
# Operating Instructions Ceraphant PTC31B, PTP31B, PTP33B IO-Link

Process pressure measurement Pressure switch for safe measurement and monitoring of absolute and gauge pressure









• Make sure the document is stored in a safe place such that it is always available when working on or with the device.

- To avoid danger to individuals or the facility, read the "Basic safety instructions" section carefully, as well as all other safety instructions in the document that are specific to working procedures.
- The manufacturer reserves the right to modify technical data without prior notice. Your Endress+Hauser distributor will supply you with current information and updates to these Operating Instructions.

#### Table of contents

| 1                      | Document information                             | 5  | 8                      | System integration                                              | 31       |
|------------------------|--------------------------------------------------|----|------------------------|-----------------------------------------------------------------|----------|
| 1.1<br>1.2             | Document function                                | 5  | 8.1<br>8.2             | Process data                                                    |          |
| 1.3<br>1.4             | Documentation                                    | 7  | 8.3                    | Indexed Service Data Unit)                                      |          |
| 1.5<br>1.6             | Turn down calculation                            |    | 9                      | Commissioning                                                   | 35       |
| 2                      | Desire of the instance time.                     |    | 9.1                    | Function check                                                  |          |
| 2                      | Basic safety instructions                        |    | 9.2                    | Commissioning with an operating menu                            |          |
| 2.1<br>2.2             | Requirements concerning the staff Designated use | 9  | 9.3<br>9.4             | Configuring pressure measurement Performing position adjustment |          |
| 2.3                    | Workplace safety                                 | I  | 9. <del>4</del><br>9.5 | Configuring process monitoring                                  | ٥ر<br>40 |
| 2.4                    | Operational safety                               | 10 | 9.6                    | Current output                                                  |          |
| 2.5                    | Product safety                                   |    | 9.7                    | Application examples                                            |          |
| 3                      | Product description                              | 11 | 10                     | Diagnostics and troubleshooting                                 | 44       |
| 3.1                    | Product design                                   | 11 | 10.1                   | Troubleshooting                                                 | 44       |
| 3.2                    | Function                                         | 11 | 10.2                   | Diagnostic events                                               |          |
|                        |                                                  |    | 10.3                   | Behavior of the device in the event of a fault                  |          |
| 4                      | Incoming acceptance and product                  |    | 10.4                   | Signal on alarm 4 to 20 mA                                      | 47       |
|                        | identification                                   | 13 | 10.5                   | Behavior of the device in the event of a voltage drop           | 48       |
| 4.1                    | Incoming acceptance                              | 13 | 10.6                   | Behavior of the device in the event of an                       |          |
| 4.2<br>4.3             | Product identification                           |    | 10.7                   | incorrect entry                                                 | 48<br>48 |
| 5                      | Installation                                     | 16 | 11                     | Maintenance                                                     | 48       |
| 5.1                    | Mounting dimensions                              | 16 | 11.1                   | Exterior cleaning                                               | 49       |
| 5.2                    | Installation conditions                          |    |                        |                                                                 |          |
| 5.3                    | Influence of the installation position           |    | 12                     | Repairs                                                         | 50       |
| 5.4                    | Mounting location                                | 17 | 12.1                   | General notes                                                   | 50       |
| 5.5                    | Mounting instructions for oxygen applications    | 19 | 12.2                   | Return                                                          | 50       |
| 5.6                    | Post-installation check                          |    | 12.3                   | Disposal                                                        | 50       |
| 6                      | Electrical connection                            | 20 | 13                     | Overview of the onsite display                                  |          |
| 6.1                    | Connecting the measuring unit                    | 20 |                        | operating menu                                                  | 51       |
| 6.2                    | Switching capacity                               |    |                        |                                                                 |          |
| 6.3                    | Connection data                                  |    | 14                     | Overview of the IO-Link operating                               |          |
| 6.4                    | Post-connection check                            | 23 |                        | menu                                                            | 54       |
| 7                      | Operation options                                | 24 | 15                     | Description of device parameters                                | 56       |
| 7.1                    | Operation with an operating menu                 |    | 15.1                   | Observation                                                     |          |
| 7.2                    | Operation with local display                     | 25 | 15.1                   | Observation                                                     | /4       |
| 7.3                    | General value adjustment and rejection of        | 26 | 16                     | Aggagariag                                                      | 75       |
| 7.4                    | illegal entries                                  | 26 | 16                     | Accessories                                                     |          |
| 7. <del>1</del><br>7.5 |                                                  | 28 | 16.1                   | Weld-in adapter                                                 |          |
| 7.6                    |                                                  | 30 | 16.2                   | Process adapter M24                                             |          |
| 7.7                    | Status LEDs                                      | 30 | 16.3                   | M12 plug connectors                                             | /6       |
| 7.8                    | Resetting to factory settings (reset)            | 30 |                        |                                                                 |          |

