condensation of steam at the probe. As a result, level readings may vary slightly at different locations in the vessel. These application-related influences can increase the measured error indicated above by a factor of up to 2 to 3.

## Installation

#### **Installation conditions**

## Suitable mounting position



 $\blacksquare$  34 Installation conditions for Levelflex

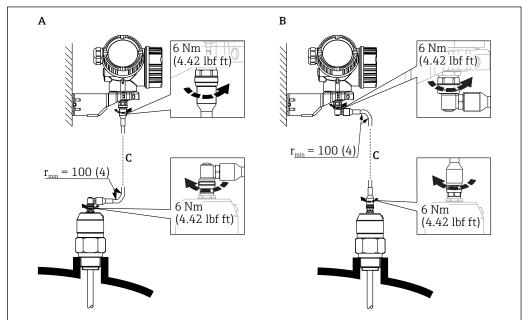
Spacing requirements when mounting

- Distance (A) between the vessel wall and rod and rope probes:
  - For smooth metallic walls: > 50 mm (2 in)
  - For plastic walls: > 300 mm (12 in) to metallic parts outside the vessel
  - For concrete walls: > 500 mm (20 in), otherwise the permitted measuring range may be reduced.
- Distance (B) between rod probes and internal fittings (3): > 300 mm (12 in)
- When using more than one Levelflex:
  - Minimum distance between the sensor axes: 100 mm (3.94 in)
- Distance (C) from the end of the probe to the bottom of the vessel:
  - Rope probe: > 150 mm (6 in)
  - Rod probe: > 10 mm (0.4 in)
  - Coax probe: > 10 mm (0.4 in)
- Coax probes can be mounted at any distance to the wall and internal fixtures.

46

#### Additional conditions

- When mounting outdoors, a weather protection cover (1) can be used to protect the device against extreme weather conditions.
- In metallic vessels, preferably do not mount the probe in the center of the vessel (2), as this would lead to increased interference echoes.
   If a central mounting position cannot be avoided, it is essential to perform interference echo

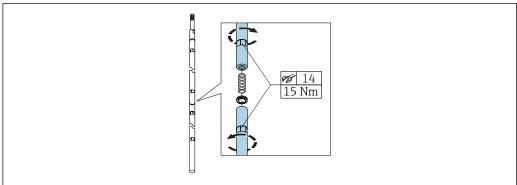

suppression (mapping) after commissioning the device.

- Do not mount the probe in the filling curtain (3).
- Avoid buckling the rope probe during installation or operation (e.g. as a result of product movement against silo wall) by selecting a suitable mounting location.
- In the case of freely suspended rope probes (probe end not fixed at the bottom), the distance between the probe rope and internal fittings, which can change due to the movement of the product, must never be less than 300 mm (12 in). Occasional contact between the probe end weight and the cone of the vessel, however, does not influence the measurement provided that the dielectric constant is at least DC = 1.8.
- When the housing is mounted in a recess (e.g. in a concrete ceiling), observe a minimum distance of 100 mm (4 in) between the cover of the connection compartment/electronics compartment and the wall. Otherwise the connection compartment/electronics compartment will not be accessible after installation.

## Mounting under confined conditions

#### Mounting with remote probe

The device version with a remote probe is suitable for applications with restricted mounting space. In this case, the electronics housing is mounted at a separate position from the probe.




- Α Angled plug at the probe
- В Angled plug at the electronics housing
- Length of the remote cable as ordered
- Product structure, feature 600 "Probe design":
  - Version MB "Sensor remote, 3m cable"

  - Version MC "Sensor remote, 6m cable"Version MD "Sensor remote, 9m cable"
- The connecting cable is included in the delivery with these versions. Minimum bending radius: 100 mm (4 inch)
- The mounting bracket for the electronics housing is included in the delivery with these versions. Mounting options:
  - Wall mounting
- Mounting on DN32 to DN50 (1-1/4 to 2 inch) post or pipe
- The connection cable has one straight plug and one plug angled at 90°. Depending on the local conditions the angled plug can be connected at the probe or at the electronics housing.
- The probe, electronics and connection cable are mutually compatible and bear a common serial number. Only components with the same serial number may be connected to one another.

48

## Separable probes



The use of separable rod probes ( $\emptyset$  16 mm) is advisable in confined mounting conditions (limited distance to the ceiling).

- Max. probe length 10 m (394 in)
- Max. lateral loading capacity 30 Nm
- Probes can be separated several times, with the individual parts having the following lengths:
  - 500 mm (20 in)
  - 1000 mm (40 in)

The joints between the individual rod segments are secured by the enclosed Nord Lock washers. Install the pre-assembled washers in pairs, cam face to cam face.

## Notes on the mechanical load of the probe

Tensile loading capacity of rope probes

FMP51

Rope 4mm (1/6") 316

5 kN

Rope 4mm (1/6") Alloy C

5 kN

FMP52

Rope 4mm (1/6") PFA>316

2 kN

FMP54

Rope 4mm (1/6") 316

10 kN

Lateral loading capacity (flexural strength) of rod probes

FMP51

Rod 8mm (1/3") 316L

10 Nm

Rod 12mm (1/2") 316L

30 Nm

Rod 12mm (1/2") AlloyC

30 Nm

Rod 16mm (0.63") 316L separable

30 Nm

FMP52

Rod 16mm (0.63") PFA>316L

30 Nm

FMP54

Rod 16mm (0.63") 316L

30 Nm

Rod 16mm (0.63") 316L separable

30 Nm

Lateral load (bending moment) from flow conditions

The formula for calculating the bending moment  $\boldsymbol{M}$  acting on the probe:

 $M = c_w \times \rho/2 \times v^2 \times d \times L \times (L_N - 0.5 \times L)$ 

With:

cw: coefficient of friction

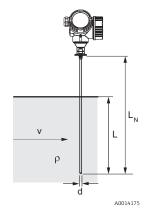
 $\rho$  [kg/m<sup>3</sup>]: density of the medium

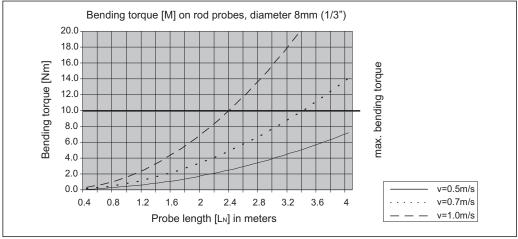
v [m/s]: flow velocity of the medium, perpendicular to the probe rod

d [m]: diameter of the probe rod

L [m]: level

## LN [m]: probe length


#### Sample calculation


Coefficient of friction  $c_w = 0.9$  (assuming turbulent flow - high Reynolds number)

Density  $\rho$  [kg/m<sup>3</sup>] 1000 (e.g. water)

Probe diameter d [m] 0.008

 $L = L_N$  (unfavorable conditions)





A0014182-EN

## Lateral loading capacity (flexural strength) of coax probes

FMP51

Probe Ø 21.3 mm 316L

60 Nm

Probe Ø 42.4 mm 316L

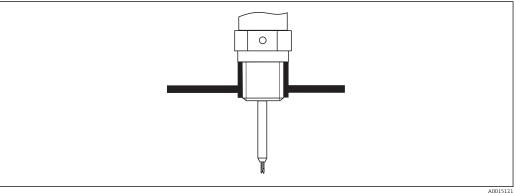
300 Nm

Probe Ø 42.4 mmAlloyC

300 Nm

FMP54

Probe Ø 42.4 mm316L


300 Nm

## Information concerning the process connection

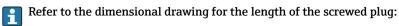


Probes are mounted on the process connection with threaded connections or flanges. If there is the danger with this installation that the probe end moves so much that it occasionally touches the vessel floor or cone, the probe may need to be shortened at the lower end and fixed in place.

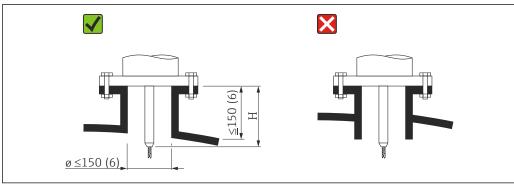
#### Threaded connection



■ 35 Mounting with threaded connection; flush with the vessel ceiling


#### Seal

The thread and the type of seal comply with DIN 3852 Part 1, screwed plug, form A.


The following types of sealing ring can be used:

- For thread G3/4": According to DIN 7603 with dimensions 27 mm × 32 mm
- For thread G1/-1/2": According to DIN 7603 with dimensions 48 mm  $\times$  55 mm

Use a sealing ring according to this standard in form A, C or D and of a material that offers appropriate resistance for the application.



#### Nozzle mounting



Length of the centering rod or the rigid part of the rope probe

- Permissible nozzle diameter: ≤ 150 mm (6 in) For larger diameters, the near-range measuring capability may be reduced. For large nozzles, see the section "Mounting in nozzles ≥ DN300"
- Permissible nozzle height: ≤ 150 mm (6 in) For larger heights, the near-range measuring capability may be reduced. Larger nozzle heights are possible in special cases (on request), see sections "Centering rod for FMP51 and FMP52" and "Rod extension/centering device HMP40 for FMP54".
- The end of the nozzle should be flush with the tank ceiling in order to avoid ringing effects.
- In thermally insulated vessels, the nozzle should also be insulated in order to prevent condensate formation.

#### Centering rod

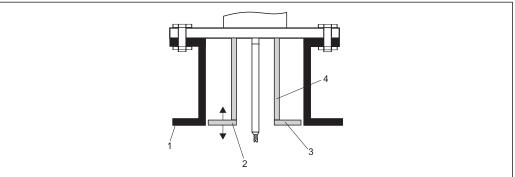
In the case of rope probes, it may be necessary to use a version with a centering rod so that the rope does not come in contact with the nozzle wall during the process.

The length of the optional centering rod determines the maximum nozzle height.

#### Rod extension/centering device HMP40 for FMP54

For FMP54 with rope probes, the rod extension/centering device HMP40 is available as an accessory. It must be used if the probe rope would otherwise come into contact with the lower edge of the nozzle.




This accessory consists of the extension rod, corresponding to the nozzle height, on which a centering disk is also mounted if the nozzles are narrow or when used in bulk solids.

This component is delivered separately from the device. Order a correspondingly shorter probe length.

Only use centering disks with small diameters (DN40 and DN50) if there is no significant build-up in the nozzle above the disk. The nozzle must not become clogged with product.

### Mounting in nozzles ≥ DN300

If installation in nozzles  $\geq 300$  mm (12 in) is unavoidable, installation must be carried out in accordance with the following diagram in order to avoid interference signals in the near range.



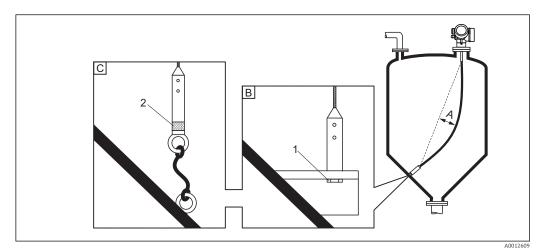
A0014199

- 1 Lower edge of the nozzle
- 2 Approximately flush with the lower edge of the nozzle  $(\pm 50 \text{ mm})$
- 3 Plate, nozzle Ø 300 mm (12 in) = plate Ø 280 mm (11 in); nozzle Ø  $\geq$  400 mm (16 in) = plate Ø  $\geq$  350 mm (14 in)
- 4 Pipe Ø 150 to 180 mm

## Mounting cladded flanges



Note the following for cladded flanges:

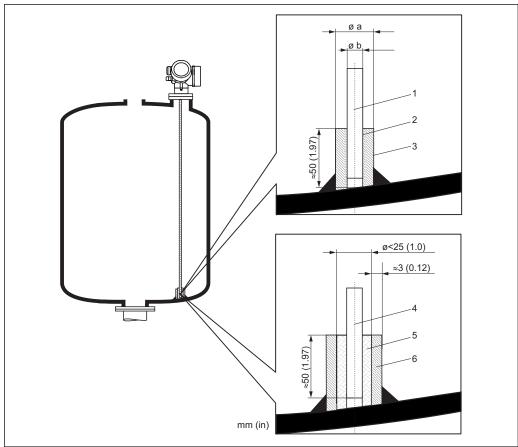

- Use the same number of flange screws as the number of flange bores provided.
- Tighten the screws with the necessary torque (see Table).
- Retighten after 24 hours or after the first temperature cycle.
- Depending on the process pressure and temperature, check and retighten the screws, where necessary, at regular intervals.

The PTFE flange cladding normally acts simultaneously as a seal between the nozzle and the  $\,$ device flange.

| Flange size | Number of screws | Tightening torque |
|-------------|------------------|-------------------|
| EN          |                  |                   |
| DN40/PN40   | 4                | 35 to 55 Nm       |
| DN50/PN16   | 4                | 45 to 65 Nm       |
| DN50/PN40   | 4                | 45 to 65 Nm       |
| DN80/PN16   | 8                | 40 to 55 Nm       |
| DN80/PN40   | 8                | 40 to 55 Nm       |
| DN100/PN16  | 8                | 40 to 60 Nm       |
| DN100/PN40  | 8                | 55 to 80 Nm       |
| DN150/PN16  | 8                | 75 to 115 Nm      |
| DN150/PN40  | 8                | 95 to 145 Nm      |
| ASME        |                  |                   |
| 1½"/150lbs  | 4                | 20 to 30 Nm       |
| 1½"/300lbs  | 4                | 30 to 40 Nm       |
| 2"/150lbs   | 4                | 40 to 55 Nm       |
| 2"/300lbs   | 8                | 20 to 30 Nm       |
| 3"/150lbs   | 4                | 65 to 95 Nm       |
| 3"/300lbs   | 8                | 40 to 55 Nm       |
| 4"/150lbs   | 8                | 45 to 70 Nm       |
| 4"/300lbs   | 8                | 55 to 80 Nm       |
| 6"/150lbs   | 8                | 85 to 125 Nm      |
| 6"/300lbs   | 12               | 60 to 90 Nm       |
| JIS         |                  |                   |
| 10K 40A     | 4                | 30 to 45 Nm       |
| 10K 50A     | 4                | 40 to 60 Nm       |
| 10K 80A     | 8                | 25 to 35 Nm       |
| 10K 100A    | 8                | 35 to 55 Nm       |
| 10K 100A    | 8                | 75 to 115 Nm      |

## Securing the probe

Securing rope probes




- Rope sag:  $\geq 10 \text{ mm/}(1 \text{ m probe length}) [0.12 \text{ in/}(1 \text{ ft probe length})]$
- B Reliably grounded end of probe
- C Reliably insulated end of probe
- 1 Fastener in female thread of probe end weight
- 2 Insulated fastening kit
- The end of the rope probe must be secured (fixed down) under the following conditions: If the probe would otherwise temporarily come into contact with the vessel wall, the cone, internal fittings/beams or another part of the installation
- A female thread is provided in the probe weight to secure the end of the probe: Rope 4 mm (1/6"), 316: M 14
- When fixed down, the end of the probe must be either reliably grounded or reliably insulated. Use an insulated fastening kit if it is not otherwise possible to secure the probe with a reliably insulated connection.
- To prevent an extremely high tensile load (e.g. due to thermal expansion) and the risk of the rope breaking, the rope must be slack. Required sag:  $\geq 10 \text{ mm/(1 m rope length)} \mid 0.12 \text{ in/(1 ft rope length)} \mid$ .

Pay attention to the tensile loading capacity of rope probes.

## Securing rod probes

- For WHG approval: A support is required for probe lengths  $\geq$  3 m (10 ft).
- In general, rod probes must be secured in the event of horizontal flow (e.g. from an agitator) or strong vibrations.
- Only secure rod probes directly at the end of the probe.



Δ001260

#### Unit of measurement mm (in)

- 1 Probe rod, uncoated
- 2 Sleeve with narrow bore to ensure electrical contact between the sleeve and the rod.
- 3 Short metal pipe, e.g. welded in place
- 4 Probe rod, coated
- 5 Plastic sleeve, e.g. PTFE, PEEK, PPS
- 6 Short metal pipe, e.g. welded in place

#### Probe Ø 8 mm (0.31 in)

- a < Ø 14 mm (0.55 in)
- $b = \emptyset 8.5 \text{ mm } (0.34 \text{ in})$

### Probe Ø 12 mm (0.47 in)

- a < Ø 20 mm (0.78 in)
- $b = \emptyset 12.5 \text{ mm } (0.52 \text{ in})$

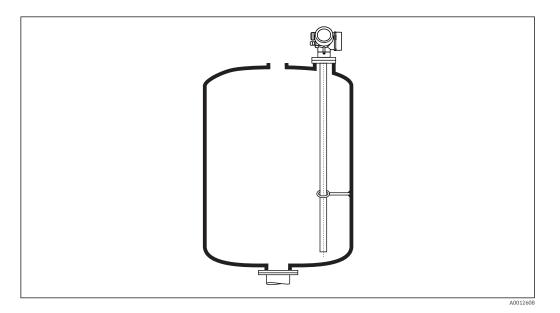
#### Probe Ø 16 mm (0.63 in)

- a < Ø 26 mm (1.02 in)
- $b = \emptyset 16.5 \text{ mm } (0.65 \text{ in})$

## NOTICE

## Poor grounding of the probe end may cause incorrect measurements.

► Use a sleeve with a narrow bore to ensure good electrical contact between the sleeve and the probe rod.


## NOTICE

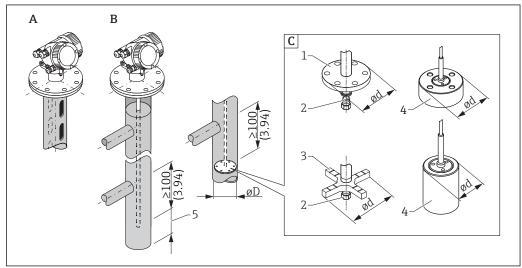
## Welding can damage the main electronics module.

▶ Before welding: Ground the probe rod and remove the electronics.

## Securing coax probes

For WHG approval: A support is required for probe lengths  $\geq$  3 m (10 ft).




Coax probes can be secured (fixed) at any point in the ground tube.  $\,$ 

#### Special installation situations

Bypasses and stilling wells

i

The use of centering disks/stars/weights (available as accessories) is recommended in bypass and stilling well applications.



A00392

#### **■** 36 Engineering unit: mm (in)

- A Mounting in stilling well
- B Mounting in bypass
- C Centering disk/centering star/centering weight
- 1 Metal centering disk (316L) for level measurement
- 2 Securing screw; torque: 25 Nm ± 5 Nm
- 3 Non-metal centering star (PEEK, PFA) preferred for interface measurement
- 4 Metal centering weight (316L) for level measurement
- 5 Minimum distance between probe end and lower edge of bypass 10 mm (0.4 in)
- Pipe diameter: > 40 mm (1.6 in) (for rod probes).
- A rod probe can be installed in pipes with a diameter of up to 150 mm (6 in). The use of a coax probe is recommended for larger pipe diameters.
- Side outlets, holes, slots and welds with a maximum inward projection of 5 mm (0.2 in) do not affect the measurement.
- There should not be any changes in the diameter of the pipe.
- The probe must be 100 mm (4 in) longer than the lower outlet.
- The probes must not touch the pipe wall within the measuring range. Support or brace the probe if necessary. All rope probes are prepared for bracing in vessels (tensioning weight with anchor hole).
- If a metal centering disk is mounted at the end of the probe rod, the signal for detecting the end of the probe is reliably defined.

**Note:** The non-metal centering stars made of PEEK or PFA are recommended for interface measurements. When using metal centering disks, it is important to ensure that the lower medium covers the centering disk at all times. Otherwise, incorrect interface measurements can result.

 Coax probes can be used within any restrictions provided that the pipe diameter permits their installation.



For bypasses with condensate formation (water) and a medium with a low dielectric constant (e.g. hydrocarbons):

Over time, the bypass fills with condensate up to the lower outlet. When levels are low, the level echo is masked by the echo of the condensate as a result. In this range, the level of the condensate is output and the correct value is only output when levels are higher. For this reason, ensure that the lower outlet is 100 mm (4 in) below the lowest level to be measured and fit a metal centering disk at the level of the lower edge of the lower outlet.

In thermally insulated vessels, the bypass should also be insulated in order to prevent condensate formation.