| 17   | Technical data                               | 77 |
|------|----------------------------------------------|----|
| 17.1 | Input                                        | 77 |
| 17.2 | Output                                       |    |
| 17.3 | Performance characteristics of ceramic       |    |
|      | process isolating diaphragm                  | 83 |
| 17.4 | Performance characteristics of metal process |    |
|      | isolating diaphragm                          |    |
| 17.5 | Environment                                  | 87 |
| 17.6 | Process                                      | 88 |
|      |                                              |    |
| Inde | x                                            | 90 |

#### 1 Document information

#### 1.1 Document function

These Operating Instructions contain all the information that is required in various phases of the life cycle of the device: from product identification, incoming acceptance and storage, to mounting, connection, operation and commissioning through to troubleshooting, maintenance and disposal.

#### 1.2 Symbols used

#### 1.2.1 Safety symbols

| Symbol           | Meaning                                                                                                                          |
|------------------|----------------------------------------------------------------------------------------------------------------------------------|
| <b>▲</b> DANGER  | DANGER! This symbol alerts you to a dangerous situation. Failure to avoid this situation will result in serious or fatal injury. |
| <b>▲</b> WARNING | WARNING! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in serious or fatal injury. |
| <b>▲</b> CAUTION | CAUTION! This symbol alerts you to a dangerous situation. Failure to avoid this situation can result in minor or medium injury.  |
| NOTICE           | NOTICE! This symbol contains information on procedures and other facts which do not result in personal injury.                   |

#### 1.2.2 Electrical symbols

| Symbol | Meaning                                                                                                                | Symbol | Meaning                                                                                                               |
|--------|------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------------------------------------------------------------------------------------------|
|        | Protective ground connection A terminal which must be connected to ground prior to establishing any other connections. | ≐      | Ground connection A grounded terminal which, as far as the operator is concerned, is grounded via a grounding system. |

#### 1.2.3 Tool symbols

| Symbol   | Meaning           |
|----------|-------------------|
| Ø8       | Open-ended wrench |
| A0011222 |                   |

#### 1.2.4 Symbols for certain types of information

| Symbol   | Meaning                                                        |
|----------|----------------------------------------------------------------|
| <b>✓</b> | Permitted Procedures, processes or actions that are permitted. |
| X        | Forbidden Procedures, processes or actions that are forbidden. |
| i        | Tip Indicates additional information.                          |

| Symbol      | Meaning                    |
|-------------|----------------------------|
| Î           | Reference to documentation |
| A=          | Reference to page          |
|             | Reference to graphic       |
| 1. , 2. , 3 | Series of steps            |
| L-          | Result of a step           |
|             | Visual inspection          |

#### 1.2.5 Symbols in graphics

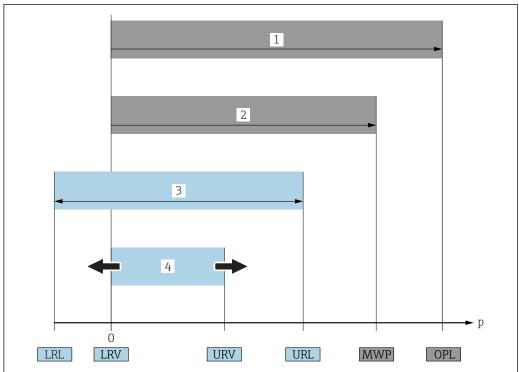
| Symbol      | Meaning         |
|-------------|-----------------|
| 1, 2, 3     | Item numbers    |
| 1. , 2. , 3 | Series of steps |
| A, B, C,    | Views           |

#### 1.3 Documentation

The document types listed are available:
In the Download Area of the Endress+Hauser Internet site: www.endress.com →
Download

#### 1.3.1 Technical Information (TI): planning aid for your device

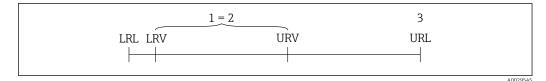
PTC31B: TI01130P PTP31B: TI01130P PTP33B: TI01246P


The document contains all the technical data on the device and provides an overview of the accessories and other products that can be ordered for the device.

## 1.3.2 Brief Operating Instructions (KA): getting the 1st measured value quickly

Devices with IO-Link: KA01404P

These instructions contain all the essential information from incoming acceptance to initial commissioning.  $\ \ \ \ \$ 


#### 1.4 Terms and abbreviations



A0029505

| Item | Term/<br>abbreviation             | Explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------|-----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | OPL                               | The OPL (over pressure limit = sensor overload limit) for the measuring device depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Also observe pressure-temperature dependency. For the relevant standards and additional notes, see the "Pressure specifications" section $\rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                         |
| 2    | MWP                               | The MWP (maximum working pressure) for the sensors depends on the lowest-rated element, with regard to pressure, of the selected components, i.e. the process connection has to be taken into consideration in addition to the measuring cell. Also observe pressure-temperature dependency. For the relevant standards and additional notes, see the "Pressure specifications" section $\Rightarrow \boxtimes 89$ . The MWP may be applied at the device for an unlimited period. The MWP can also be found on the nameplate. |
| 3    | Maximum sensor<br>measuring range | Span between LRL and URL This sensor measuring range is equivalent to the maximum calibratable/adjustable span.                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4    | Calibrated/adjusted span          | Span between LRV and URV Factory setting: 0 to URL Other calibrated spans can be ordered as customized spans.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| р    | -                                 | Pressure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| -    | LRL                               | Lower range limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | URL                               | Upper range limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | LRV                               | Lower range value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | URV                               | Upper range value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -    | TD (turn down)                    | Turn down Example - see the following section.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

#### 1.5 Turn down calculation



- 1 Calibrated/adjusted span
- 2 Zero point-based span
- 3 URL sensor

#### 

#### 1.6 Registered trademarks

#### **IO**-Link

is a registered trademark of the IO-Link company group.

8

#### 2 Basic safety instructions

#### 2.1 Requirements concerning the staff

The personnel for installation, commissioning, diagnostics and maintenance must fulfill the following requirements:

- ► Trained, qualified specialists: must have a relevant qualification for this specific function and task
- ► Are authorized by the plant owner/operator
- ▶ Are familiar with federal/national regulations
- ▶ Before beginning work, the specialist staff must have read and understood the instructions in the Operating Instructions and supplementary documentation as well as in the certificates (depending on the application)
- ► Following instructions and basic conditions

The operating personnel must fulfill the following requirements:

- ► Being instructed and authorized according to the requirements of the task by the facility's owner-operator
- ► Following the instructions in these Operating Instructions

#### 2.2 Designated use

#### 2.2.1 Application and media

The Ceraphant is a pressure switch for measuring and monitoring absolute and gauge pressure in industrial systems. The process-wetted materials of the measuring device must have an adequate level of resistance to the media.

The measuring device may be used for the following measurements (process variables)

- in compliance with the limit values specified under "Technical data"
- in compliance with the conditions that are listed in this manual.