58

Assignment of centering disk/centering star/centering weight to the pipe diameter

*Metal centering disk (316L)* 

for level measurement

## Rod centering disk (Ød) 45 mm (1.77 in)

for pipe diameter (ØD) DN50/2" to DN65/ $2\frac{1}{2}$ "

#### Rod centering disk (Ød) 75 mm (2.95 in)

for pipe diameter (ØD) DN80/3" to DN100/4"

## Rope centering disk (Ød) 75 mm (2.95 in)

for pipe diameter (ØD) DN80/3" to DN100/4"

Metal centering weight (316L)

for level measurement

#### Rope centering weight (Ød) 45 mm (1.77 in), h 60 mm (2.36 in)

for pipe diameter (ØD) DN50/2"

Rope centering weight (Ød) 75 mm (2.95 in), h 30 mm (1.81 in)

for pipe diameter (ØD)

DN80/3"

## Rope centering weight (Ød) 95 mm (3.74 in), h 30 mm (1.81 in)

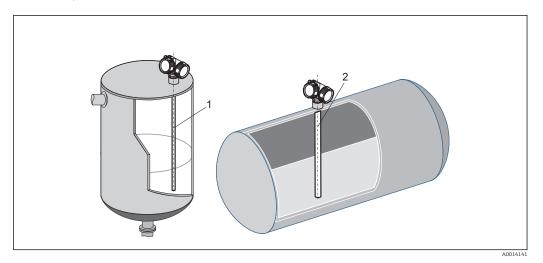
for pipe diameter ( $\emptyset$ D) DN100/4"

Non-metal centering star (PEEK)

For level and interface measurement, operating temperature: -60 to +250 °C (-76 to 482 °F)

## Rod centering star (Ød) 48 to 95 mm (1.89 to 3.74 in)

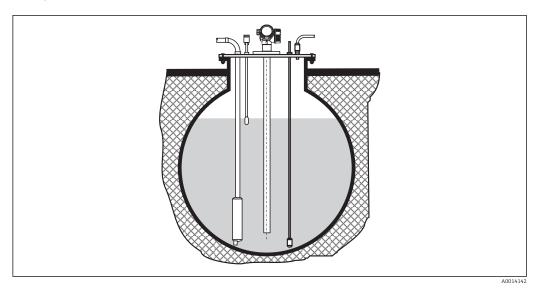
for pipe diameter ( $\emptyset$ D)  $\geq$  DN50/2"


Non-metal centering star (PFA)

For level and interface measurement, operating temperature: -200 to +250 °C (-328 to +482 °F)

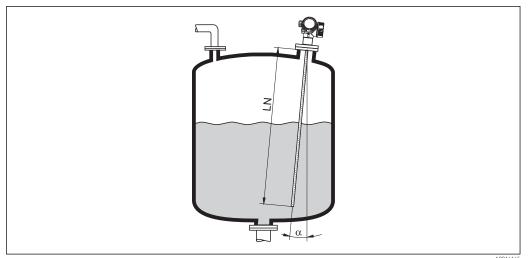
## Rod centering star (Ød) 37 mm (1.46 in)

for pipe diameter (ØD) ≥40 mm (1.57 in)


## Horizontal cylindrical and vertical tanks



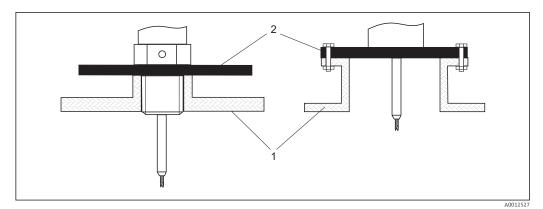
Coax probe


- Any distance from wall provided occasional contact is avoided.
   Use a coax probe (1) if installing in tanks with many internal fixtures or internal fixtures located close to the probe.

## Underground tanks



In the case of nozzles with large diameters, use a coax probe to avoid reflections at the nozzle wall.


## Mounting at an angle



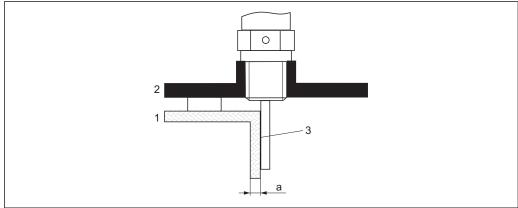
- For mechanical reasons, the probe should be installed as vertically as possible.
  If the probe is installed at an angle, the length of the probe must be reduced depending on the angle of installation.

  - $\alpha$  5 °: LN<sub>max</sub> 4 m (13.1 ft)  $\alpha$  10 °: LN<sub>max</sub> 2 m (6.6 ft)  $\alpha$  30 °: LN<sub>max</sub> 1 m (3.3 ft)

## Non-metal vessels



- 1 Non-metal vessel
- 2 Metal sheet or metal flange


To ensure good measurement results when mounting on non-metal vessels

- Use a device with a metal flange (minimum size DN50/2").
- Alternatively: at the process connection, mount a metal sheet with a diameter of at least 200 mm (8 in) at a right angle to the probe.

A metal surface is not required at the process connection in the case of coax probes.

Plastic and glass vessels: Mounting the probe on the outside wall

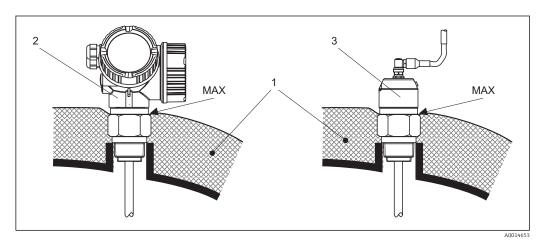
In the case of plastic and glass vessels, the probe can also be mounted on the outside wall under certain conditions.



A00141

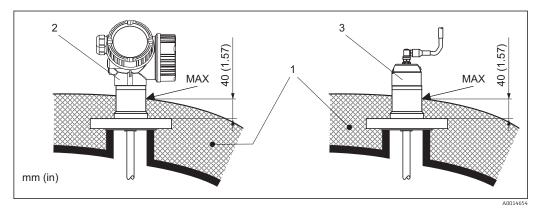
- 1 Plastic or glass vessel
- 2 Metal plate with screw-in sleeve
- 3 No space between vessel wall and probe!

## Requirements


- Dielectric constant of the medium:  $\varepsilon_r > 7$ .
- Non-conductive vessel wall.
- Maximum wall thickness (a):
  - Plastic: < 15 mm (0.6 in)
  - Glass: < 10 mm (0.4 in)
- No metal reinforcements on the vessel.

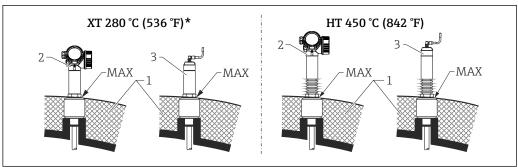
## Note the following when mounting the device:

- Mount the probe directly on the vessel wall without any space between the wall and probe.
- To prevent any influence on the measurement, fit a plastic half pipe with a diameter of at least 200 mm (8 in), or a similar protective unit, on the probe.
- For vessel diameters less than 300 mm (12 in):
   On the opposite side of the vessel, fit a grounding plate that is conductively connected to the process connection and covers around half of the vessel's circumference.
- For vessel diameters of 300 mm (12 in) and higher:
  At the process connection, fit a metal plate with a diameter of at least 200 mm (8 in) at a right angle to the probe (see above).


#### Vessel with thermal insulation

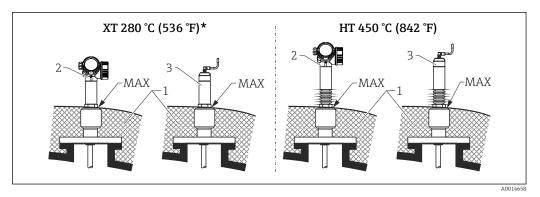
If process temperatures are high, the device must be included in normal vessel insulation (1) in order to prevent the electronics heating up as a result of thermal radiation or convection. The insulation may not go beyond the points labeled "MAX" in the drawings.




**₽** 37 Process connection with thread

- Vessel insulation
- 2 Compact device
- Sensor, remote




**38 3** Process connection with flange

- Vessel insulation
- 2 Compact device
- Sensor, remote

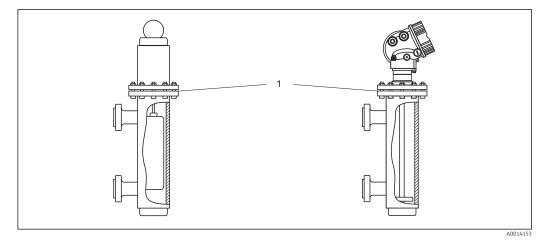


₹ 39 Process connection with thread - sensor version XT and HT

- Vessel insulation
- 2 Compact device
- Sensor, remote
- The XT version is not recommended for saturated steam above 200  $^{\circ}$ C (392  $^{\circ}$ F); the HT version should be used instead



 $\blacksquare ~40~$  Process connection with flange - sensor version XT and HT


- 1 Vessel insulation
- 2 Compact device
- 3 Sensor, remote
- \* The XT version is not recommended for saturated steam above 200 °C (392 °F); the HT version should be used instead

Replacing a displacer system in an existing displacer chamber

FMP51 and FMP54 are a perfect replacement for a conventional displacer system in an existing displacer chamber. Flanges that suit Fisher and Masoneilan displacer chambers are available for this purpose (special product for FMP51; feature 100 of the product structure, options LNJ, LPJ, LQJ for FMP54). Thanks to menu-guided local operation, commissioning the Levelflex only takes a few minutes. Replacement is also possible when partially filled, and wet calibration is not required.

#### Your benefits:

- No moving parts, therefore zero-maintenance operation.
- Not affected by process influences such as temperature, density, turbulence and vibrations.
- The rod probes can be easily shortened or replaced. Therefore, the probe can also be easily adjusted on site.



1 Flange of the displacer chamber

#### Planning instructions:

- In normal cases, use a rod probe. When installing into a metal displacer chamber up to 150 mm, you have all the advantages of a coax probe.
- Contact between the probe and the side wall must be avoided. Where necessary, use a centering
  disk or centering star at the bottom end of the probe.
- The centering disk or centering star must be adapted as accurately as possible to the internal diameter of the displacer chamber to also ensure correct operation around the probe end.

### Additional information regarding interface measurement

- In the case of oil and water, the centering star should be positioned at the lower edge of the lower outlet (water level).
- There should not be any changes in the diameter of the pipe. Use the coax probe if necessary.
- It must be ensured that rod probes do not come into contact with the wall. Where necessary, use a centering star at the end of the probe.
- The non-metal centering stars made of PEEK or PFA are recommended for interface measurements. When using metal centering disks, it is important to ensure that the lower medium covers the centering disk at all times. Otherwise, incorrect interface measurements can result.

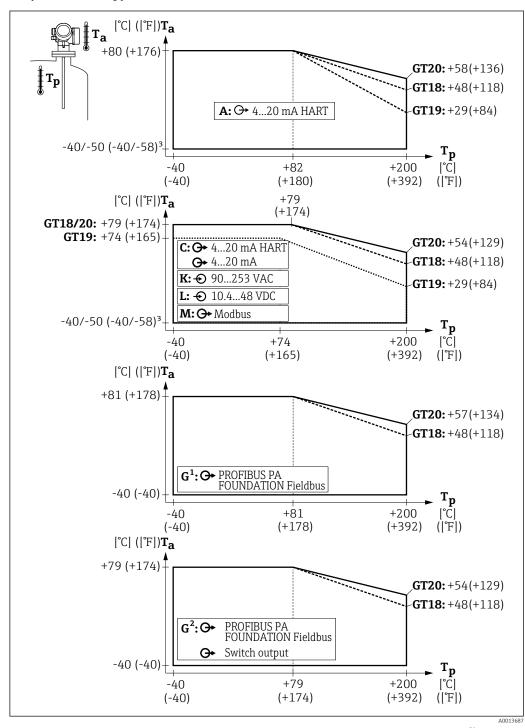
## Operating conditions: Environment

## Ambient temperature

| Measuring device                                           | -40 to +80 °C (-40 to +176 °F)                                                                                                      |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Measuring device (option for FMP51 and FMP54)              | -50 to +80 °C (-58 to +176 °F) <sup>1)</sup>                                                                                        |
| Local display                                              | -20 to $+70$ °C ( $-4$ to $+158$ °F), the readability of the display may be impaired at temperatures outside the temperature range. |
| Connecting cable (for<br>"Sensor, remote" probe<br>design) | Max. 100 °C (212 °F)                                                                                                                |
| Remote display FHX50                                       | −40 to 80 °C (−40 to 176 °F)                                                                                                        |
| Remote display FHX50 (option)                              | −50 to 80 °C (−58 to 176 °F) <sup>1)</sup>                                                                                          |

<sup>1)</sup> This range applies if the option JN "Transmitter ambient temperature  $-50 \,^{\circ}\text{C}$  ( $-58 \,^{\circ}\text{F}$ )" has been selected in order code 580 "Test, certificate". If the temperature is permanently below  $-40 \,^{\circ}\text{C}$  ( $-40 \,^{\circ}\text{F}$ ), the chance of failure increases.

For outdoor operation in strong sunlight:


- Mount the device in the shade.
- Avoid direct sunlight, particularly in warm climatic regions.
- Use a weather protection cover (see accessories).

## Ambient temperature limits

The following diagrams only consider functional aspects. Additional restrictions may apply for certified device versions. See the separate Safety Instructions for more information.

In the event of temperature  $(T_p)$  at the process connection, the permitted ambient temperature  $(T_a)$ is reduced as indicated in the following diagram (temperature derating):

Temperature derating for FMP51 with threaded connection G¾ or NPT¾



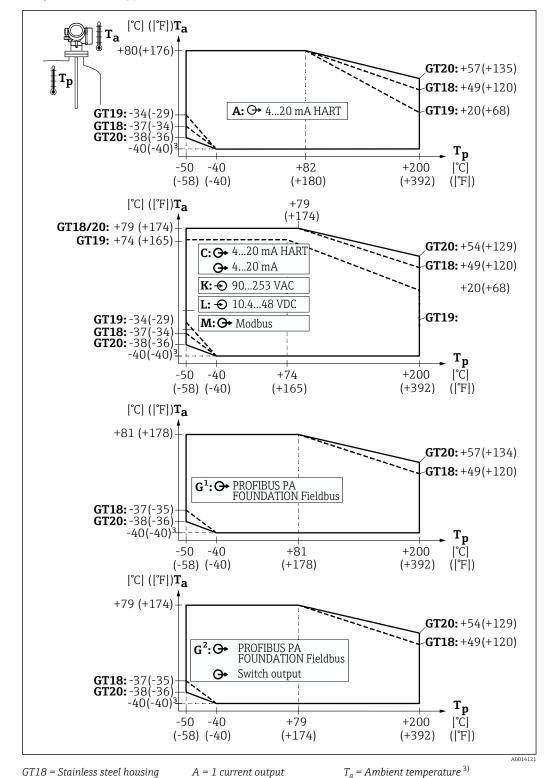
GT18 = Stainless steel housing

GT19 = Plastic housing

GT20 = Aluminum housing

A = 1 current output C = 2 current outputs

 $G^1$ ,  $G^2$  = PROFIBUS PA  $^{1)}$   $^{2)}$ K, L = 4-wire


 $T_a = Ambient temperature^{3)}$  $T_p$  = Temperature at the process

connection

1) G1: Switch output not used

2) G<sup>2</sup>: Switch output used

 $T_a$  to -50 °C (-58 °F) for order code 580 "Test, certificate" = JN "Transmitter ambient temperature 3) −50 °C (−58 °F)"; only available for 2-wire HART devices



Temperature derating for FMP51 with threaded connection G1½ or NPT1½

1) G¹: Switch output not used

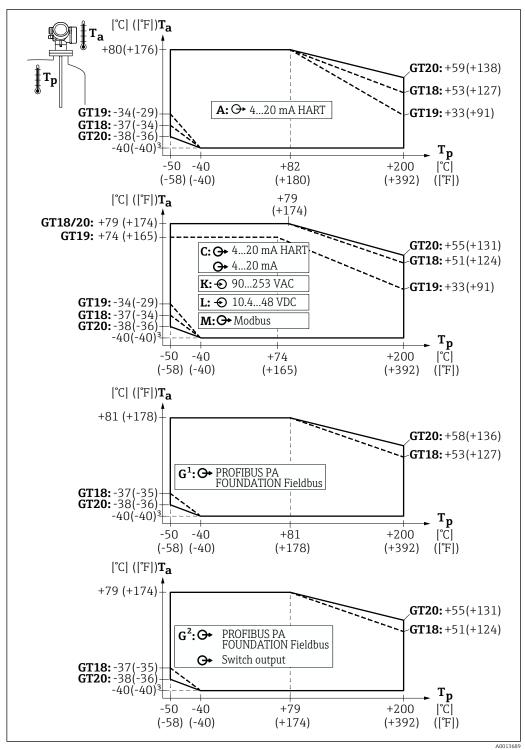
2)  $G^2$ : Switch output used

GT19 = Plastic housing

GT20 = Aluminum housing

3)  $T_a$  to -50 °C (-58 °F) for order code 580 "Test, certificate" = JN "Transmitter ambient temperature -50 °C (-58 °F)"; only available for 2-wire HART devices

*C* = 2 *current outputs* 


K, L = 4-wire

 $G^1$ ,  $G^2$  = PROFIBUS PA  $^{1)(2)}$ 

 $T_p = Temperature$  at the process

connection

## Temperature derating for FMP51 with flange

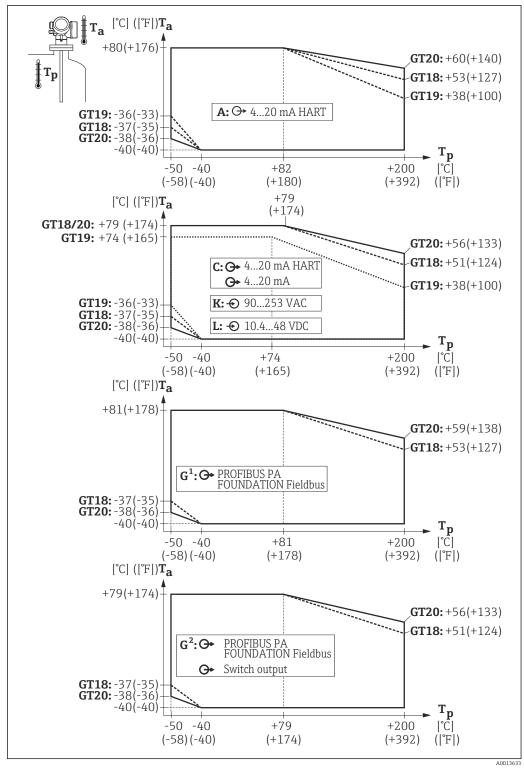


GT18 = Stainless steel housing

GT19 = Plastic housing

GT20 = Aluminum housing

A = 1 current output C = 2 current outputs


 $G^1$ ,  $G^2$  = PROFIBUS PA <sup>1) 2)</sup> K, L = 4-wire

 $T_a$  = Ambient temperature <sup>3)</sup>  $T_p$  = Temperature at the process

connection

- 1) G<sup>1</sup>: Switch output not used
- 2) G<sup>2</sup>: Switch output used
- T<sub>a</sub> to -50 °C (-58 °F) for order code 580 "Test, certificate" = JN "Transmitter ambient temperature -50 °C (-58 °F)"; only available for 2-wire HART devices

### Temperature derating for FMP52



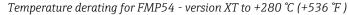
GT18 = Stainless steel housing

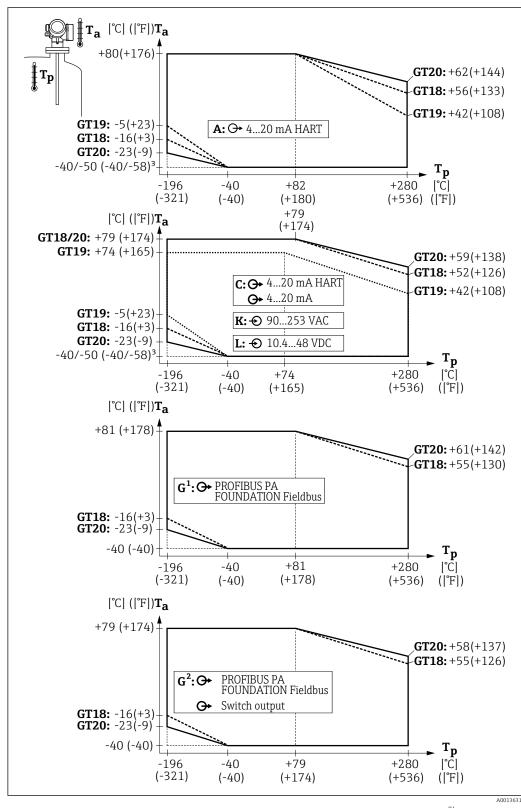
GT19 = Plastic housing

GT20 = Aluminum housing

A = 1 current output C = 2 current outputs  $G^{1}$ ,  $G^{2} = PROFIBUS PA^{1}$ 

K, L = 4-wire


 $T_a$  = Ambient temperature  $T_p$  = Temperature at the process


connection 2)

1) In the case of PROFIBUS PA and FOUNDATION Fieldbus, the temperature derating depends on whether the switch output (terminals 3 and 4) is used  $(G^2)$  or not  $(G^1)$ .