#### Measured process variable

Gauge pressure or absolute pressure

#### Calculated process variable

Pressure

#### 2.2.2 Incorrect use

The manufacturer is not liable for damage caused by improper or non-designated use.

Verification for borderline cases:

► For special fluids and fluids for cleaning, Endress+Hauser is glad to provide assistance in verifying the corrosion resistance of process-wetted materials, but does not accept any warranty or liability.

#### 2.2.3 Residual risks

When in operation, the housing may reach a temperature close to the process temperature.

Danger of burns from contact with surfaces!

► For elevated process temperatures, ensure protection against contact to prevent burns.

#### 2.3 Workplace safety

For work on and with the device:

- ► Wear the required personal protective equipment according to federal/national regulations.
- ► Switch off the supply voltage before connecting the device.

#### 2.4 Operational safety

Risk of injury!

- ▶ Operate the device in proper technical condition and fail-safe condition only.
- ► The operator is responsible for interference-free operation of the device.

#### Conversions to the device

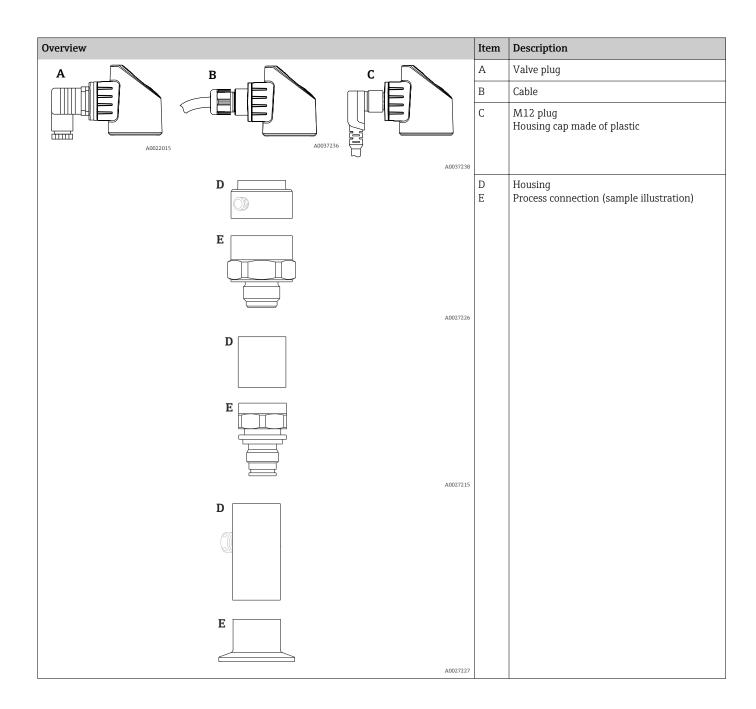
Unauthorized modifications to the device are not permitted and can lead to unforeseeable dangers.

► If, despite this, modifications are required, consult with Endress+Hauser.

#### Hazardous area

To eliminate the risk of danger to persons or the facility when the device is used in the approval-related area (e.g. pressure equipment safety):

► Check the nameplate to verify if the device ordered can be put to its intended use in the approval-related area.


#### 2.5 Product safety

This measuring device is designed in accordance with good engineering practice to meet state-of-the-art safety requirements, has been tested, and left the factory in a condition in which it is safe to operate.

It meets general safety standards and legal requirements. It also complies with the EU directives listed in the device-specific EU Declaration of Conformity. Endress+Hauser confirms this by affixing the CE mark to the device.