2) The process temperature should not exceed 150  $^{\circ}$ C (302  $^{\circ}$ F) for saturated steam applications. Use FMP54 for higher process temperatures.

72

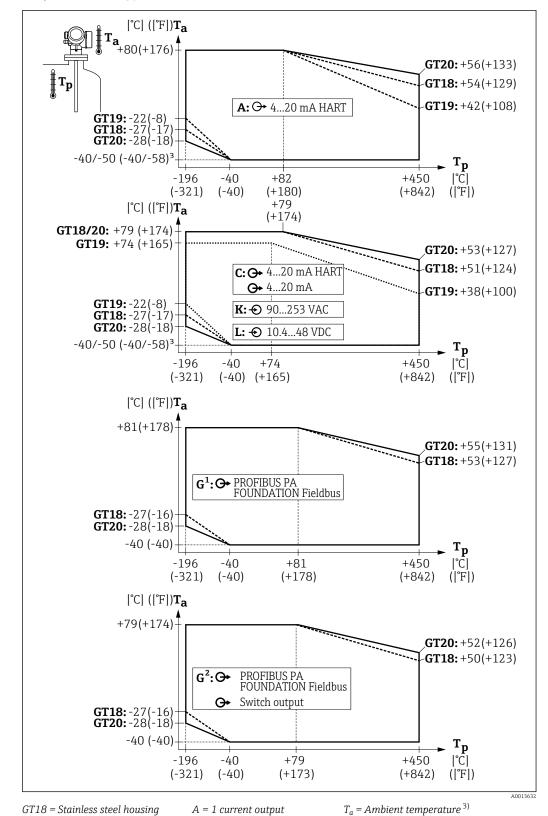




GT18 = Stainless steel housing

GT19 = Plastic housing

GT20 = Aluminum housing


A = 1 current output *C* = 2 *current* outputs  $G^1$ ,  $G^2$  = PROFIBUS PA  $^{1)(2)}$ 

K, L = 4-wire

 $T_a$  = Ambient temperature <sup>3)</sup>  $T_p$  = Temperature at the process

connection

- 1) G1: Switch output not used
- 2) G<sup>2</sup>: Switch output used
- $T_a$  to -50 °C (-58 °F) for order code 580 "Test, certificate" = JN "Transmitter ambient temperature -50 °C (-58 °F)"; only available for 2-wire HART devices



Temperature derating for FMP54 - version HT to +450  $^{\circ}$ C (+842  $^{\circ}$ F)

GT20 = Aluminum housing

GT19 = Plastic housing

C = 2 current outputs  $G^1$ ,  $G^2 = PROFIBUS PA^{(1)(2)}$ K, L = 4-wire  $T_p = Temperature$  at the process connection

1) G¹: Switch output not used

- 2) G<sup>2</sup>: Switch output used
- 3)  $T_a$  to -50 °C (-58 °F) for order code 580 "Test, certificate" = JN "Transmitter ambient temperature -50 °C (-58 °F)"; only available for 2-wire HART devices

### Storage temperature

- Permitted storage temperature: -40 to +80 °C (-40 to +176 °F)
- Use original packaging.
- Option for FMP51 and FMP54: -50 to +80 °C (-58 to +176 °F) This range applies if the option JN "Transmitter ambient temperature -50 °C (-58 °F)" has been selected in order code 580 "Test, certificate". If the temperature is permanently below -40 °C (-40 °F), the chance of failure increases.

### Climate class

### DIN EN 60068-2-38 (test Z/AD)

# Altitude according to IEC61010-1 Ed.3

- Generally up to 2000 m (6600 ft) above MSL.
- Above 2 000 m (6 600 ft) if the following conditions are met:
  - Ordering feature 020 "Power supply; Output" = A, B, C, E or G (2-wire versions)
  - Supply voltage U < 35 V
  - Supply voltage of overvoltage category 1

### Degree of protection

- When housing is closed, tested according to:
  - IP68, NEMA6P (24 h at 1.83 m under water) (also applies for the "Remote sensor" version)
  - For plastic housing with see-through lid (display): IP68 (24 h at 1.00 m under water) This restriction applies if the following options have been selected simultaneously in the product structure: 030 ("Display/operation") = C ("SD02") or E ("SD03"); 040 ("Housing") = A ("GT19").
  - IP66, NEMA4X
- With housing open: IP20, NEMA1
- Display module: IP22, NEMA2
- i

Degree of protection IP68 NEMA6P only applies for M12 PROFIBUS PA plugs if the PROFIBUS cable is plugged in and is also rated IP68 NEMA6P.

#### Vibration resistance

DIN EN 60068-2-64 / IEC 60068-2-64: 20 to 2000 Hz, 1 (m/s<sup>2</sup>)<sup>2</sup>/Hz

### Cleaning the probe

Dirt or buildup may form on the probe depending on the application. A thin, even layer has little impact on the measurement. Thick layers can dampen the signal and then reduce the measuring range. Very uneven deposit formation, e.g. caking due to crystallization, can result in incorrect measurements. In such cases, we recommend the use of a non-contact measuring principle, or a regular inspection of the probe for contamination.

# Electromagnetic compatibility (EMC)

Electromagnetic compatibility in accordance with all of the relevant requirements outlined in the EN 61326 series and NAMUR Recommendation EMC (NE 21). For details, refer to the Declaration of Conformity.



Download at www.endress.com.

Use a shielded cable for signal transmission.

Maximum measured error during EMC testing: < 0.5 % of the span.

When the probes are installed in metal and concrete vessels and when a coax probe is used:

- Interference emission according to EN 61326 x series, Class B equipment.
- Interference immunity according to EN 61326 x series, requirements for industry and NAMUR Recommendation NE 21 (EMC)

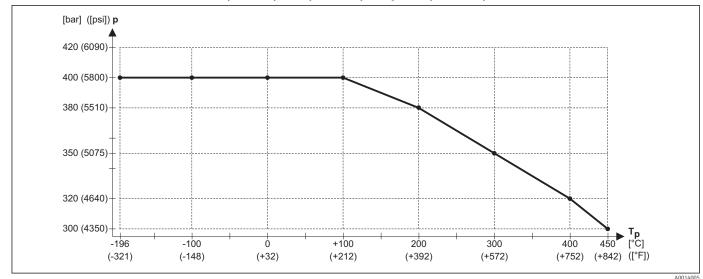
When probes are installed without a shielding/metal wall, e.g. installation in plastic or wooden silos, the effect of strong electromagnetic fields can influence the measured value.

- Interference emission according to EN 61326 x series, Class A equipment.
- Interference immunity: the effect of strong electromagnetic fields can influence the measured value.

# **Process**

### Process temperature range

The maximum temperature permitted at the process connection is determined by the O-ring version ordered:


| Device | O-ring material             | Process temperature                                                                                                            | Approval                                       |
|--------|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|
| FMP51  | FKM (Viton GLT)             | -30 to +150 °C (-22 to +302 °F)                                                                                                | FDA                                            |
|        |                             | -40 to +150 °C (-40 to +302 °F) Only in conjunction with feature 610 "Accessory mounted", feature version NC "Gas-tight gland" |                                                |
|        | EPDM (70C4 pW FKN or E7515) | -40 to +120 °C (-40 to +248 °F)                                                                                                | FDA                                            |
|        | FFKM (Kalrez 6375) 1)       | -20 to +200 °C (-4 to +392 °F) <sup>2)</sup>                                                                                   |                                                |
|        | FVMQ (FVMQ 70C79)           | −50 to 130 °C (−58 to 260 °F)                                                                                                  |                                                |
| FMP52  | _                           | −50 to +200 °C (−58 to +392 °F); fully coated                                                                                  | FDA, 3A,<br>EHEDG, USP Cl.<br>VI <sup>3)</sup> |
| FMP54  | Graphite                    | Version XT: $-196$ to $+280$ °C ( $-321$ to $+536$ °F) $^{4)}$                                                                 |                                                |
|        |                             | Version HT: -196 to +450 °C (-321 to +842 °F)                                                                                  |                                                |

- 1) Recommended for water vapor applications.
- 2) Not recommended for saturated steam over 150 °C (302 °F). Use FMP54 instead.
- 3) Plastic components in contact with the medium have been tested in accordance with USP <88> Class  $VI-70^{\circ}C$
- 4) Not recommended for saturated steam over 200 °C (392 °F). Use the HT version instead.
- For FMP52: High process temperatures (>  $150 \,^{\circ}$ C (302  $^{\circ}$ F)) may favor the diffusion of the medium through the probe coating, which may reduce the operating time.
- The sensor material 1.4404/316L is resistant to attack from intergranular corrosion according to AD 2000 instruction sheet W2 at operating temperatures up to  $400\,^{\circ}C$  (752 °F) and with an operating time of 100,000 hours (11.4 years). For higher temperatures, the suitability of the material must be checked by the operator. Acids, in particular, may cause corrosion.
- With uncoated probes, the medium temperature may be higher provided that the process temperature specified in the table is not exceeded at the process connection.

When using rope probes, the stability of the probe rope is reduced by structural changes at temperatures above 350  $^{\circ}$ C (662  $^{\circ}$ F), however.

### Process pressure range

| Device | Process pressure                  |
|--------|-----------------------------------|
| FMP51  | -1 to 40 bar (-14.5 to 580 psi)   |
| FMP52  | -1 to 40 bar (-14.5 to 580 psi)   |
| FMP54  | -1 to 400 bar (-14.5 to 5800 psi) |



FMP54 - permitted process pressure depending on the process temperature

*p* = *Permitted process pressure* 

 $T_n$  = *Process temperature* 



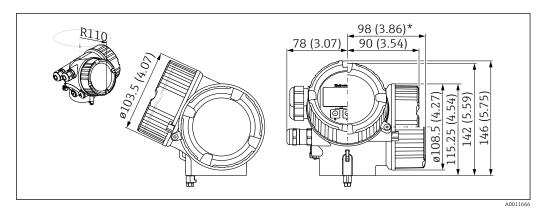
The range indicated can be reduced by the choice of process connection. The nominal pressure (PN) indicated on the nameplate refers to a reference temperature of  $20\,^{\circ}$ C, and of  $100\,^{\circ}$ F for ASME flanges. Observe pressure-temperature dependency.

Please refer to the following standards for the pressure values permitted at higher temperatures:

- EN 1092-1: 2007 Tab. G.4.1-x With regard to their stability-temperature property, the materials 1.4435 and 1.4404 are grouped together under 13E0 in EN 1092-1: 2007 Tab. G.3.1-1. The chemical composition of the two materials can be identical.
- ASME B 16.5a 2013 Tab. 2-2.2 F316
- ASME B 16.5a 2013 Tab. 2.3.8 N10276
- JIS B 2220

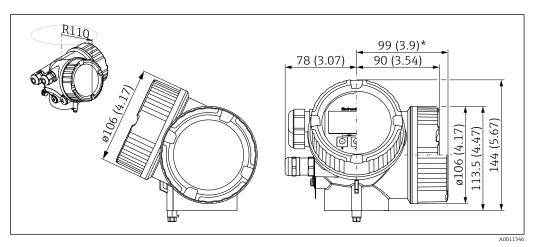
### Dielectric constant (DC)

- With coax probe: DC  $(\varepsilon_r) \ge 1.4$
- Rod and rope probe: DC  $(\epsilon_r) \ge 1.6$  (when installing in pipes DN  $\le 150$  mm (6 in): DC  $(\epsilon_r) \ge 1.4$ )


Extension of the rope probes due to temperature

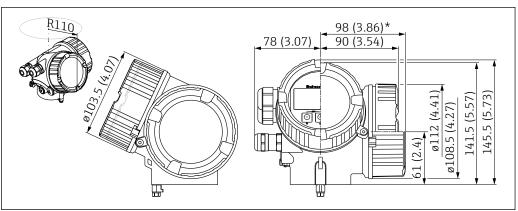
Elongation from temperature increase from 30 °C (86 °F) to 150 °C (302 °F): 2 mm / m rope length

# Mechanical construction


### **Dimensions**

### Dimensions of the electronics housing




■ 41 Housing GT18 (316L). Unit of measurement mm (in)

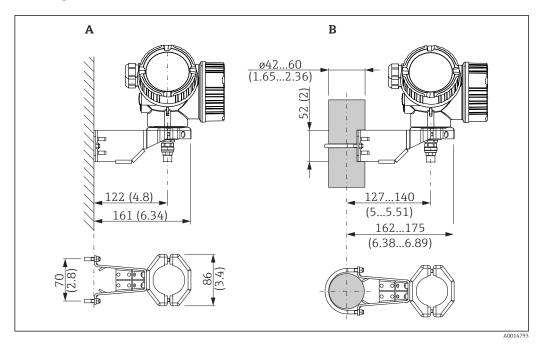
\*For devices with integrated overvoltage protection.



🛮 42 GT19 housing (plastic PBT). Unit of measurement mm (in)

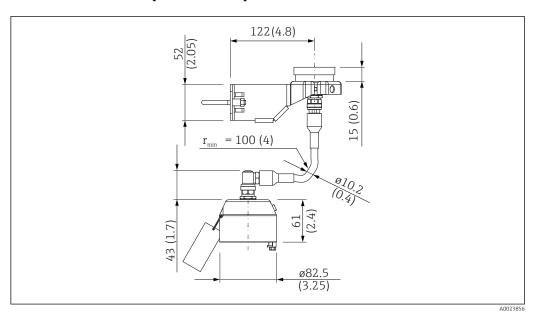
\*For devices with integrated overvoltage protection.



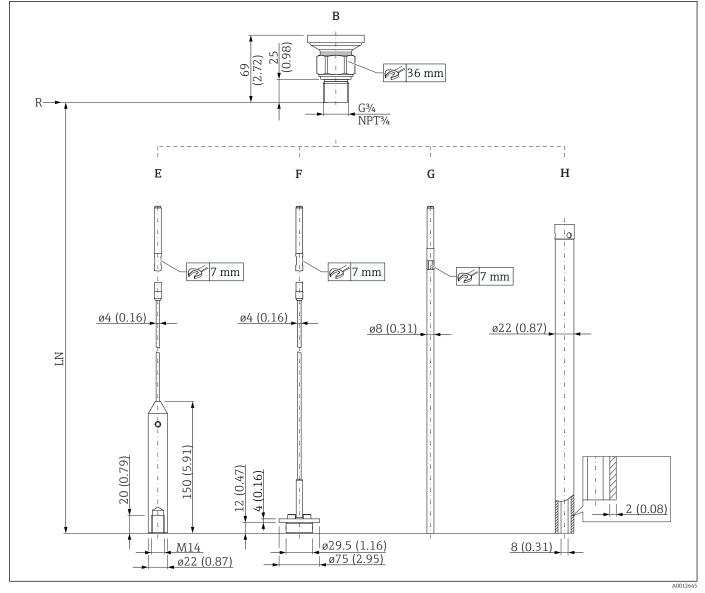

🛮 43 Housing GT20 (aluminum coated). Unit of measurement mm (in)

\*For devices with integrated overvoltage protection.

78 Endress+Hauser


A002075

### Mounting bracket dimensions

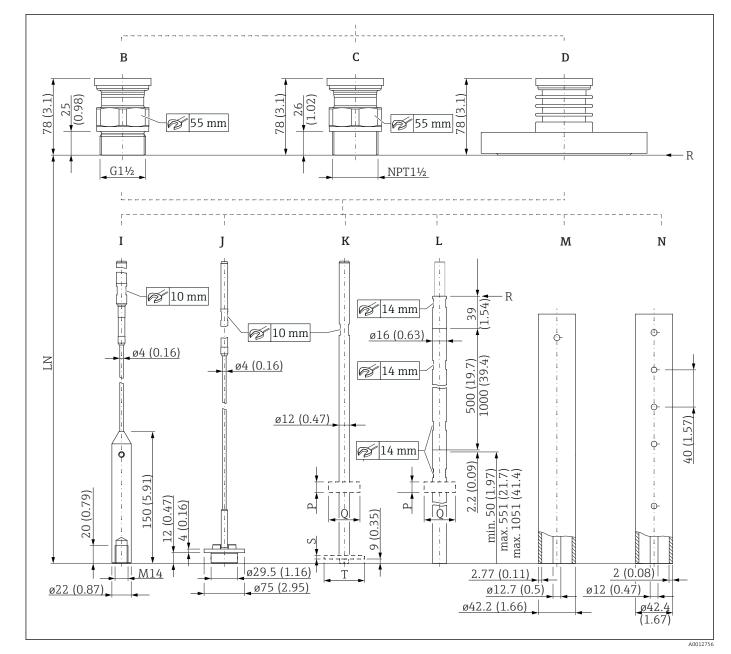



- 44 Mounting bracket for electronics housing. Unit of measurement mm (in)
- A Wall mounting
- B Post mounting
  - With "remote sensor" device versions (see feature 060 in the product structure), the mounting bracket is included in the scope of delivery. However, it can also be ordered separately as an accessory (order number: 71102216).

### Dimensions of connection piece for remote probe



45 Connection piece for remote probe; length of connecting cable: as per order. Unit of measurement mm (in)




FMP51: Dimensions of process connection (G3/4,NPT3/4)/probe

■ 46 FMP51: Process connection / probe. Unit of measurement mm (in)

- B Thread ISO228 G3/4 or ANSI MNPT3/4 (feature 100)
- E Rope probe 4mm or 1/6" (feature 060)
- F Rope probe 4mm or 1/6"; centering disk optional (features 060 and 610)
- G Rod probe 8mm or 1/3" (feature 060)
- H Coax probe (feature 060); with vent opening Ø approx. 6 mm (0.24 in)
- LN Probe length
- R Reference point of measurement

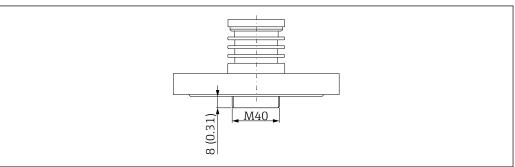
80



FMP51: Dimensions of process connection (G1½,NPT1½, flange)/probe

■ 47 FMP51: Process connection / probe. Unit of measurement mm (in)

- B Thread ISO228 G1-1/2 (feature 100)
- C Thread ANSI MNPT1-1/2 (feature 100)
- D Flange ANSI B16.5, EN1092-1, JIS B2220 (feature 100)
- I Rope probe 4mm or 1/6" (feature 060)
- J Rope probe 4mm or 1/6"; centering disk optional (features 060 and 610)
- K Rod probe 12mm or 1/2"; centering disk optional, see table below (features 060 and 610)
- L Rod probe 16mm or 0.63in, 500mm or 1000mm, separable; centering disk optional, see table below (features 060 and 610)
- M Coax probe; AlloyC (feature 060); with vent opening  $\emptyset$  approx. 8 mm (0.3 in)
- N Coax probe; 316L (feature 060); with vent openings  $\emptyset$  approx. 10 mm (0.4 in)
- LN Probe length
- *P* Thickness of centering star; for table of values, see below
- Q Diameter of centering star; for table of values, see below
- R Reference point of measurement
- S Thickness of centering disk or centering star; for table of values, see below
- T Diameter of centering disk or centering star: for table of values, see below


### Centering disk / centering star / centering weight

| Order code 610 "Accessory mounted" | Meaning                                                                            | Thickness           | Diameter                        |
|------------------------------------|------------------------------------------------------------------------------------|---------------------|---------------------------------|
| OA                                 | Rod centering disk 316L; pipe diameter DN80/3" + DN100/4"                          | S = 4 mm (0.16 in)  | T = 75 mm (2.95 in)             |
| ОВ                                 | Rod centering disk 316L; pipe diameter DN50/2" + DN65/2-1/2"                       | S = 4 mm (0.16 in)  | T = 45 mm (1.77 in)             |
| OC                                 | Rope centering disk 316L; pipe diameter DN80/3" + DN100/4"                         | S = 4 mm (0.16 in)  | T = 75 mm (2.95 in)             |
| OD                                 | Rod centering star PEEK; interface measurement; pipe diameter DN50/2" + DN100/4"   | S = 7 mm (0.28 in)  | T = 48 to 95 mm (1.9 to 3.7 in) |
| OE                                 | Rod centering star PFA; interface measurement; pipe diameter DN40/1-1/2" + DN50/2" | P = 10 mm (0.39 in) | Q =37 mm (1.46 in)              |
| OK                                 | Rope centering weight 316L for DN50/2"                                             | 60 mm (2.4 in)      | 45 mm (1.77 in)                 |
| OL                                 | Rope centering weight 316L for DN80/3"                                             | 30 mm (1.18 in)     | 75 mm (2.95 in)                 |
| OM                                 | Rope centering weight 316L for DN100/4"                                            | 30 mm (1.18 in)     | 95 mm (3.7 in)                  |

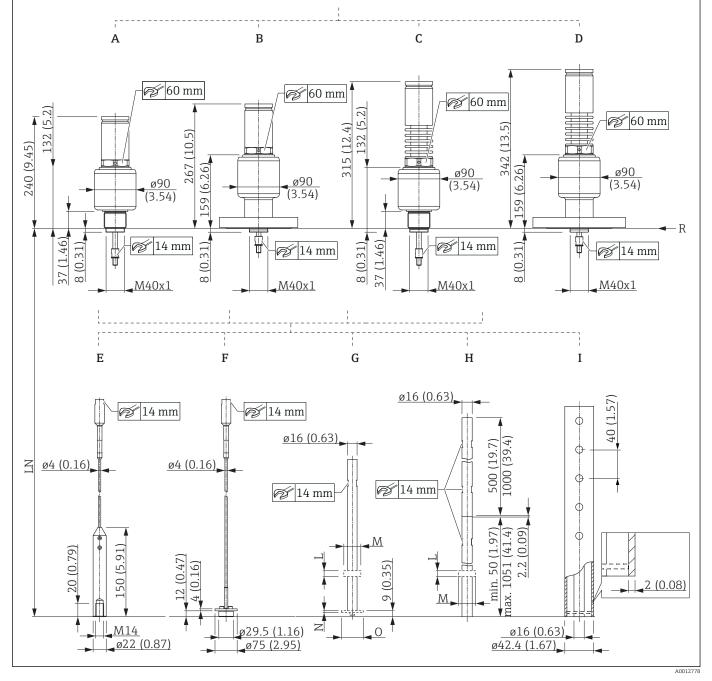
# Note on AlloyC flanges

AlloyC flanges always have an additional thread, even if they are not used with a coax probe.