#### **3** Product description

#### 3.1 Product design

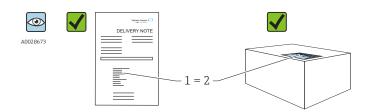


#### 3.2 Function

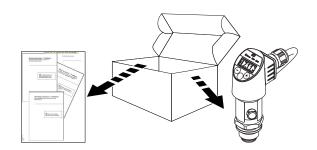
#### 3.2.1 Calculating the pressure

#### Devices with ceramic process isolating diaphragm (Ceraphire®)

The ceramic sensor is an oil-free sensor, i.e. the process pressure acts directly on the robust ceramic process isolating diaphragm and causes it to deflect. A pressure-dependent


change in capacitance is measured at the electrodes of the ceramic substrate and the process isolating diaphragm. The measuring range is determined by the thickness of the ceramic process isolating diaphragm.

#### Devices with metallic process isolating diaphragm


The process pressure deflects the metal process isolating diaphragm of the sensor and a fill fluid transfers the pressure to a Wheatstone bridge (semiconductor technology). The pressure-dependent change in the bridge output voltage is measured and evaluated.

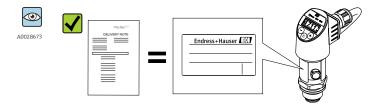
## 4 Incoming acceptance and product identification

#### 4.1 Incoming acceptance



Is the order code on the delivery note (1) identical to the order code on the product sticker (2)?




A0022099

A0022101

A0016870



Are the goods undamaged?



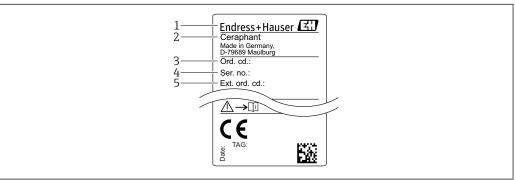
A002210

Do the data on the nameplate correspond to the order specifications and the delivery note?

If one of these conditions does not apply, please contact your Endress+Hauser sales office.

#### 4.2 Product identification

The following options are available for the identification of the measuring device:


- Nameplate specifications
- Order code with a breakdown of the device features on the delivery note
- Enter the serial numbers from the nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer): All the information about the measuring device is displayed.

For an overview of the technical documentation provided, enter the serial number from the nameplates in *W@M Device Viewer* (www.endress.com/deviceviewer)

#### 4.2.1 Manufacturer address

Endress+Hauser SE+Co. KG Hauptstraße 1 79689 Maulburg, Germany Address of the manufacturing plant: See nameplate.

#### 4.2.2 Nameplate



A00301

- 1 Manufacturer's address
- 2 Device name
- 3 Order number
- 4 Serial number
- 5 Extended order number

#### 4.3 Storage and transport

#### 4.3.1 Storage conditions

Use original packaging.

Store the measuring device in clean and dry conditions and protect from damage caused by shocks (EN 837-2).

#### Storage temperature range

 $-40 \text{ to } +85 ^{\circ}\text{C} (-40 \text{ to } +185 ^{\circ}\text{F})$ 

#### 4.3.2 Transporting the product to the measuring point

#### **A** WARNING

#### Incorrect transport!

Housing and diaphragm may become damaged, and there is a risk of injury!

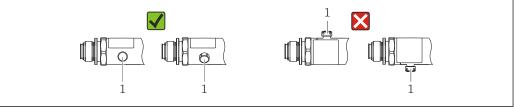
► Transport the measuring device to the measuring point in its original packaging or by the process connection.

#### 5 Installation

#### 5.1 Mounting dimensions

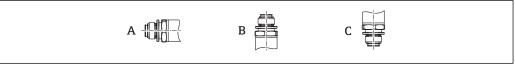
For dimensions, see the "Mechanical construction" section in the Technical Information.

#### 5.2 Installation conditions


- Moisture must not penetrate the housing when mounting the device, establishing the electrical connection and during operation.
- Do not clean or touch process isolating diaphragms with hard and/or pointed objects.
- Do not remove process isolating diaphragm protection until shortly before installation.
- Always tighten the cable entry firmly.
- Point the cable and connector downwards where possible to prevent moisture from entering (e.g. rain or condensation water).
- Protect housing against impact.
- For devices with gauge pressure sensor, the following applies:

#### **NOTICE**

If a heated device is cooled in the course of a cleaning process (by cold water, for example), a vacuum develops for a short time causing moisture to penetrate the sensor via the pressure compensation element (1).