Options for order feature 100 for "Process connection" that are affected: AEM, AFM, AGM, AQM, ARM, ASM, ATM, CEM, CFM, CGM, CQM, CRM, CSM, CTM.



■ 48 Dimensions of AlloyC flanges. Unit of measurement mm (in)


A003522

В Ċ Ď Ė Α 64 3.58 (3.23) 82 ø16 ø16 (0.63) ø16 (0.63) ø16 (0.63) ø16 (0.63) ø68.5 (2.7) (0.63)ø50.5 (1.99) G F ø16 (0.63) ø16 (0.63) ø4 (0.16) ø37 (1.46), 118 (4.65) ø22 (0.87)

FMP52: Dimensions of process connection/probe

FMP52: Process connection / probe. Unit of measurement mm (in)

- Α Tri-clamp 1-1/2" (feature 100)
- В
- С
- Tri-clamp 2" (feature 100)
  Tri-clamp 3" (feature 100)
  DIN11851 (dairy pipe) DN50 (feature 100)
- Е Flange ANSI B16.5, EN1092-1, JIS B2220 (feature 100)
- Rod probe 16mm or 0.63in, PFA>316L (feature 060); with optional centering star (feature 610)
- G Rope probe 4mm or 1/6", PFA>316 (feature 060)
- Probe length LN
- Reference point of measurement



FMP54: Dimensions of process connection/probe

■ 50 FMP54: Process connection / probe. Unit of measurement mm (in)

- A Thread ISO228 G1-1/2 or ANSI MNPT1-1/2; XT 280 °C (features 100 and 090)
- B Flange ANSI B16.5, EN1092-1, JIS B2220; XT 280 °C (features 100 and 090)
- C Thread ISO228 G1-1/2 or ANSI MNPT1-1/2; HT 450  $^{\circ}$ C (features 100 and 090)
- D Flange ANSI B16.5, EN1092-1, JIS B2220; HT 450  $^{\circ}$ C (features 100 and 090)
- E Rope probe 4mm or 1/6" (feature 060)
- F Rope probe 4mm or 1/6"; centering disk optional (features 060 and 610)
- G Rod probe 16mm or 0.63in; centering disk optional, see table below (features 060 and 610)
- H Rod probe 16mm or 0.63in; 500mm or 1000mm, separable; centering disk optional, see table below (feature 060 and 610)
- I Coax probe (feature 060); with vent openings Ø approx. 10 mm (0.4 in); with centering disk for "Gas phase compensation" application package (order code 540, option EF or EG)
- LN Probe length
- L Thickness of centering star; for table of values, see below
- M Diameter of centering star; for table of values, see below

- N Thickness of centering disk or centering star; for table of values, see below
   Diameter of centering disk or centering star: for table of values, see below
- Reference point of measurement

# Centering disk / centering star / centering weight

| Order code 610 "Accessory mounted" | Meaning                                                                            | Thickness           | Diameter                        |
|------------------------------------|------------------------------------------------------------------------------------|---------------------|---------------------------------|
| OA                                 | Rod centering disk 316L; pipe diameter DN80/3" + DN100/4"                          | N = 4 mm (0.16 in)  | O = 75 mm (2.95 in)             |
| ОВ                                 | Rod centering disk 316L; pipe diameter DN50/2" + DN65/2-1/2"                       | N = 4 mm (0.16 in)  | O = 45 mm (1.77 in)             |
| OC                                 | Rope centering disk 316L; pipe diameter DN80/3" + DN100/4"                         | N = 4 mm (0.16 in)  | O = 75 mm (2.95 in)             |
| OD                                 | Rod centering star PEEK; interface measurement; pipe diameter DN50/2" + DN100/4"   | N = 7 mm (0.28 in)  | O = 48 to 95 mm (1.9 to 3.7 in) |
| OE                                 | Rod centering star PFA; interface measurement; pipe diameter DN40/1-1/2" + DN50/2" | L = 10 mm (0.39 in) | M =37 mm (1.46 in)              |
| OK                                 | Rope centering weight 316L for DN50/2"                                             | 60 mm (2.4 in)      | 45 mm (1.77 in)                 |
| OL                                 | Rope centering weight 316L for DN80/3"                                             | 30 mm (1.18 in)     | 75 mm (2.95 in)                 |
| OM                                 | Rope centering weight 316L for DN100/4"                                            | 30 mm (1.18 in)     | 95 mm (3.7 in)                  |

### Probe length tolerances

### Rod and coax probes

Permitted tolerance depending on the probe length:

- < 1 m (3.3 ft) = -5 mm (-0.2 in)
- 1 to 3 m (3.3 to 9.8 ft) = -10 mm (-0.39 in)
- 3 to 6 m (9.8 to 20 ft) = -20 mm (-0.79 in)
- > 6 m (20 ft) = -30 mm (-1.18 in)

### Rope probes

Permitted tolerance depending on the probe length:

- < 1 m (3.3 ft) = -10 mm (-0.39 in)
- 1 to 3 m (3.3 to 9.8 ft) = -20 mm (-0.79 in)
- $\bullet$  3 to 6 m (9.8 to 20 ft) = -30 mm (-1.18 in)
- $\bullet$  > 6 m (20 ft) = -40 mm (-1.57 in)

# Surface roughness of AlloyC coated flanges

Ra =  $3.2 \mu m$  ( $126 \mu in$ ); reduced surface roughness available on request.

This value applies to flanges with "AlloyC>316/316L"; see product structure, feature 100 "Process connection". For other flanges, the surface roughness corresponds to the relevant flange standard.

### Shortening probes

If necessary, probes can be shortened by observing the following instructions:

### Shortening rod probes

Rod probes must be shortened if the distance to the vessel base or outlet cone is less than 10 mm (0.4 in). To shorten, saw off the bottom end of the rod probe.



It is **not** possible to shorten FMP52 rod probes due to their coating.

### Shortening rope probes

Rope probes must be shortened if the distance to the vessel base or outlet cone is less than 150 mm (6 in).



It is **not** possible to shorten FMP52 rope probes due to their coating.

### Shortening coax probes

Coax probes must be shortened if the distance to the vessel base or outlet cone is less than 10 mm (0.4 in).



Coax probes can be shortened by a maximum of 80 mm (3.2 in) from the bottom. They have centering devices on the inside to secure the rod centrally in the pipe. A raised edge holds the centering devices in place on the rod. It is possible to shorten the probe up to approx. 10 mm (0.4 in) below the centering device.

# Weight

# Housing

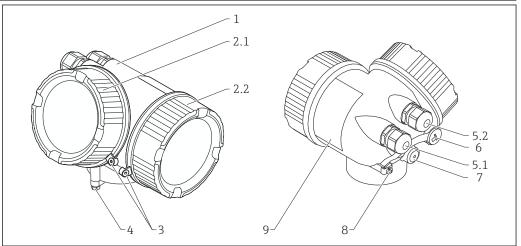
| Part                           | Weight         |
|--------------------------------|----------------|
| GT18 housing - stainless steel | Approx. 4.5 kg |
| GT19 housing - plastic         | Approx. 1.2 kg |
| GT20 housing - aluminum        | Approx. 1.9 kg |

# FMP51 with threaded connection G¾ or NPT¾

| Part            | Weight                        | Part           | Weight                        |
|-----------------|-------------------------------|----------------|-------------------------------|
| Sensor          | Approx. 0.8 kg                | Rod probe 8 mm | Approx. 0.4 kg/m probe length |
| Rope probe 4 mm | Approx. 0.1 kg/m probe length | Coax probe     | Approx. 1.2 kg/m probe length |

# FMP51 with threaded connection $G1\frac{1}{2}/NPT1\frac{1}{2}$ or flange

| Part            | Weight                            | Part            | Weight                        |
|-----------------|-----------------------------------|-----------------|-------------------------------|
| Sensor          | Approx. 1.2 kg + weight of flange | Rod probe 16 mm | Approx. 1.1 kg/m probe length |
| Rope probe 4 mm | Approx. 0.1 kg/m probe length     | Coax probe      | Approx. 3.0 kg/m probe length |
| Rod probe 12 mm | Approx. 0.9 kg/m probe length     |                 |                               |

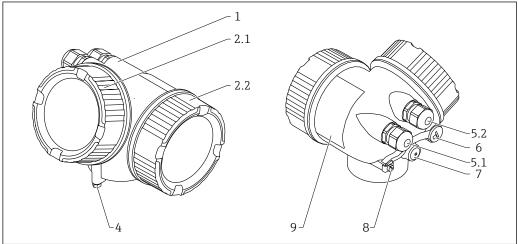

# FMP52

| Part   | Weight                            | Part            | Weight                        |
|--------|-----------------------------------|-----------------|-------------------------------|
| Sensor | Approx. 1.2 kg + weight of flange | Rope probe 4 mm | Approx. 0.5 kg/m probe length |
|        |                                   | Rod probe 16 mm | Approx. 1.1 kg/m probe length |

# FMP54

| Part                   | Weight                            | Part            | Weight                        |
|------------------------|-----------------------------------|-----------------|-------------------------------|
| Sensor - version<br>XT | Approx. 6.7 kg + weight of flange | Rope probe 4 mm | Approx. 0.1 kg/m probe length |
| Sensor - version<br>HT | Approx. 7.7 kg + weight of flange | Rod probe 16 mm | Approx. 1.6 kg/m probe length |
|                        |                                   | Coax probe      | Approx. 3.5 kg/m probe length |

Materials: Housing GT18 (stainless steel, corrosion-resistant)

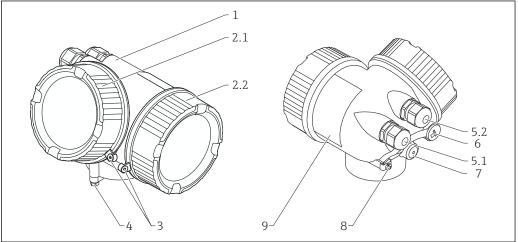



A0036037

| No. | Component part                                                           | Material                                                                                                                                                                                                                                                                                                                    |
|-----|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Housing                                                                  | CF3M similar to 316L/1.4404                                                                                                                                                                                                                                                                                                 |
| 2.1 | Electronics compartment cover                                            | <ul> <li>Cover: CF3M (similar to 316L/ 1.4404)</li> <li>Window: glass</li> <li>Cover seal: NBR</li> <li>Window seal: NBR</li> <li>Thread coating: graphite-based lubricant varnish</li> </ul>                                                                                                                               |
| 2.2 | Connection compartment cover                                             | <ul> <li>Cover: CF3M (similar to 316L/ 1.4404)</li> <li>Cover seal: NBR</li> <li>Thread coating: graphite-based lubricant varnish</li> </ul>                                                                                                                                                                                |
| 3   | Cover clamp                                                              | <ul><li>Screw: A4</li><li>Clamp: 316L (1.4404)</li></ul>                                                                                                                                                                                                                                                                    |
| 4   | Safety device on housing neck                                            | <ul><li>Screw: A4-70</li><li>Clamp: 316L (1.4404)</li></ul>                                                                                                                                                                                                                                                                 |
| 5.1 | Dummy plug, coupling, adapter or connector (depending on device version) | <ul> <li>Dummy plug, depending on device version:</li> <li>PE</li> <li>PBT-GF</li> <li>Coupling: 316L (1.4404) or brass, nickel-plated</li> <li>Adapter: 316L (1.4404/1.4435)</li> <li>Seal: EPDM</li> <li>Connector M12: brass, nickel-plated <sup>1)</sup></li> <li>Connector 7/8": 316 (1.4401) <sup>2)</sup></li> </ul> |
| 5.2 | Dummy plug, coupling or adapter (depending on device version)            | <ul> <li>Dummy plug: 316L (1.4404)</li> <li>Coupling: 316L (1.4404) or brass, nickel-plated</li> <li>Adapter: 316L (1.4404/1.4435)</li> <li>Seal: EPDM</li> </ul>                                                                                                                                                           |
| 6   | Dummy plug or M12 socket (depending on device version)                   | <ul> <li>Dummy plug: 316L (1.4404)</li> <li>M12 socket: 316L (1.4404)</li> </ul>                                                                                                                                                                                                                                            |
| 7   | Pressure compensation vent                                               | 316L (1.4404)                                                                                                                                                                                                                                                                                                               |
| 8   | Ground terminal                                                          | <ul> <li>Screw: A4</li> <li>Spring washer: A4</li> <li>Clamp: 316L (1.4404)</li> <li>Bracket: 316L (1.4404)</li> </ul>                                                                                                                                                                                                      |
| 9   | Nameplate                                                                | <ul> <li>Plate: 316L (1.4404)</li> <li>Groove pin: A4 (1.4571)</li> </ul>                                                                                                                                                                                                                                                   |

- 1) In the version with M12 connector, the seal material is Viton.
- 2) In the version with 7/8" connector, the seal material is NBR.

# Materials: GT19 housing (plastic)




A0013799

| No. | Component part                                                           | Material                                                                                                                                                                                                                                                                                                                                                            |
|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Housing                                                                  | PBT                                                                                                                                                                                                                                                                                                                                                                 |
| 2.1 | Electronics compartment cover                                            | <ul> <li>Sight glass: PC</li> <li>Rim: PBT-PC</li> <li>Cover seal: EPDM</li> <li>Thread coating: graphite-based lubricant varnish</li> </ul>                                                                                                                                                                                                                        |
| 2.2 | Connection compartment cover                                             | <ul><li>Cover: PBT</li><li>Cover seal: EPDM</li><li>Thread coating: graphite-based lubricant varnish</li></ul>                                                                                                                                                                                                                                                      |
| 4   | Safety device on housing neck                                            | <ul><li>Screw: A4-70</li><li>Clamp: 316L (1.4404)</li></ul>                                                                                                                                                                                                                                                                                                         |
| 5.1 | Dummy plug, coupling, adapter or connector (depending on device version) | <ul> <li>Dummy plug, depending on device version:</li> <li>PE</li> <li>PBT-GF</li> <li>Coupling, depending on device version:</li> <li>Brass (CuZn), nickel-plated</li> <li>PA</li> <li>Adapter: 316L (1.4404/1.4435)</li> <li>Seal: EPDM</li> <li>Connector M12: brass, nickel-plated <sup>1)</sup></li> <li>Connector 7/8": 316 (1.4401) <sup>2)</sup></li> </ul> |
| 5.2 | Dummy plug, coupling or adapter (depending on device version)            | <ul> <li>Dummy plug, depending on device version:</li> <li>PE</li> <li>PBT-GF</li> <li>Steel, galvanized</li> <li>Coupling, depending on device version:</li> <li>Brass (CuZn), nickel-plated</li> <li>PA</li> <li>Adapter: 316L (1.4404/1.4435)</li> <li>Seal: EPDM</li> </ul>                                                                                     |
| 6   | Dummy plug or M12 socket (depending on device version)                   | <ul> <li>Dummy plug: brass (CuZn), nickel-plated</li> <li>M12 socket: GD-Zn, nickel-plated</li> </ul>                                                                                                                                                                                                                                                               |
| 7   | Pressure compensation vent                                               | Brass (CuZn), nickel-plated                                                                                                                                                                                                                                                                                                                                         |
| 8   | Ground terminal                                                          | <ul> <li>Screw: A2</li> <li>Spring washer: A4</li> <li>Clamp: 304 (1.4301)</li> <li>Bracket: 304 (1.4301)</li> </ul>                                                                                                                                                                                                                                                |
| 9   | Adhesive nameplate                                                       | Plastic                                                                                                                                                                                                                                                                                                                                                             |

- 1) In the version with M12 connector, the seal material is Viton.
- 2) In the version with 7/8" connector, the seal material is NBR.

Materials: GT20 housing (die-cast aluminum, powdercoated)



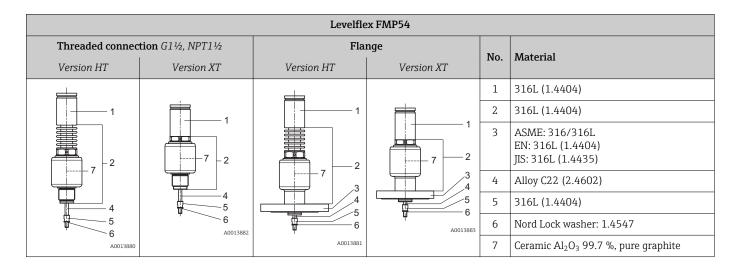
A003603

| No. | Component part                                                           | Material                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|--------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1   | Housing, RAL 5012 (blue)                                                 | <ul><li>Housing: AlSi10Mg(&lt;0.1% Cu)</li><li>Coating: polyester</li></ul>                                                                                                                                                                                                                                                                                                                       |
| 2.1 | Electronics compartment cover, RAL 7035 (gray)                           | <ul> <li>Cover: AlSi10Mg(&lt;0.1% Cu)</li> <li>Window: glass</li> <li>Cover seal: NBR</li> <li>Window seal: NBR</li> <li>Thread coating: graphite-based lubricant varnish</li> </ul>                                                                                                                                                                                                              |
| 2.2 | Connection compartment cover, RAL 7035 (gray)                            | <ul> <li>Cover: AlSi10Mg(&lt;0.1% Cu)</li> <li>Cover seal: NBR</li> <li>Thread coating: graphite-based lubricant varnish</li> </ul>                                                                                                                                                                                                                                                               |
| 3   | Cover clamp                                                              | <ul><li>Screw: A4</li><li>Clamp: 316L (1.4404)</li></ul>                                                                                                                                                                                                                                                                                                                                          |
| 4   | Safety device on housing neck                                            | <ul><li>Screw: A4-70</li><li>Clamp: 316L (1.4404)</li></ul>                                                                                                                                                                                                                                                                                                                                       |
| 5.1 | Dummy plug, coupling, adapter or connector (depending on device version) | <ul> <li>Dummy plug, depending on device version:         <ul> <li>PE</li> <li>PBT-GF</li> </ul> </li> <li>Coupling, depending on device version:         <ul> <li>Brass (CuZn), nickel-plated</li> <li>PA</li> </ul> </li> <li>Adapter: 316L (1.4404/1.4435)</li> <li>Seal: EPDM</li> <li>M12 plug: brass, nickel-plated <sup>1)</sup></li> <li>7/8" plug: 316 (1.4401) <sup>2)</sup></li> </ul> |
| 5.2 | Dummy plug, coupling or adapter (depending on device version)            | <ul> <li>Dummy plug, depending on device version:</li> <li>PE</li> <li>PBT-GF</li> <li>Steel, galvanized</li> <li>Coupling, depending on device version:</li> <li>Brass (CuZn), nickel-plated</li> <li>PA</li> <li>Adapter: 316L (1.4404/1.4435)</li> <li>Seal: EPDM</li> </ul>                                                                                                                   |
| 6   | Dummy plug or M12 socket (depending on device version)                   | <ul><li>Dummy plug: brass (CuZn), nickel-plated</li><li>M12 socket: GD-Zn, nickel-plated</li></ul>                                                                                                                                                                                                                                                                                                |
| 7   | Pressure compensation vent                                               | Brass (CuZn), nickel-plated                                                                                                                                                                                                                                                                                                                                                                       |

| No. | Component part     | Material                                                                                                             |
|-----|--------------------|----------------------------------------------------------------------------------------------------------------------|
| 8   | Ground terminal    | <ul> <li>Screw: A2</li> <li>Spring washer: A2</li> <li>Clamp: 304 (1.4301)</li> <li>Bracket: 304 (1.4301)</li> </ul> |
| 9   | Adhesive nameplate | Plastic                                                                                                              |

- In the version with the M12 plug, the seal material is Viton (different from standard). In the version with the 7/8" plug, the seal material is NBR (different from standard). 1) 2)

# Materials: Process connection


i

Endress+Hauser supplies DIN/EN flanges and process connections with threaded connection in stainless steel as per AISI 316L (DIN/EN material number 1.4404 or 14435). With regard to their stability-temperature property, the materials 1.4404 and 1.4435 are grouped together under 13E0 in EN 1092-1: 2007 Tab. G.3.1-1. The chemical composition of the two materials can be identical.

|          | Levelflex FMP51 |               |               |                   |      |                                               |
|----------|-----------------|---------------|---------------|-------------------|------|-----------------------------------------------|
| Th       | readed connecti | ion           | Fla           | nge               | No.  | Material                                      |
| G¾, NPT¾ | G1½             | NPT1½         | DN40 to DN200 | DN40 to DN100     | INO. | Material                                      |
|          |                 |               |               |                   | 1.1  | 316L (1.4404)                                 |
|          |                 |               | 1.1           | 1.2               | 1.2  | Alloy C22 (2.4602)                            |
| 1.1      | 1.1             | 1.1           |               |                   | 2    | ASME: 316/316L                                |
| 3        |                 |               |               |                   |      | EN: 316L (1.4404)<br>JIS: 316L (1.4435)       |
| A0013850 | 3<br>A0013852   | 3<br>A0013849 | 3<br>3        | _3 _4<br>A0013910 | 3    | Ceramic Al <sub>2</sub> O <sub>3</sub> 99.7 % |
|          |                 |               |               |                   | 4    | Cladding: Alloy C22 (2.4602)                  |

|               | Levelflex FMP52  |          |               |               |     |                                                           |              |
|---------------|------------------|----------|---------------|---------------|-----|-----------------------------------------------------------|--------------|
| Flange        | Dairy coupling   |          | Tri-Clamp     |               | No. | Material                                                  | Annuoval     |
| EN/ASME/JIS   | DN50 (DIN 11851) | 3"       | 2"            | 1½"           |     | Material                                                  | Approval     |
|               |                  |          |               |               | 1   | 316L (1.4404)                                             |              |
| 2             | 1 3              | 1        | 1             |               | 2   | ASME: 316/316L<br>EN: 316L (1.4404)<br>JIS: 316L (1.4435) |              |
|               |                  |          | $\frac{3}{3}$ | 3             | 3   | 316L (1.4404)                                             |              |
| 4<br>A0013865 | 4<br>A0013866    | A0013867 | A0013868      | 4<br>A0013869 | 4   | Coating 2 mm (0.08 in): PTFE (Dyneon TFM1600)             | USP Cl.VI 1) |
|               |                  |          |               |               | 5   | 304L (1.4307)                                             |              |

1) Plastic components in contact with the medium have been tested in accordance with USP <88> Class VI- $70^{\circ}$ C



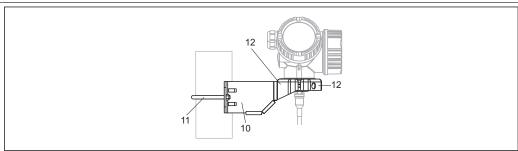
|                                                      |                                                       | Lev                                                       | elflex FMP51: rod probes                                                                                                                                                      |     |                                      |
|------------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|--------------------------------------|
|                                                      |                                                       | Feature 060 "Probe"                                       |                                                                                                                                                                               |     |                                      |
| <ul><li>AA: 8mm 316L</li><li>AB: 1/3" 316L</li></ul> | <ul><li>AC: 12mm 316L</li><li>AD: 1/2" 316L</li></ul> | <ul><li>AL: 12mm AlloyC</li><li>AM: 1/2" AlloyC</li></ul> | <ul> <li>BA: 16mm 316L 500mm separable</li> <li>BB: 0.63in 316L 20inch separable</li> <li>BC: 16mm 316L 1000mm separable</li> <li>BD: 0.63in 316L 40inch separable</li> </ul> | No. | Material                             |
| [                                                    | Ė                                                     |                                                           | Ĥ                                                                                                                                                                             | 1.1 | 316L (1.4404)                        |
| <u> </u>                                             | 1.1                                                   |                                                           | $\left[\begin{array}{c} \left[ \cdot \right] \\ \cdot \left[ \cdot \right] \end{array}\right] - 1.1$                                                                          | 1.2 | Alloy C22 (2.4602)                   |
| ))(<br>[i]                                           | <u> </u>                                              | ) (<br>                                                   | 1 2                                                                                                                                                                           | 2   | Connecting bolts: Alloy C22 (2.4602) |
| 1.1                                                  |                                                       | 1.2                                                       | i<br>III                                                                                                                                                                      |     | Nord Lock washer: 1.4547             |
| i                                                    | i i                                                   |                                                           | 1.1                                                                                                                                                                           | 3   | Hexagonal-headed bolt: A4-70         |
|                                                      |                                                       |                                                           | 1.1                                                                                                                                                                           |     | Nord Lock washer: 1.4547             |
|                                                      |                                                       |                                                           | 2                                                                                                                                                                             | 4   | Centering star, PEEK 1)              |
|                                                      | _ <u>                                    </u>         |                                                           | 5                                                                                                                                                                             |     | Centering disk, 316L (1.4404) 2)     |
|                                                      | 4                                                     |                                                           | 1.1                                                                                                                                                                           | 5   | Centering star, PFA 3)               |
| A0036651                                             | A0036585                                              | A0013912                                                  | A0036586                                                                                                                                                                      |     |                                      |

- 1)
- Feature 610 "Accessory mounted" = OD "Rod centering star d=48-95mm, PEEK" Feature 610 "Accessory mounted" = OA "Rod centering disk d=75mm" or OB "Rod centering disk d=45mm" Feature 610 "Accessory mounted" = OE "Rod centering star d=37mm, PFA" 2)
- 3)

|                                                                  | Levelflex FMP51: rope probes                                                                                                                                                      |                                       |                                                               |     |                          |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------|-----|--------------------------|
|                                                                  | Feature 060 "Pr                                                                                                                                                                   | obe"                                  |                                                               |     |                          |
| <ul> <li>LB: 1/6", 316L, ma</li> <li>MB: 4mm, 316L, m</li> </ul> | <ul> <li>LA: 4mm, 316L, max. 150mm nozzle</li> <li>LB: 1/6", 316L, max. 6in nozzle</li> <li>MB: 4mm, 316L, max. 300mm nozzle</li> <li>MD: 1/6", 316L, max. 12in nozzle</li> </ul> |                                       |                                                               |     |                          |
|                                                                  | Feature 610 "Accessory mounted                                                                                                                                                    | 1                                     | max. 6in nozzle  • MG: 4mm,                                   | No. | Material                 |
| OC: Centering disk<br>d=75mm                                     | <ul> <li>OK: Centering weight<br/>d=45mm</li> <li>OL: Centering weight<br/>d=75mm</li> <li>OM: Centering weight<br/>d=95mm</li> </ul>                                             | without option OC                     | AlloyC, max. 300mm nozzle  MH: 1/6", AlloyC, max. 12in nozzle |     |                          |
|                                                                  | h h                                                                                                                                                                               | Ī<br>:                                | Ü                                                             | 1.1 | 316L (1.4404)            |
|                                                                  |                                                                                                                                                                                   | 1                                     |                                                               | 1.2 | Alloy C22 (2.4602)       |
| П<br>М                                                           |                                                                                                                                                                                   | □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ | ⊕<br>⊕—1.2                                                    | 2   | 316 (1.4401)             |
|                                                                  |                                                                                                                                                                                   | 2                                     | 1.2                                                           | 3   | Cylinder screw:<br>A4-80 |
| 2                                                                | 2 2                                                                                                                                                                               |                                       |                                                               | 4   | Disk: 316L (1.4404)      |
|                                                                  |                                                                                                                                                                                   |                                       |                                                               | 5   | Setscrew: A4-70          |
|                                                                  |                                                                                                                                                                                   | <del>\$</del> 5                       | 1.2                                                           | 6   | Bracing screw:<br>A2-70  |
| 4<br>5                                                           | 7 7 7                                                                                                                                                                             | 1.1                                   | 1.2                                                           | 7   | Weight: 316L<br>(1.4404) |
| A0036587                                                         | A0039226                                                                                                                                                                          | A0036588                              | A0036589                                                      |     |                          |

|                                                                            | Levelflex FM        | IP51: coax probes                                                 |         |                    |
|----------------------------------------------------------------------------|---------------------|-------------------------------------------------------------------|---------|--------------------|
|                                                                            | Feature 060 "Probe" |                                                                   |         |                    |
| <ul><li>UA:mm, coax 316L</li><li>UB:inch, coax 316L</li></ul>              |                     | <ul><li>UC:mm, coax AlloyC</li><li>UD:inch, coax AlloyC</li></ul> |         | Material           |
| Feature 100 "Process com                                                   | nection"            |                                                                   | No.     | Material           |
| <ul><li>GDJ: thread ISO228 G3/4</li><li>RDJ: thread ANSI MNPT3/4</li></ul> | all other options   |                                                                   |         |                    |
| 1.1                                                                        | ф                   | lo l                                                              | 1.1     | 316L (1.4404)      |
|                                                                            |                     |                                                                   | 1.2     | Alloy C22 (2.4602) |
|                                                                            | 1.1                 | 1.2                                                               | 2.1     | Rod: 316L (1.4404) |
|                                                                            | P     I             |                                                                   | 2.2     | Alloy C22 (2.4602) |
|                                                                            | φ                   |                                                                   | 3       | Spacer: PFA        |
|                                                                            |                     |                                                                   |         |                    |
| 2.1                                                                        | φ 2.1<br>3          | 2.2                                                               |         |                    |
| ,<br>A0036590                                                              | A0036591            | , AC                                                              | 0036592 |                    |

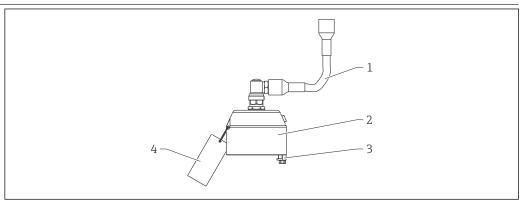
|                                                  | Levelflex FMP52                                                                                                                      |     |                                   |
|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|-----|-----------------------------------|
| Feature 060 "Probe"  CA: rod 16mm CB: rod 0.63in | <ul> <li>OA: rope 4mm, max. 150mm nozzle</li> <li>OB: rope 4mm, max. 300mm nozzle</li> <li>OC: rope 1/6", max. 6in nozzle</li> </ul> | No. | Material                          |
|                                                  | OD: rope 1/6", max. 12in nozzle                                                                                                      |     |                                   |
| 1                                                | 1                                                                                                                                    | 1   | 316L (1.4404)                     |
|                                                  |                                                                                                                                      | 2   | Coating 2 mm (0.08 in): PFA       |
|                                                  |                                                                                                                                      | 3   | Rope: 316 (1.4401)                |
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1          |                                                                                                                                      |     | Coating 0.75 mm (0.03 in): PFA    |
|                                                  |                                                                                                                                      | 4   | Core: 316L (1.4435)               |
|                                                  | l<br>Î                                                                                                                               | 5   | Centering star, PFA <sup>1)</sup> |
|                                                  | 2                                                                                                                                    |     |                                   |
| - <u>                                     </u>   |                                                                                                                                      |     |                                   |
| 1                                                | 4                                                                                                                                    |     |                                   |
| A0013870                                         | 1-3                                                                                                                                  |     |                                   |


1) Feature 610 "Accessory mounted" = OE "Rod centering star d=37mm, PFA, interface measurement"

|                                                    | Levelfle                                                                                                                  | x FMP54: rope probes                                                                             |     |                       |
|----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-----|-----------------------|
| Feature 060 "Probe"  LA: rope 4mm  LB: rope 0.63in |                                                                                                                           |                                                                                                  | No. | Material              |
|                                                    | Feature 610 "Accessory mounted"                                                                                           |                                                                                                  |     |                       |
| OC: Centering disk<br>d=75mm                       | <ul> <li>OK: Centering weight d=45mm</li> <li>OL: Centering weight d=75mm</li> <li>OM: Centering weight d=95mm</li> </ul> | without option OC                                                                                |     |                       |
| İ                                                  | i i                                                                                                                       |                                                                                                  | 1   | 316L (1.4404)         |
|                                                    |                                                                                                                           |                                                                                                  | 2   | 316 (1.4401)          |
| Щ<br>Й                                             |                                                                                                                           | <br>                                                                                             | 3   | Cylinder screw: A4-80 |
|                                                    |                                                                                                                           | 2                                                                                                | 4   | Disk: 316L (1.4404)   |
|                                                    |                                                                                                                           | Z                                                                                                | 5   | Setscrew: A4-70       |
| 2                                                  | 2 2                                                                                                                       |                                                                                                  | 6   | Bracing screw: A2-70  |
| 1<br>3<br>4<br>5<br>A0036594                       | 1 1 7 7 A0039227                                                                                                          | 5<br>1<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | 7   | Weight: 316L (1.4404) |

|                                                       | Levelflex FMP54: rod and coax probes                                                                                                                                          |                                    |                          |                                                       |
|-------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------|-------------------------------------------------------|
|                                                       | Feature 060 "Probe"                                                                                                                                                           |                                    |                          |                                                       |
| <ul><li>AE: rod 16mm</li><li>AF: rod 0.63in</li></ul> | <ul> <li>BA: rod 16mm, 500mm separable</li> <li>BB: rod 0.63in, 20inch separable</li> <li>BC: rod 16mm, 1000mm separable</li> <li>BD: rod 0.63in, 40inch separable</li> </ul> | ■ UA: mm, coax<br>■ UB: inch, coax | No.                      | Material                                              |
|                                                       | انا                                                                                                                                                                           | <u> </u>                           | 1                        | 316L (1.4404) <sup>1)</sup>                           |
|                                                       |                                                                                                                                                                               | 0   1                              | 2                        | Connecting bolts: Alloy C22 (2.4602)                  |
|                                                       | φ Ι                                                                                                                                                                           |                                    | Nord Lock washer: 1.4547 |                                                       |
|                                                       |                                                                                                                                                                               |                                    | 3                        | Hexagonal-headed bolt: A4-70                          |
|                                                       |                                                                                                                                                                               |                                    |                          | Nord Lock washer: 1.4547                              |
| 5                                                     | φ                                                                                                                                                                             | 4                                  | Centering star, PEEK 2)  |                                                       |
|                                                       | 7                                                                                                                                                                             | 6                                  |                          | Centering disk, 316L (1.4404) 3)                      |
| 3                                                     |                                                                                                                                                                               |                                    | 5                        | Centering disk, PFA <sup>4)</sup>                     |
| A0036596   i 1 1                                      |                                                                                                                                                                               | P<br>i                             | 6                        | Rod: 316L (1.4404)                                    |
|                                                       |                                                                                                                                                                               | ,<br>O                             | 7                        | Spacer: ceramic Al <sub>2</sub> O <sub>3</sub> 99.7 % |
|                                                       | A0036597                                                                                                                                                                      | A0036598                           |                          |                                                       |

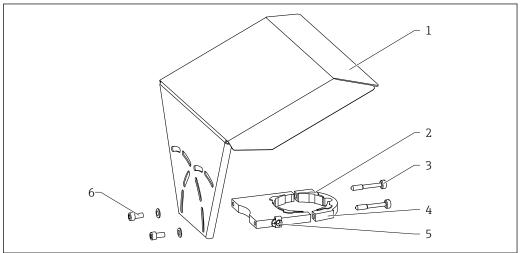
- 1) In the version with gas phase compensation, is also the material of the reference rod.
- 2)
- Feature 610 "Accessory mounted" = OD "Rod centering star d=48-95mm, PEEK"
  Feature 610 "Accessory mounted" = OA "Rod centering disk d=75mm" or OB "Rod centering disk d=45mm"
  Feature 610 "Accessory mounted" = OE "Rod, centering star d=37mm, PFA, interface measurement" 3)


# Materials: Mounting bracket



A0015143

| Mountin | Mounting bracket for "remote sensor" version |                                 |  |  |  |
|---------|----------------------------------------------|---------------------------------|--|--|--|
| No.     | Component part                               | Material                        |  |  |  |
| 10      | Holder                                       | 316L (1.4404)                   |  |  |  |
| 11      | Round bracket                                | 316Ti (1.4571)                  |  |  |  |
|         | Screws/nuts                                  | A4-70                           |  |  |  |
|         | Distance sleeves                             | 316Ti (1.4571) or 316L (1.4404) |  |  |  |
| 12      | Half-shells                                  | 316L (1.4404)                   |  |  |  |


# Materials: Adapter and cable for remote sensor



A0021722

| Adapter and cable for "remote sensor" version |                |               |  |
|-----------------------------------------------|----------------|---------------|--|
| No.                                           | Component part | Material      |  |
| 1                                             | Cable          | FRNC          |  |
| 2                                             | Sensor adapter | 304 (1.4301)  |  |
| 3                                             | Terminal       | 316L (1.4404) |  |
|                                               | Screw          | A4-70         |  |
| 4                                             | Band           | 316 (1.4401)  |  |
|                                               | Crimp sleeve   | Aluminum      |  |
|                                               | Nameplate      | 304 (1.4301)  |  |

# Materials: Weather protection cover



A0015473

| No. | Component: Material                                                                         |
|-----|---------------------------------------------------------------------------------------------|
| 1   | Protection cover: 316L (1.4404)                                                             |
| 2   | Rubber molded part (4x): EPDM                                                               |
| 3   | Tensioning screw: 316L (1.4404) + carbon thread                                             |
| 4   | Holder: 316L (1.4404)                                                                       |
| 5   | Ground terminal  Screw: A4  Spring washer: A4  Clamp: 316L (1.4404)  Bracket: 316L (1.4404) |
| 6   | ■ Washer: A4 ■ Cylinder screw: A4-70                                                        |

# Operability

### Operating concept

### Operator-oriented menu structure for user-specific tasks

- Commissioning
- Operation
- Diagnostics
- Expert level

### Operating languages

- English
- Deutsch
- Français
- Español
- Italiano
- Nederlands
- Portuguesa
- Polski
- русский язык (Russian)
- Svenska
- Türkçe
- 中文 (Chinese)
- 日本語 (Japanese)
- 한국어 (Korean)
- Bahasa Indonesia
- tiếng Việt (Vietnamese)
- čeština (Czech)



### Quick and save commissioning

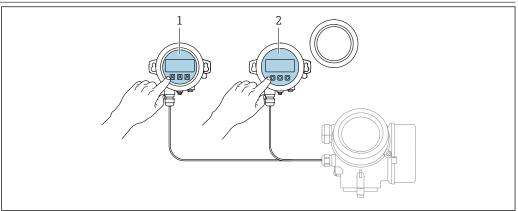
- Interactive wizard with graphical interface for easy commissioning via FieldCare/DeviceCare
- Menu guidance with brief explanations of the individual parameter functions
- $\ \ \, \blacksquare$  Standardized operation at the device and in the operating tools

### Integrated data storage device (HistoROM)

- Enables transfer of configuration when changing electronic modules
- $\,\blacksquare\,$  Records up to 100 event messages in the device
- Records up to 1000 measured values in the device
- Saves the signal curve on commissioning which can later be used as a reference.

### Efficient diagnostics increase measurement reliability

- Remedy information is integrated in plain text
- Diverse simulation options and line recorder functions


# Integrated Bluetooth module (option for HART devices)

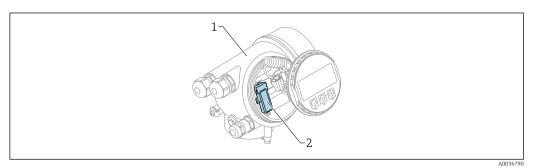
- Easy and fast setup via SmartBlue (app)
- No additional tools or adapters required
- Signal curve via SmartBlue (app)
- Encrypted single point-to-point data transmission (Fraunhofer-Institut, third party, tested) and password-protected communication via Bluetooth® wireless technology

# Local operation

| Operation with                            | Pushbuttons                                                                                                                                                                                                        | Touch Control                                                 |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|
| Order code for<br>"Display;<br>Operation" | Option C "SD02"                                                                                                                                                                                                    | Option E "SD03"                                               |
| Display elements                          | A0036312  4-line display                                                                                                                                                                                           | 4-line display white background lighting; switches to red in  |
|                                           | Format for displaying measured variables and st                                                                                                                                                                    | event of device error                                         |
|                                           | Permitted ambient temperature for the display: $-20 \text{ to } +70 \text{ °C } (-4 \text{ to } +158 \text{ °F})$<br>The readability of the display may be impaired at temperatures outside the temperature range. |                                                               |
| Operating elements                        | local operation with 3 push buttons ( $\pm$ , $\Box$ , $$ )                                                                                                                                                        | external operation via touch control; 3 optical keys: ⊕, ⊡, ⊑ |
|                                           | Operating elements also accessible in various hazardous areas                                                                                                                                                      |                                                               |
| Additional functionality                  | Data backup function<br>The device configuration can be saved in the display module.                                                                                                                               |                                                               |
|                                           | Data comparison function The device configuration saved in the display module can be compared to the current device configuration.                                                                                 |                                                               |
|                                           | Data transfer function The transmitter configuration can be transmitte                                                                                                                                             | ed to another device using the display module.                |

Operation with remote display and operating module FHX50




A0036314

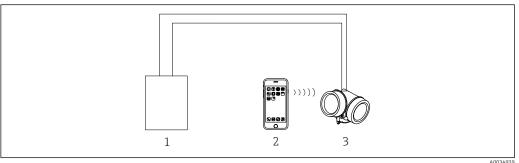
# **■** 51 *FHX50* operating options

- Display and operating module SD03, optical keys; can be operated through the glass of the cover Display and operating module SD02, push buttons; cover must be removed

# Operation via Bluetooth® wireless technology

### Requirements



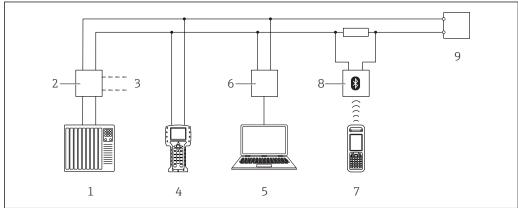

■ 52 Device with Bluetooth module

- *Electronics housing of the device*
- 2 Bluetooth module

This operation option is only available for devices with Bluetooth module. There are the following options:

- The device has been ordered with a Bluetooth module: Feature 610 "Accessory Mounted", option NF "Bluetooth"
- The Bluetooth module has been ordered as an accessory (ordering number: 71377355) and has been mounted. See Special Documentation SD02252F.

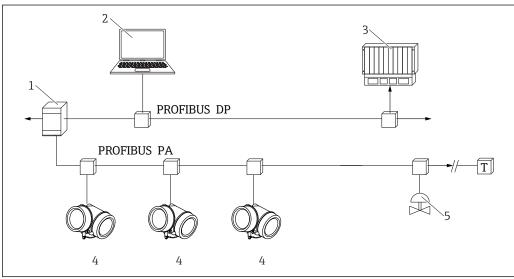
### Operation via SmartBlue (app)




■ 53 Operation via SmartBlue (app)

- 1 Transmitter power supply unit
- 2 Smartphone / tablet with SmartBlue (app)
- 3 Transmitter with Bluetooth module

### Remote operation

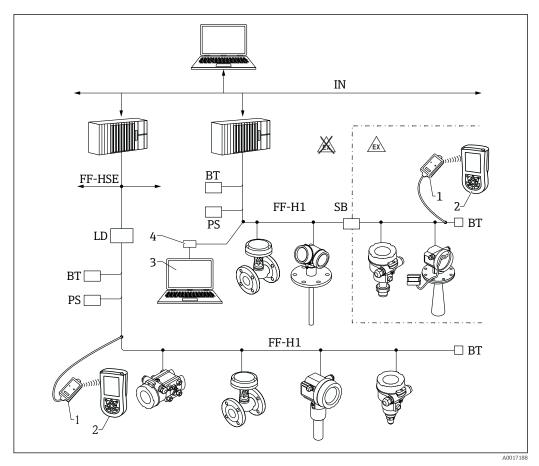

# Via HART protocol



€ 54 Options for remote operation via HART protocol

- 1 PLC (Programmable Logic Controller)
- 2
- Transmitter power supply unit, e.g. RN221N (with communication resistor)
  Connection for Commubox FXA191, FXA195 and Field Communicator 375, 475 3
- 4 Field Communicator 475
- Computer with operating tool (e.g. DeviceCare/FieldCare , AMS Device Manager, SIMATIC PDM)
- Commubox FXA191 (RS232) or FXA195 (USB) 6
- Field Xpert SFX350/SFX370
- $\dot{\it VIATOR}$  Bluetooth modem with connecting cable 8
- 9 Transmitter

### Via PROFIBUS PA protocol

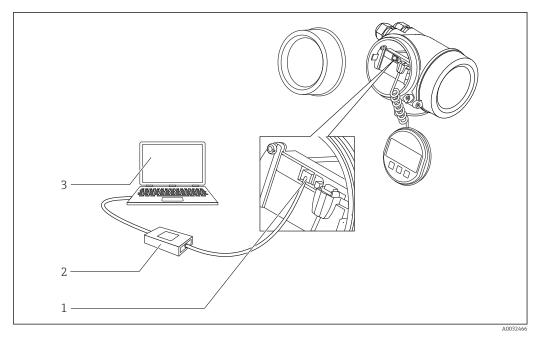



**№** 55 Options for remote operation via PROFIBUS PA protocol

- Computer with Profiboard/Proficard and operating tool (e.g. DeviceCare/FieldCare 2
- 3 PLC (Progrommable Logic Controller)
- Transmitter
- Additional functions (valves etc.)

102

### Via FOUNDATION Fieldbus



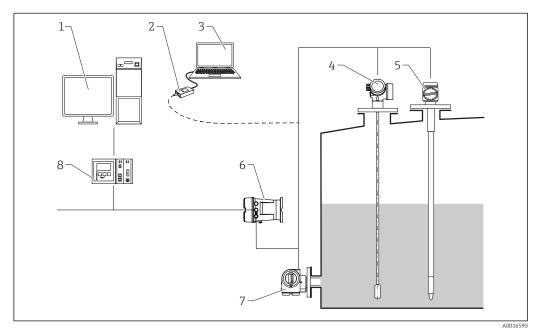

FOUNDATION Fieldbus system architecture with associated components

- FFblue Bluetooth modem 1
- Field Xpert SFX350/SFX370 DeviceCare/FieldCare 2
- 3
- NI-FF interface card

| IN     | Industrial network          |
|--------|-----------------------------|
| FF-HSE | High Speed Ethernet         |
| FF-H1  | FOUNDATION Fieldbus-H1      |
| LD     | Linking Device FF-HSE/FF-H1 |
| PS     | Bus Power Supply            |
| SB     | Safety Barrier              |
| BT     | Bus Terminator              |

# DeviceCare/FieldCare via service interface (CDI)




DeviceCare/FieldCare via service interface (CDI)

- Service interface (CDI) of the instrument (= Endress+Hauser Common Data Interface) Commubox FXA291
- 2 3 Computer with DeviceCare/FieldCare operating tool

104

# Integration in tank gauging system

The Endress+Hauser Tank Side Monitor NRF81 provides integrated communications for sites with multiple tanks, each with one or more sensors on the tank, such as radar, spot or average temperature, capacitive probe for water detection and/or pressure sensors. Multiple protocols out of the Tank Side Monitor guarantee connectivity to nearly any of the existing industry standard tank gauging protocols. Optional connectivity of analog 4...20 mA sensors, digital I/O and analog output simplify full tank sensor integration. Use of the proven concept of the intrinsically safe HART bus for all on-tank sensors yields extremely low wiring costs, while at the same time providing maximum safety, reliability and data availability.



**■** 58 The complete measuring system consists of:

- 1 Tankvision workstation
- 2 Commubox FXA195 (USB) optional
- 3 Computer with operating tool (ControlCare) optional
- 4 Level measuring device
- 5 Temperature measuring device
- 6 Tank Side Monitor NRF81
- 7 Pressure measuring device
- 8 Tankvision Tank Scanner NXA820

# SupplyCare inventory management software

SupplyCare is a web-based operating program for coordinating the flow of material and information along the supply chain. SupplyCare provides a comprehensive overview of the levels of geographically distributed tanks and silos, for instance, providing complete transparency over the current inventory situation, regardless of time and location.

Based on the measuring and transmission technology installed onsite, the current inventory data are collected and sent to SupplyCare. Critical levels are clearly indicated and calculated forecasts provide additional security for material requirements planning.

The main functions of SupplyCare:

### Inventory visualization

SupplyCare determines the inventory levels in tanks and silos at regular intervals. It displays current and historical inventory data and calculated forecasts of future demand. The overview page can be configured to suit the user's preferences.

### Master data management

With SupplyCare you can create and manage the master data for locations, companies, tanks, products and users, as well as user authorization.

### **Report Configurator**

The Report Configurator can be used to create personalized reports quickly and easily. The reports can be saved in a variety of formats, such as Excel, PDF, CSV and XML. The reports can be transmitted in many ways, such as by http, ftp or e-mail.

### **Event management**

Events, such as when levels drop below the safety stock level or plan points, are indicated by the software. In addition, SupplyCare can also notify pre-defined users by e-mail.

#### Alarms

If technical problems occur, e.g. connection issues, alarms are triggered and alarm e-mails are sent to the System Administrator and the Local System Administrator.

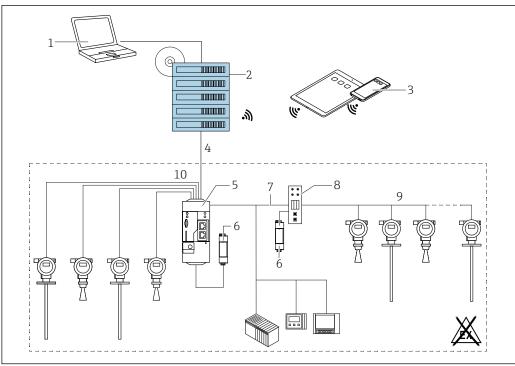
### Delivery planning

The integrated delivery planning function automatically generates an order proposal if a pre-set minimum inventory level is undershot. Scheduled deliveries and disposals are monitored continuously by SupplyCare. SupplyCare notifies the user if scheduled deliveries and disposals are not going to be met as planned.

### **Analysis**

In the Analysis module, the most important indicators for the inflow and outflow of the individual tanks are calculated and displayed as data and charts. Key indicators of material management are automatically calculated and form the basis for optimizing the delivery and storage process.

### Geographical visualization

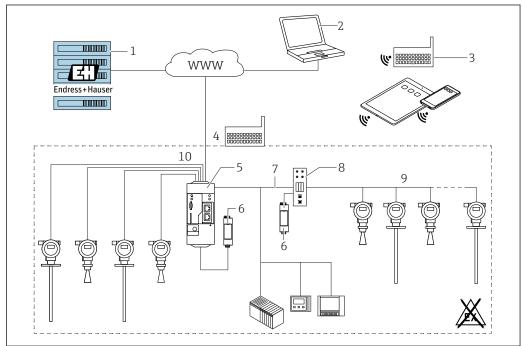

All the tanks and the tank inventories are represented graphically on a map (based on Google Maps). The tanks and inventory situations can be filtered by tank group, product, supplier or location.

### Multi-language support

The multi-language user interface supports 9 languages, thereby enabling global collaboration on a single platform. The language and settings are recognized automatically using the browser settings.

### SupplyCare Enterprise

SupplyCare Enterprise runs by default as a service under Microsoft Windows on an application server in an Apache Tomcat environment. The operators and administrators operate the application via a Web browser from their workstations.




₹ 59 Example of inventory management platform with SupplyCare Enterprise SCE30B

- 1 SupplyCare Enterprise (via Web browser)
- 2
- SupplyCare Enterprise installation SupplyCare Enterprise on mobile devices (via Web browser)
- 4 Ethernet/WLAN/UMTS
- Fieldgate FXA42
- Power supply 24 V DC
- Modbus TCP via Ethernet as server/client Converter from Modbus to HART Multidrop 8
- HART Multidrop
- 4 x 4 to 20 mA analog input (2-wire/4-wire) 10

### Cloud-based application: SupplyCare Hosting

SupplyCare Hosting is offered as a hosting service (software as a service). Here, the software is installed within the Endress+Hauser IT infrastructure and made available to the user in the Endress+Hauser portal.



A003428

■ 60 Example of inventory management platform with SupplyCare Hosting SCH30

- 1 SupplyCare Hosting installation in Endress+Hauser data center
- 2 PC workstation with Internet connection
- 3 Warehouse locations with Internet connection via 2G/3G with FXA42 or FXA30
- 4 Warehouse locations with Internet connection with FXA42
- 5 Fieldgate FXA42
- 6 Power supply 24 V DC
- 7 Modbus TCP via Ethernet as server/client
- 8 Converter from Modbus to HART Multidrop
- 9 HART Multidrop
- 10 4 x 4 to 20 mA analog input (2-wire/4-wire)

With SupplyCare Hosting, users do not need to make the initial software purchase or install and run the IT infrastructure needed. Endress+Hauser constantly update SupplyCare Hosting and enhance the capability of the software in conjunction with the customer. The hosted version of SupplyCare is thus always up-to-date and can be customized to meet different customer requirements. Other services are also offered in addition to the IT infrastructure and the software that is installed in a secure, redundant Endress+Hauser data center. These services include defined availability of the global Endress+Hauser Service and Support Organization and defined response times in a service event.

# Certificates and approvals



Currently available certificates and approvals can be called up via the product configurator.

#### CE mark

The measuring system meets the legal requirements of the applicable EU Directives. These are listed in the corresponding EU Declaration of Conformity along with the standards applied.

Endress+Hauser confirms successful testing of the device by affixing to it the CE mark.

#### **RoHS**

The measuring system complies with the substance restrictions of the Restriction on Hazardous Substances Directive 2011/65/EU (RoHS 2).

#### **RCM-Tick marking**

The supplied product or measuring system meets the ACMA (Australian Communications and Media Authority) requirements for network integrity, interoperability, performance characteristics as well as health and safety regulations. Here, especially the regulatory arrangements for electromagnetic compatibility are met. The products are labelled with the RCM- Tick marking on the name plate.



40020561

#### Ex approval

The devices are certified for use in hazardous areas and the relevant safety instructions are provided in the separate "Safety Instructions" (XA, ZD) document. Reference is made to this document on the nameplate.



The separate "Safety Instructions" documentation (XA) containing all the relevant explosion protection data is available from your Endress+Hauser sales organization.

# Dual seal according to ANSI/ISA 12.27.01

The devices have been designed according to ANSI/ISA 12.27.01 as dual seal devices, allowing the user to waive the use and save the cost of installing external secondary process seals in the conduit as required by the process sealing sections of ANSI/NFPA 70 (NEC) and CSA 22.1 (CEC) These instruments comply with the North-American installation practice and provide a very safe and cost-saving installation for pressurized applications with hazardous fluids.

Further information can be found in the Safety Instructions (XA) of the relevant devices.

# **Functional safety**

Use for level monitoring (MIN, MAX, range) up to SIL 3 (homogeneous redundancy), independently evaluated by TÜV Rheinland in accordance with IEC 61508, refer to the "Functional Safety Manual" SD00326F for more information.

## Overfill prevention

### WHG

DIBt Z-65.16-501

# Hygienic compatibility

Information regarding device versions that meet the requirements of 3A Sanitary Standard No. 74 and/or are certified by the EHEDG:



SD02503F



Suitable fittings and seals must be used to ensure hygiene-compliant design according to 3A and EHEDG specifications.

The gap-free connections can be cleaned of all residue using the typical cleaning methods within this industry (CIP and SIP).

Wetted non-metal parts of the FMP52 comply with FDA 21 CFR 177.1550 and USP Class VI.

# AD2000

- For FMP51/FMP54:
  - The wetted material 316L (1.4435/1.4404) corresponds to AD2000 W2/W10.
- For FMP52/FMP55:
  - The pressure retaining material 316L (1.4435/1.4404) corresponds to AD2000 W2/W10.
- Declaration of Conformity: see the product structure, feature 580, version JF.

#### NACE MR 0175 / ISO 15156

For FMP51. FMP54:

- The wetted, metal materials (excluding ropes) meet the requirements of NACE MR 0175 / ISO 15156
- Declaration of Conformity: see the product structure, feature 580, version JB

#### **NACE MR 0103**

For FMP51, FMP54:

- The wetted, metal materials (excluding ropes) meet the requirements of NACE MR 0103 / ISO 17495.
- The Declaration of Conformity is based on NACE MR 0175.
  The hardness and intergranular corrosion have been tested, and heat treatment (solution annealed) has been performed. The materials used therefore meet the requirements of NACE MR 0103 / ISO 17495.
- Declaration of Conformity: see the product structure, feature 580, version JE.

# ASME B31.1 and B31.3

- The design, the material used, the pressure and temperature ranges and the labeling of the devices meet the requirements of ASME B31.1 and B31.3
- Declaration of Conformity: see the product structure, feature 580, version KV.

# Pressure equipment with allowable pressure ≤ 200 bar (2 900 psi)

Pressure instruments with a flange and threaded boss that do not have a pressurized housing do not fall within the scope of the Pressure Equipment Directive, irrespective of the maximum allowable pressure.

#### Reasons:

According to Article 2, point 5 of EU Directive 2014/68/EU, pressure accessories are defined as "devices with an operational function and having pressure-bearing housings".

If a pressure instrument does not have a pressure-bearing housing (no identifiable pressure chamber of its own), there is no pressure accessory present within the meaning of the Directive.

# Pressure equipment with allowable pressure > 200 bar (2 900 psi)

Pressure equipment designated for application in every process fluid having a pressurized volume V of <0.1 l and a max. allowable pressure PS > 200 bar (2 900 psi) shall satisfy the essential safety requirements set out in Annex I of the Pressure Equipment Directive 2014/68/EU. According to Article 13 pressure equipment shall be classified by category in accordance with Annex II. The conformity assessment of the pressure equipment shall be determined by the category I under consideration of the above–mentioned low pressurized volume. These devices shall be provided with CE marking.

## Reasons:

- Pressure Equipment Directive 2014/68/EU, Article 13 and Annex II
- Pressure equipment directive 2014/68/EU, Commission's Working Group "Pressure", Guideline A-05

# Note:

A partial examination shall be performed for pressure instruments that are part of safety equipment for the protection of a pipe or vessel from exceeding allowable limits (equipment with safety function in accordance with Pressure Equipment Directive 2014/68/EU, Article 2, point 4).

The conformity assessment was performed according to module A; and proof of static strength and fatigue strength according to EN 13445 and AD2000.

The FMP54 is not suitable for use with unstable gases at nominal pressures above 200 bar (2900 psi).

# Steam boiler approval

The FMP54 is approved as a limiting device for high water (HW) and low water (LW) for liquids in vessels which are subject to the requirements of EN12952-11 and EN12953-9 (certified by TÜV Nord).

Product structure: feature 590 "Additional approval", version LX "Steam boiler approval".

For details refer to Safety Instructions SD00349F and Planning Instructions SD01071F.



Devices with a steam boiler approval always also have a SIL approval.

# Marine approval

| Device | Marine approval <sup>1)</sup> |     |    |    |    |
|--------|-------------------------------|-----|----|----|----|
|        | DNV GL                        | ABS | LR | BV | KR |
| FMP51  | V                             | V   | V  | ~  | ~  |
| FMP52  | V                             | ~   | V  | ~  | ~  |
| FMP54  | V                             | V   | V  | -  | -  |

1) See order code for 590 "Additional approval"

# Radio approval

Satisfies "Part 15" of the FCC rules for an unintentional radiator. All probes meet the requirements for a Class A digital device.

In addition, coax probes and all probes in metal vessels meet the requirements for a Class B digital device.

# **CRN** approval

A CRN approval is available for some device versions. Devices are CRN approved if the following two conditions are met:

- The device has a CSA or FM approval (product structure: feature 010 "Approval")
- The device has a CRN-approved process connection as per the following table:

| ature 100 in the product structure | Approval                                              |  |
|------------------------------------|-------------------------------------------------------|--|
| AAJ                                | NPS 2" Cl. 600 RF, 316/316L flange ASME B16.5         |  |
| ABJ                                | NPS 3" Cl. 600 RF, 316/316L flange ASME B16.5         |  |
| AEJ                                | NPS 1-1/2" Cl. 150 RF, 316/316L flange ASME B16.5     |  |
| AEK                                | NPS 1-1/2" Cl. 150, PTFE>316/316L flange ASME B16.5   |  |
| AEM                                | NPS 1-1/2" Cl. 150, AlloyC>316/316L flange ASME B16.5 |  |
| AFJ                                | NPS 2" Cl. 150 RF, 316/316L flange ASME B16.5         |  |
| AFK                                | NPS 2" C. 150, PTFE>316/316L flange ASME B16.5        |  |
| AFM                                | NPS 2" Cl. 150, AlloyC>316/316L flange ASME B16.5     |  |
| AGJ                                | NPS 3" Cl. 150 RF, 316/316L flange ASME B16.5         |  |
| AGK                                | NPS 3" Cl. 150, PTFE>316/316L flange ASME B16.5       |  |
| AGM                                | NPS 3" Cl. 150, AlloyC>316/316L flange ASME B16.5     |  |
| АНЈ                                | NPS 4" Cl. 150 RF, 316/316L flange ASME B16.5         |  |
| АНК                                | NPS 4" Cl. 150, PTFE>316/316L flange ASME B16.5       |  |
| AJJ                                | NPS 6" Cl. 150 RF, 316/316L flange ASME B16.5         |  |
| AJK                                | NPS 6" Cl. 150, PTFE>316/316L flange ASME B16.5       |  |
| AKJ                                | NPS 8" Cl. 150 RF, 316/316L flange ASME B16.5         |  |
| AOJ                                | NPS 4" Cl. 600 RF, 316/316L flange ASME B16.5         |  |
| AQJ                                | NPS 1-1/2" Cl. 300 RF, 316/316L flange ASME B16.5     |  |
| AQK                                | NPS 1-1/2" Cl. 300, PTFE>316/316L flange ASME B16.5   |  |
| AQM                                | NPS 1-1/2" Cl. 300, AlloyC>316/316L flange ASME B16.5 |  |
| ARJ                                | NPS 2" Cl. 300 RF, 316/316L flange ASME B16.5         |  |
| ARK                                | NPS 2" Cl. 300, PTFE>316/316L flange ASME B16.5       |  |
| ARM                                | NPS 2" Cl. 300, AlloyC>316/316L flange ASME B16.5     |  |
| ASJ                                | NPS 3" Cl. 300 RF, 316/316L flange ASME B16.5         |  |
| ASK                                | NPS 3" Cl. 300, PTFE>316/316L flange ASME B16.5       |  |
| ASM                                | NPS 3" Cl. 300, AlloyC>316/316L flange ASME B16.5     |  |
| ATJ                                | NPS 4" Cl. 300 RF, 316/316L flange ASME B16.5         |  |
| ATK                                | NPS 4" Cl. 300, PTFE>316/316L flange ASME B16.5       |  |

| Feature 100 in the product structure | Approval                                         |
|--------------------------------------|--------------------------------------------------|
| ATM                                  | NPS 4" Cl.300, AlloyC>316/316L flange ASME B16.5 |
| AZJ                                  | NPS 4" Cl. 900 RF, 316/316L flange ASME B16.5    |
| A6J                                  | NPS 2" Cl. 1500 RF, 316/316L flange ASME B16.5   |
| А7Ј                                  | NPS 3" Cl. 1500 RF, 316/316L flange ASME B16.5   |
| A8J                                  | NPS 4" Cl. 1500 RF, 316/316L flange ASME B16.5   |
| GGJ                                  | Thread ISO228 G1-1/2, 316L                       |
| GIJ                                  | Thread ISO228 G1-1/2, 200bar, 316L               |
| GJJ                                  | Thread ISO228 G1-1/2, 400bar, 316L               |
| RAJ                                  | Thread ANSI MNPT1-1/2, 200bar, 316L              |
| RBJ                                  | Thread ANSI MNPT1-1/2, 400bar, 316L              |
| RGJ                                  | Thread ANSI MNPT1-1/2, 316L                      |
| TAK                                  | Tri-Clamp ISO2852 DN40-51 (2"), 3A, PTFE>316L    |
| TDK                                  | Tri-Clamp ISO2852 DN40-51 (2"), PTFE>316L        |
| TFK                                  | Tri-Clamp ISO2852 DN70-76.1 (3"), PTFE>316L      |
| TJK                                  | Tri-Clamp ISO2852 DN38 (1-1/2"), PTFE>316L       |
| TLK                                  | Tri-Clamp ISO2852 DN70-76.1 (3"), 3A, PTFE>316L  |
| TNK                                  | Tri-Clamp ISO2852 DN38 (1-1/2"), 3A, PTFE>316L   |



- Process connections that do not have CRN approval are not listed in this table.
   Please refer to the product structure to discover which process connections are available for a specific device type.
  - CRN-approved devices are labeled with registration number 0F14480.5C on the nameplate.

Experience

FMP5x is the upgrade model of the FMP4x series.

# Test, certificate

| Feature 580 "Test, certificate" | Designation                                                                                                                                                                  | Approval                                            |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| JA                              | 3.1 Material documentation, wetted metal parts, EN10204-3.1 inspection certificate                                                                                           | <ul><li>FMP51</li><li>FMP54</li></ul>               |
| JB                              | Declaration of Conformity NACE MR0175, wetted metal parts                                                                                                                    | <ul><li>FMP51</li><li>FMP52</li><li>FMP54</li></ul> |
| JD                              | 3.1 Material certificate, pressurized parts, EN10204-3.1 inspection certificate                                                                                              | FMP52                                               |
| JE                              | Declaration of Conformity NACE MR0103, wetted metal parts                                                                                                                    | <ul><li>FMP51</li><li>FMP52</li><li>FMP54</li></ul> |
| JF                              | Declaration of Conformity AD2000, wetted metal parts: Material conformity for all metal wetted/pressurized parts according to AD2000 (data sheets W2, W9, W10)               | <ul><li>FMP51</li><li>FMP52</li><li>FMP54</li></ul> |
| JN                              | Ambient temperature transmitter –50 °C (–58 °F)                                                                                                                              | • FMP51                                             |
|                                 | Devices with this option are routine tested (start-up test at $-50 ^{\circ}\text{C}  (-58 ^{\circ}\text{F})$ ).                                                              | ■ FMP54                                             |
| KD                              | Helium leak test, internal procedure, inspection certificate                                                                                                                 | <ul><li>FMP51</li><li>FMP54</li></ul>               |
| KE                              | Pressure test, internal procedure, inspection certificate                                                                                                                    | <ul><li>FMP51</li><li>FMP52</li><li>FMP54</li></ul> |
| KG                              | 3.1 Material certificate+PMI test (XRF), internal procedure, wetted metal parts, EN10204-3.1 inspection certificate                                                          | <ul><li>FMP51</li><li>FMP54</li></ul>               |
| KP                              | Penetrant testing AD2000-HP5-3(PT), wetted/pressurized metal parts, inspection certificate                                                                                   | <ul><li>FMP51</li><li>FMP54</li></ul>               |
| KQ                              | Penetrant testing ISO23277-1 (PT), wetted/pressurized metal parts, inspection certificate                                                                                    | <ul><li>FMP51</li><li>FMP54</li></ul>               |
| KR                              | Penetrant testing ASME VIII-1 (PT), wetted/pressurized metal parts, inspection certificate                                                                                   | <ul><li>FMP51</li><li>FMP54</li></ul>               |
| KS                              | Welding documentation, wetted/pressurized seams                                                                                                                              | ■ FMP51                                             |
|                                 | Consists of:  Welding drawing  WPQR (Welding Procedure Qualification Report)  WPS (Welding Process Specification)  WQR (Manufacturer's Declaration)                          | ■ FMP54                                             |
| KV                              | Declaration of Conformity ASME B31.3: The design, the material used, the pressure and temperature ranges and the labeling of the devices meet the requirements of ASME B31.3 | <ul><li>FMP51</li><li>FMP52</li><li>FMP54</li></ul> |



Test reports, declarations and inspection certificates are available in electronic format in the  $W@M\ Device\ Viewer$ :

Enter the serial number that appears on the device (www.endress.com/deviceviewer)

This concerns the options for the following order codes:

- 550 "Calibration"
- 580 "Test, certificate"

# Hard-copy product documentation

Hard-copy versions of the test reports, declarations and inspection certificates can also be order via order code 570 "Service", option I7 "Hard-copy product documentation". The documents are then supplied with the product.

# Other standards and guidelines

■ EN 60529

Degrees of protection provided by enclosures (IP code)

■ EN 61010-1

Safety requirements for electrical equipment for measurement, control and laboratory use

■ IEC/EN 61326

"Emission in accordance with Class A requirements". Electromagnetic compatibility (EMC requirements).

■ NAMUR NE 21

Electromagnetic compatibility (EMC) of industrial process and laboratory control equipment

■ NAMUR NE 43

Standardization of the signal level for the breakdown information of digital transmitters with analog output signal.

■ NAMUR NE 53

Software of field devices and signal-processing devices with digital electronics

■ NAMUR NE 107

Status classification as per NE107

■ NAMUR NE 131

Requirements for field devices for standard applications

■ IEC61508

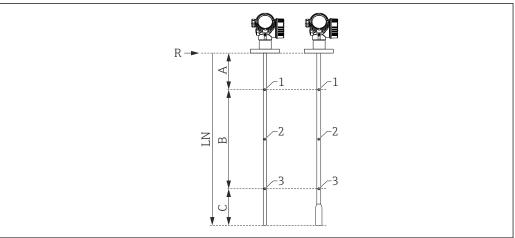
Functional safety of safety-related electric/electronic/programmable electronic systems

# **Ordering information**

# Ordering information

- 1. Click Corporate
- 2. Select the country
- 3. Click Products
- 4. Select the product using the filters and search field
- 5. Open the product page

The Configuration button to the right of the product image opens the Product Configurator.


# Product Configurator - the tool for individual product configuration

- Up-to-the-minute configuration data
- Depending on the device: Direct input of measuring point-specific information such as measuring range or operating language
- Automatic verification of exclusion criteria
- Automatic creation of the order code and its breakdown in PDF or Excel output format
- Ability to order directly in the Endress+Hauser Online Shop

# 3-point linearity protocol

The following points must be considered if option F3 (3-point linearity protocol) was selected in feature 550 ("Calibration").

The 3 points of the linearity protocol are defined as follows, depending on the selected probe:



A0021843

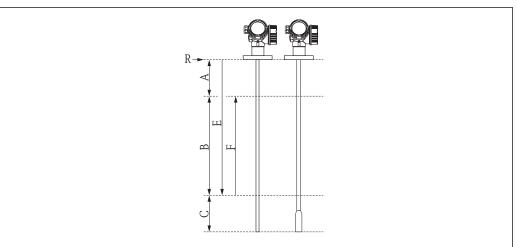
- A Distance from the reference point R to the first measuring point
- B Measuring range
- *C* Distance from the probe end to the third measuring point
- LN Probe length
- R Reference point of measurement
- 1 First measuring point
- 2 Second measuring point (in the middle between the first and third measuring point)
- 3 Third measuring point

|                                 | Rod or coax probe 1)<br>LN $\leq$ 6 m (20 ft)                                   | Separable rod probe<br>LN > 6 m (20 ft)                                                                              | Rope probe<br>LN ≤ 6 m (20 ft)                        | Rope probe<br>LN > 6 m (20 ft)                        |
|---------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|
| Position of 1st measuring point | FMP55:<br>A =350 mm (13.8 in)<br>FMP54 with gas phase of<br>A =600 mm (23.6 in) | without gas phase compensation/ $L_{ref} = 300 \text{ mm (11 in):}$ ompensation, $L_{ref} = 550 \text{ mm (21 in):}$ | A =350 mm (13.8 in)                                   | A =350 mm (13.8 in)                                   |
| Position of 2nd measuring point | In the middle between the 1st and 3rd measuring point                           | In the middle between the 1st and 3rd measuring point                                                                | In the middle between the 1st and 3rd measuring point | In the middle between the 1st and 3rd measuring point |
| Position of 3rd measuring point | Measured from bottom:<br>C = 250 mm (9.84 in)                                   | Measured from top:<br>A+B = 5750 mm (226 in)                                                                         | Measured from bottom:<br>C = 500 mm (19.7 in)         | Measured from top:<br>A+B = 5500 mm (217 in)          |
| Minimum measuring range         | B ≥ 400 mm (15.7 in)                                                            | B ≥ 400 mm (15.7 in)                                                                                                 | B ≥ 400 mm (15.7 in)                                  | B ≥ 400 mm (15.7 in)                                  |
| Minimum probe length            | LN ≥ 1000 mm (39.4 in)                                                          | LN ≥ 1000 mm (39.4 in)                                                                                               | LN ≥ 1250 mm (49.2 in)                                | LN ≥ 1250 mm (49.2 in)                                |

# 1) Also applies for separable rods

- The position of the measuring points can vary by  $\pm 1$  cm ( $\pm 0.04$  in).
- In the case of rod and rope probes, the linearity check is performed with the entire device.
  - For separable rod probes, a reference rod probe is used instead of the original probe.
    In the case of coax probes, the device electronics unit is mounted on a reference rod probe during the test and the linearity check is performed.
  - The linearity check is performed under reference operating conditions.

116


# 5-point linearity protocol

i

The following points must be considered if option F4 (5-point linearity protocol) was selected in feature 550 ("Calibration").

The 5 points of the linearity protocol are evenly distributed over the measuring range (0% - 100%). **Empty calibration** (E) and **Full calibration** (F) must be specified in order to define the measuring range <sup>5)</sup>.

The following restrictions must be considered when selecting E and F:



A0014673

- A Distance from the reference point R to the 100% mark
- B Measuring range
- C Distance from the probe end to the 0% mark
- E Empty calibration
- F Full calibration
- R Reference point of measurement

| Sensor                                                                                  | Minimum distance<br>between reference point<br>R and 100% mark | Minimum measuring range |
|-----------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------------|
| FMP51                                                                                   | A ≥ 250 mm (10 in)                                             | B ≥ 400 mm (16 in)      |
| FMP51<br>Rope probe with centering rod, max. 300 mm (12 in) nozzle height <sup>1)</sup> | A ≥ 350 mm (14 in)                                             | B ≥ 400 mm (16 in)      |
| FMP52                                                                                   | A ≥ 250 mm (10 in)                                             | B ≥ 400 mm (16 in)      |
| FMP52<br>Rope probe with centering rod, max. 300 mm (12 in) nozzle height <sup>2)</sup> | A ≥ 350 mm (14 in)                                             | B ≥ 400 mm (16 in)      |
| FMP54 without gas phase compensation                                                    | A ≥ 250 mm (10 in)                                             | B ≥ 400 mm (16 in)      |
| FMP54 with gas phase compensation, $L_{ref}$ = 300 mm                                   | A ≥ 450 mm (18 in)                                             | B ≥ 400 mm (16 in)      |
| FMP54 with gas phase compensation, $L_{ref} = 550 \text{ mm}$                           | A ≥ 700 mm (28 in)                                             | B ≥ 400 mm (16 in)      |

- 1) Product structure: feature 060 "Probe", option MB or MD
- 2) Product structure: feature 060 "Probe", option OB or OD

<sup>5)</sup> If (E) and (F) are not specified, probe-dependent default values will be used instead.

| Probe type           | Minimum distance from<br>the probe end to the 0%<br>mark | Maximum value for<br>"Empty calibration" |
|----------------------|----------------------------------------------------------|------------------------------------------|
| Rod (non-separable)  | C ≥ 100 mm (4 in)                                        | E ≤ 3.9 m (12.8 ft)                      |
| Coax Rod (separable) | C ≥ 100 mm (4 in)                                        | E ≤ 5.9 m (19.4 ft)                      |
| Cable                | C ≥ 1000 mm (40 in)                                      | E ≤ 23 m (75 ft)                         |

- In the case of rod and rope probes, the linearity check is performed with the entire device.
   In the case of coax probes, the device electronics unit is mounted on a reference rod probe during the test and the linearity check is performed.
  - The linearity check is performed under reference operating conditions.
- The selected values for **Empty calibration** and **Full calibration** are only used to create the linearity protocol. Afterwards, the values are reset to the default values specific for the probe. If values other than the default values are required, they must be ordered as a customized

# Customer-specific configuration

If the option IJ: "Customized parameterization HART", IK "Customized parameterization PA" or IL "Customized parameterization FF" has been selected in feature 570 "Service", presettings that differ from the default settings can be selected for the following parameters:

| Parameter                                                                                    | Communication protocol                       | Picklist / range of values                                 |
|----------------------------------------------------------------------------------------------|----------------------------------------------|------------------------------------------------------------|
| Setup → Unit of length                                                                       | ■ HART<br>■ PA<br>■ FF                       | • in • ft • mm • m                                         |
| Setup → Empty calibration                                                                    | <ul><li>HART</li><li>PA</li><li>FF</li></ul> | 0 to 45 m (0 to 147 ft)                                    |
| Setup → Full calibration                                                                     | <ul><li>HART</li><li>PA</li><li>FF</li></ul> | 0 to 45 m (0 to 147 ft)                                    |
| Setup → Extended setup → Curr. output 1/2 → Damping                                          | HART                                         | 0 to 999.9 s                                               |
| Setup $\rightarrow$ Extended setup $\rightarrow$ Curr. output $1/2 \rightarrow$ Failure mode | HART                                         | <ul><li>Min</li><li>Max</li><li>Last valid value</li></ul> |
| Expert → Comm. → HART config. → Burst mode                                                   | HART                                         | Off On                                                     |

# Tagging (TAG)

| Ordering feature                                  | 895: Marking                                                                                                                                                                                                                                  |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Option                                            | Z1: Tagging (TAG), see additional spec.                                                                                                                                                                                                       |
| Position of the measuring point marking           | To be selected in the additional specifications:  Tag plate Stainless Steel Self-adhesive paper label Supplied label/plate RFID TAG RFID TAG + Tag plate Stainless Steel RFID TAG + Self-adhesive paper label RFID TAG + Supplied label/plate |
| Definition of the measuring point designation     | To be defined in the additional specifications: 3 lines containing up to 18 characters each The measuring point designation appears on the selected label and/or the RFID TAG.                                                                |
| Designation in the Electronic<br>Name Plate (ENP) | The first 32 characters of the measuring point designation                                                                                                                                                                                    |
| Designation on the display module                 | The first 12 characters of the measuring point designation                                                                                                                                                                                    |

# **Application packages**

# **Heartbeat Diagnostics**

# Availability

Available in all device versions.

#### **Function**

- Continuous self-monitoring of the device.
- Diagnostic messages output to
  - the local display.
  - an asset management system (e.g. FieldCare/DeviceCare).
  - an automation system (e.g. PLC).

# Advantages

- Device condition information is available immediately and processed in time.
- The status signals are classified in accordance with VDI/VDE 2650 and NAMUR recommendation NE 107 and contain information about the cause of the error and remedial action.

# **Detailed description**

See the "Diagnostics and troubleshooting" section of the Operating Instructions for the device.

#### Heartbeat Verification

### **Availability**

Available for the following versions of feature 540 "Application package":

- EH: Heartbeat Verification + Monitoring
- EJ: Heartbeat Verification

# Device functionality checked on demand

- Verification of the correct functioning of the measuring device within specifications.
- The verification result provides information about the condition of the device: **Passed** or **Failed**.
- The results are documented in a verification report.
- The automatically generated report supports the obligation to demonstrate compliance with internal and external regulations, laws and standards.
- Verification is possible without interrupting the process.

# Advantages

- No onsite presence is required to use the function.
- The DTM <sup>6)</sup> triggers verification in the device and interprets the results. No specific knowledge is required on the part of the user.
- The verification report can be used to prove quality measures to a third party.
- Heartbeat Verification can replace other maintenance tasks (e.g. periodic check) or extend the
  test intervals.

# SIL/WHG-locked devices 7)

- The Heartbeat Verification module contains a wizard for the proof test which must be performed at appropriate intervals for the following applications:
  - SIL (IEC61508/IEC61511)
  - WHG (German Water Resources Act)
- To perform a proof test, the device must be locked (SIL/WHG locking).
- The wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.
- In the case of SIL-locked and WHG-locked devices, it is **not** possible to perform verification without taking additional measures (e.g. bridging the output current) because the output current must be simulated (Increased safety mode) or the level must be approached manually (Expert mode) during subsequent re-locking (SIL/WHG locking).

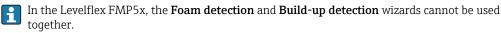
# **Detailed description**



SD01872F

<sup>6)</sup> DTM: Device Type Manager; controls device operation via DeviceCare, FieldCare or a DTM-based process control system.

<sup>7)</sup> Only relevant for devices with SIL or WHG approval: order code 590 ("Additional approval"), option LA ("SIL") or LC ("WHG").


# **Heartbeat Monitoring**

### Availability

Available for the following versions of feature 540 "Application package": EH: Heartbeat Verification + Monitoring

#### **Function**

- In addition to the verification parameters, the corresponding parameter values are also logged.
- Existing measured variables, such as the echo amplitude, are used in the **Foam detection** and **Build-up detection** wizards.



### "Foam detection" wizard

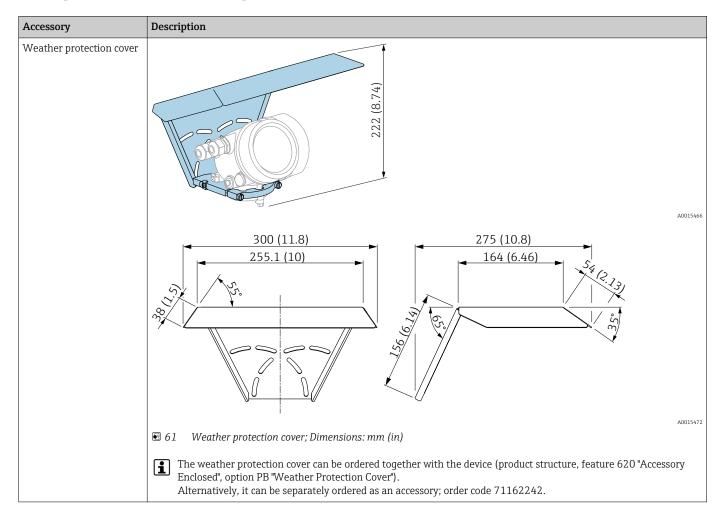
- The Heartbeat Monitoring module contains the **Foam detection** wizard.
- This wizard is used to configure automatic foam detection, which detects foam on the product surface on the basis of the reduced signal amplitude. Foam detection can be linked to a switch output in order to control a sprinkler system, for example, which dissolves the foam.
- This wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

# "Build-up detection" wizard

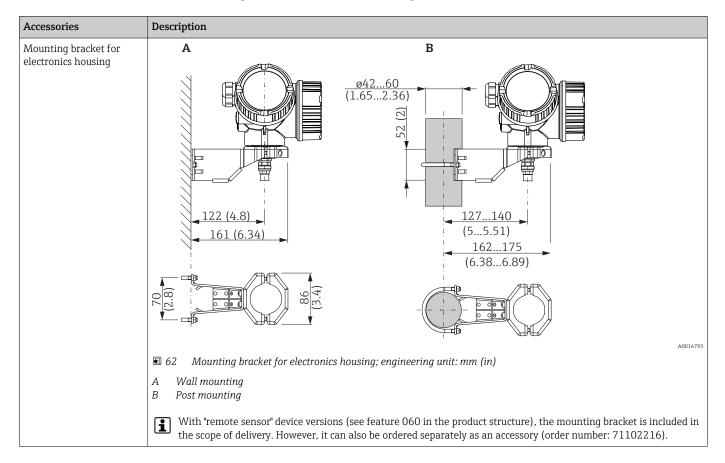
- The Heartbeat Monitoring module contains the **Build-up detection** wizard.
- The wizard is used to configure automatic buildup detection, which detects the buildup of deposits on the probe on the basis of the reduced signal amplitude.
- This wizard can be used via FieldCare, DeviceCare or a DTM-based process control system.

# Advantages

- Early detection of changes (trends) to ensure plant availability and product quality.
- Use of information for the proactive planning of measures (e.g. cleaning/maintenance).
- Identification of undesirable process conditions as the basis to optimizing the facility and the processes.
- Automated control of measures to remove foam or buildup.


#### **Detailed description**




SD01872F

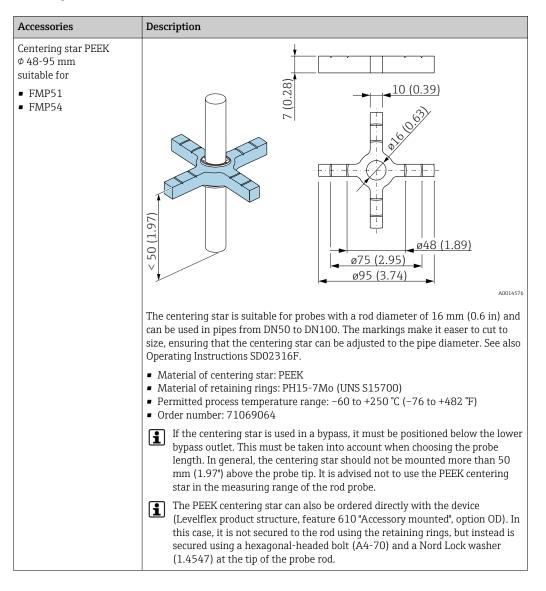
# Accessories

# Device-specific accessories Weather protection cover

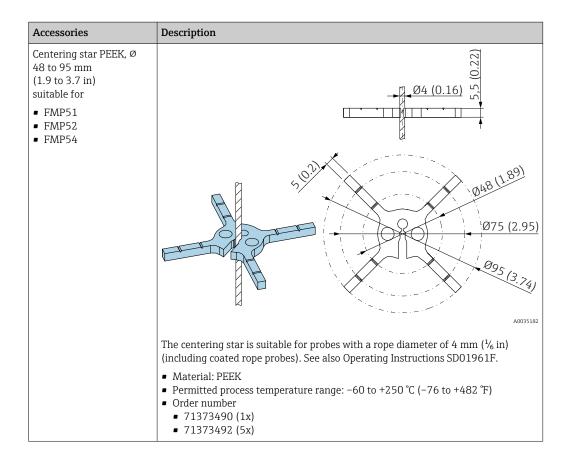


# Mounting bracket for electronics housing

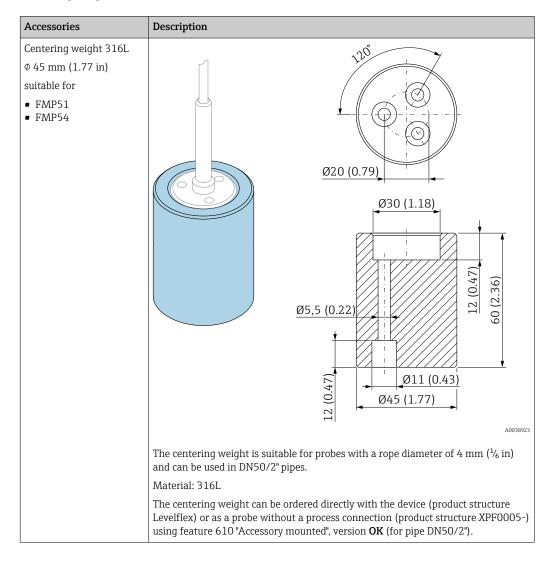



# Rod extension / centering device

### Accessories Description Rod extension / centering device HMP40 Suitable for: FMP54 Permitted temperature at lower edge of nozzle: without centering disk: no restriction with centering disk: -40 to +150 °C (-40 to +302 °F) Additional information: SD01002F A0013597 Nozzle height 2 Extension rod 3 Centering disk 010 Approval: Non-hazardous area FM DIP Cl.II Div.1 Gr.E-G N.I., Zone 21,22 M Р CSA DIP Cl.II Div.1 Gr.G + coal dust N.I. S FM Cl.I, II, III Div.1 Gr.A-G N.I., Zone 0,1,2,20,21,22 U CSA Cl.I, II, III Div.1 Gr.A-G N.I., Zone 0,1,2 1 ATEX II 1G 2 ATEX II 1D 020 Extension rod; height of nozzle: 115mm; 150-250mm / 6-10" 1 215mm; 250-350mm / 10-14" 3 315mm; 350-450mm / 14-18" 4 415mm; 450-550mm / 18-22" 9 Special version; TSP no. to be specified 030 Centering disk: Α Not selected В DN40 / 1-1/2", inside-d. = 40-45mm, PPS С DN50 / 2", inside-d. = 50-57mm, PPS D DN80 / 3", inside-d. = 80-85mm, PPS DN80 / 3", inside-d. = 76-78mm, PPS G DN100 / 4", inside-d. = 100-110mm, PPS Η DN150 / 6", inside-d. = 152-164mm, PPS DN200 / 8", inside-d. = 210-215mm, PPS J Κ DN250 / 10", inside-d. = 253-269mm, PPS Special version; TSP no. to be specified

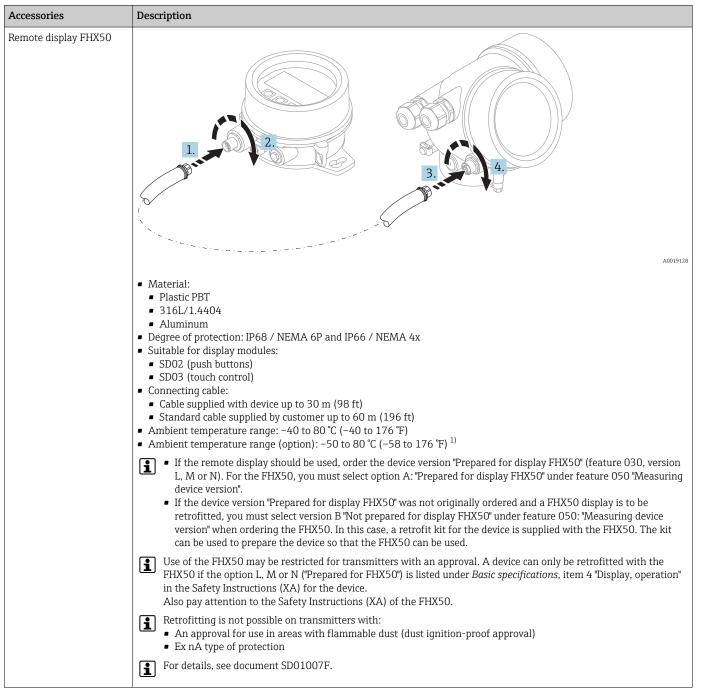

# Mounting kit, insulated

| Accessories                                      | Description                                                                                                                                                                         |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mounting kit, insulated suitable for FMP51 FMP54 |                                                                                                                                                                                     |
|                                                  | A0013586  8 Scope of delivery of mounting kit:                                                                                                                                      |
|                                                  | 1 Insulation sleeve 2 Eye bolt                                                                                                                                                      |
|                                                  | To secure rope probes so that they are reliably insulated. Maximum process temperature: $150 ^{\circ}\text{C} (300 ^{\circ}\text{F})$                                               |
|                                                  | For rope probes 4 mm (½ in) or 6 mm (1/4 in) with PA>steel:  Diameter D = 20 mm (0.8 in)  Order number: 52014249                                                                    |
|                                                  | For rope probes 6 mm (½ in) or 8 mm (1/3 in) with PA>steel:  Diameter D = 25 mm (1 in)  Order number: 52014250                                                                      |
|                                                  | Due to the risk of electrostatic charge, the insulation sleeve is not suitable for use in hazardous areas! In this case, the probe must be secured so that it is reliably grounded. |
|                                                  | The mounting kit can also be ordered directly with the device (Levelflex product structure, feature 620 "Accessory enclosed", version PG "mounting kit, insulated, rope").          |


# Centering star



# Accessories Description Centering star PFA (0.39)• \$\phi\$ 16.4 mm (0.65 in) ■ Ø 37 mm (1.46 in) suitable for ■ FMP51 ■ FMP52 ■ FMP54 A: ø16.4 (0.65) B: ø37 (1.46) A0014577 For probe 8 mm (0.3 in) For probes 12 mm (0.47 in) and 16 mm (0.63 in) The centering star is suitable for probes with a rod diameter of $8\,\mathrm{mm}$ (0.3 in), 12 mm (0.47 in) and 16 mm (0.63 in) (including coated rod probes) and can be used in pipes from DN40 to DN50. See also Operating Instructions BA00378F/00/A2. Material: PFA • Permitted process temperature range: $-200 \text{ to } +250 \,^{\circ}\text{C} \, (-328 \text{ to } +482 \,^{\circ}\text{F})$ • Order number • Probe 8 mm (0.3 in): 71162453 • Probe 12 mm (0.47 in): 71157270 • Probe 16 mm (0.63 in): 71069065 The PFA centering star can also be ordered directly with the device (Levelflex product structure, feature 610 "Accessory mounted", option OE).

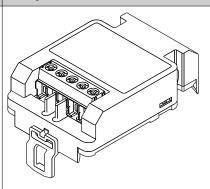



# Centering weight



# Accessories Description 120° Centering weight 316L ■ Ø 75 mm (2.95 in) ■ \$\phi\$ 95 mm (3.7 in) suitable for • FMP51 ■ FMP54 Ø20 (0.79) ØΑ (0.47)Ø30 (1.18) 12 Ø5,5 (0.22) Ø8 (0.31) (0.47)11 (0.43) 12 ØB A0038924 $\phi A = 52.5 \text{ mm } (2.07 \text{ in}) \text{ for } DN80/3" \text{ pipe}$ = 62.5 mm (2.47 in) for DN100/4" pipe $\Phi B$ = 75 mm (2.95 in) for DN80/3" pipe = 95 mm (3.7 in) for DN100/4" pipe The centering weight is suitable for probes with a rope diameter of 4 mm (1% in) and can be used in DN80/3" or DN100/4" pipes. The centering weight can be ordered directly with the device (product structure Levelflex) or as a probe without a process connection (product structure XPF0005-) using feature 610 "Accessory mounted", version **OL** (for pipe DN80/3") or **OM** (for pipe DN100/4").

# Remote display FHX50




1) This range is valid if option JN "Ambient temperature transmitter -50 °C (-58 °F)" has been selected in ordering feature 580 "Test, Certificate". If the temperature is permanently below -40 °C (-40 °F), failure rates may be increased.

# Overvoltage protection

# Accessories Overvoltage protection for 2-wire devices OVP10 (1-channel) OVP20 (2-channel)

# Description



A0021734

# Technical data

- Resistance per channel: 2  $\times$  0.5  $\Omega_{max}$
- Threshold DC voltage: 400 to 700 V
- Threshold surge voltage: < 800 V
- Capacitance at 1 MHz: < 1.5 pF
- Nominal leakage current (8/20 μs): 10 kA
- Suitable for conductor cross-sections: 0.2 to 2.5 mm<sup>2</sup> (24 to 14 AWG)

Ideally, the overvoltage protection module should be ordered directly with the device. See product structure, feature 610 "Accessory mounted", option NA "Overvoltage protection". Separate order necessary only if retrofitting.

# Order numbers for retrofitting

- For 1-channel devices (feature 020, option A): OVP10: 71128617
- For 2-channel devices (feature 020, options B, C, E or G) OVP20: 71128619

# Housing cover for retrofitting

In order to keep the necessary safety distances when using the surge arrester module, the housing cover also needs to be replaced when the device is retrofitted. Depending on the housing type, the suitable cover can be ordered using the following material number:

- Housing GT18: cover 71185516
- Housing GT19: cover 71185518
- Housing GT20: cover 71185517

# Restrictions in case of retrofitting

The use of the OVP module may be restricted depending on the transmitter approval. A device may only be retrofitted with the OVP module if the option NA (overvoltage protection) is listed under Optional specifications in the Safety Instructions (XA) associated with the device.



For details, see SD01090F.

# Bluetooth module for HART devices

| Accessory        | Description                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Bluetooth module | A0036493                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | <ul> <li>Quick and easy commissioning via SmartBlue (app)</li> <li>No additional tools or adapters required</li> <li>Signal curve via SmartBlue (app)</li> <li>Encrypted single point-to-point data transmission (tested by Fraunhofer institue) and password protected communication via Bluetooth® wireless technology</li> <li>Range under reference conditions:         <ul> <li>10 m (33 ft)</li> </ul> </li> </ul> |
|                  | When using the Bluetooth module the minimum supply voltage increases by up to 3 V.  Ordering with device The Bluetooth module is preferably ordered with the device. See product structure, feature 610 "Accessory Mounted", option NF "Bluetooth". A separate order is only necessary in case of retrofitting.  Order code for retrofitting Bluetooth module (BT10): 71377355                                           |
|                  | Restrictions in case of retrofitting Depending on the approval of the transmitter, application of the Bluetooth module may be restricted. A device may only be retrofitted with a Bluetooth module if the option NF (Bluetooth) is listed in the associated Safety Instructions (XA) under Optional specifications.  For details refer to SD02252F.                                                                      |

# Communication-specific accessories

#### Commubox FXA195 HART

For intrinsically safe HART communication with FieldCare via the USB interface



For details, see "Technical Information" TI00404F

#### Commubox FXA291

Connects Endress+Hauser field devices with a CDI interface (= Endress+Hauser Common Data Interface) and the USB port of a computer or laptop

Order number: 51516983



For details, see "Technical Information" TI00405C

#### HART Loop Converter HMX50

Is used to evaluate and convert dynamic HART process variables to analog current signals or limit values

Order number: 71063562



For details, see "Technical Information" TI00429F and Operating Instructions BA00371F

### WirelessHART adapter SWA70

- Is used for the wireless connection of field devices
- The WirelessHART adapter can be easily integrated into field devices and existing infrastructures, offers data protection and transmission safety and can be operated in parallel with other wireless networks



For details, see Operating Instructions BA00061S

#### Connect Sensor FXA30/FXA30B

Fully integrated, battery-powered gateway for simple applications with SupplyCare Hosting. Up to 4 field devices with 4 to 20 mA communication (FXA30/FXA30B), serial Modbus (FXA30B) or HART (FXA30B) can be connected. With its robust design and ability to run for years on the battery, it is ideal for remote monitoring in isolated locations. Version with LTE (USA, Canada and Mexico only) or 3G mobile transmission for worldwide communication.



For details, see "Technical Information" TI01356S and Operating Instructions BA01710S.

#### Fieldgate FXA42

Fieldgates enable communication between connected 4 to 20 mA, Modbus RS485 and Modbus TCP devices and SupplyCare Hosting or SupplyCare Enterprise. The signals are transmitted either via Ethernet TCP/IP, WLAN or mobile communications (UMTS). Advanced automation capabilities are available, such as an integrated Web-PLC, OpenVPN and other functions.



For details, see "Technical Information" TIO1297S and Operating Instructions BA01778S.

## SupplyCare Enterprise SCE30B

Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types.

This Web-based software is installed on a local server and can also be visualized and operated with mobile terminals such as a smartphone or tablet.



For details, see Technical Information TI01228S and Operating Instructions BA00055S

## SupplyCare Hosting SCH30

Inventory management software that displays the level, volume, mass, temperature, pressure, density or other parameters of tanks. The parameters are recorded and transmitted by means of gateways like Fieldgate FXA42, Connect Sensor FXA30B or other gateway types. SupplyCare Hosting is offered as a hosting service (Software as a Service, SaaS). In the Endress +Hauser portal, the user is provided with the data over the Internet.



For details, see Technical Information TI01229S and Operating Instructions BA00050S

## Field Xpert SFX350

Field Xpert SFX350 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the **non-Ex** 



For details, see Operating Instructions BA01202S

# Field Xpert SFX370

Field Xpert SFX370 is a mobile computer for commissioning and maintenance. It enables efficient device configuration and diagnostics for HART and FOUNDATION Fieldbus devices in the **non-Ex area** and the **Ex area**.



For details, see Operating Instructions BA01202S

#### Service-specific accessories

## DeviceCare SFE100

Configuration tool for HART, PROFIBUS and FOUNDATION Fieldbus field devices



Technical Information TI01134S

# FieldCare SFE500

FDT-based plant asset management tool

It can configure all smart field units in your system and helps you manage them. By using the status information, it is also a simple but effective way of checking their status and condition.



Technical Information TI00028S

## System components

# Memograph M graphic data manager

The Memograph M graphic data manager provides information on all the relevant process variables. Measured values are recorded correctly, limit values are monitored and measuring points analyzed. The data are stored in the 256 MB internal memory and also on a SD card or USB stick.



Technical Information TI00133R and Operating Instructions BA00247R

#### RN221N

Active barrier with power supply for safe separation of 4 to 20 mA standard signal circuits. Offers bidirectional HART transmission.



Technical Information TI00073R and Operating Instructions BA00202R

#### RN221

Supply unit for powering two 2-wire measuring devices solely in the non-Ex area. Bidirectional communication is possible via the HART communication jacks.



Technical Information TI00081R and Brief Operating Instructions KA00110R

# Supplementary documentation

The following documentation types are available in the Downloads section of the Endress+Hauser website (www.endress.com/downloads):



For an overview of the scope of the associated Technical Documentation, refer to the following:

- W@M Device Viewer (www.endress.com/deviceviewer): Enter the serial number from nameplate
- Endress+Hauser Operations App: Enter the serial number from the nameplate or scan the 2D matrix code (QR code) on the nameplate

# **Brief Operating Instructions** (KA)

# Guide that takes you quickly to the 1st measured value

The Brief Operating Instructions contain all the essential information from incoming acceptance to initial commissioning.

# **Operating Instructions (BA)**

# Your reference guide

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

### Safety Instructions (XA)

Depending on the approval, the following Safety Instructions (XA) are supplied with the device. They are an integral part of the Operating Instructions.



The nameplate indicates the Safety Instructions (XA) that are relevant to the device.

136





www.addresses.endress.com