Device could be destroyed!

▶ In the event of this happening, mount the device in such a way that the pressure compensation element (1) is pointing downwards at an angle or to the side, if possible.



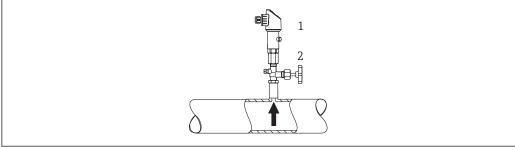
#### 5.3 Influence of the installation position

Any orientation is possible. However, the orientation may cause a zero point shift i.e. the measured value does not show zero when the vessel is empty or partially full.



| Туре                       | Process isolating<br>diaphragm axis is<br>horizontal (A) | Process isolating diaphragm pointing upwards (B) | Process isolating diaphragm pointing downwards (C) |
|----------------------------|----------------------------------------------------------|--------------------------------------------------|----------------------------------------------------|
| PTP31B<br>PTP33B           | Calibration position, no effect                          | Up to +4 mbar (+0.058 psi)                       | Up to -4 mbar (-0.058 psi)                         |
| PTC31B<br>< 1 bar (15 psi) | Calibration position, no effect                          | Up to +0.3 mbar (+0.0044 psi)                    | Up to -0.3 mbar (-0.0044 psi)                      |
| PTC31B<br>≥1 bar (15 psi)  | Calibration position, no effect                          | Up to +3 mbar (+0.0435 psi)                      | Up to -3 mbar (-0.0435 psi)                        |




A position-dependent zero shift can be corrected on the device .

#### Mounting location 5.4

#### 5.4.1 Pressure measurement

#### Pressure measurement in gases

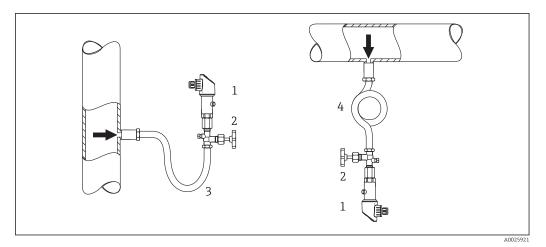
Mount the device with shutoff device above the tapping point so that any condensate can flow into the process.



- Device
- Shutoff device

#### Pressure measurement in vapors

For pressure measurement in vapors, use a siphon. The siphon reduces the temperature to almost ambient temperature. Preferably mount the device with the shutoff device and siphon below the tapping point.


#### Advantage:

- defined water column causes only minor/negligible measuring errors and
- only minor/negligible heat effects on the device.

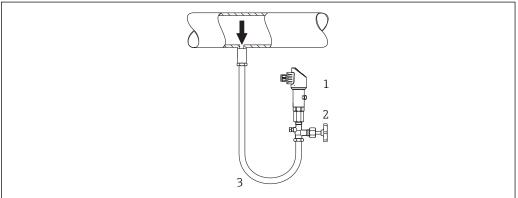
Mounting above the tapping point is also permitted.

Note the max. permitted ambient temperature of the transmitter!

Take the influence of the hydrostatic water column into consideration.



- 1 Device
- 2 Shutoff device
- 3 Siphon
- 4 Siphon

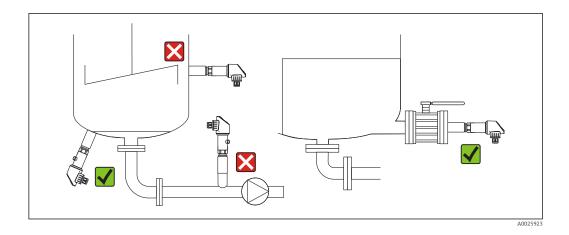

#### Pressure measurement in liquids

Mount the device with a shutoff device and siphon below or at the same height as the tapping point.

#### Advantage:

- defined water column causes only minor/negligible measuring errors and
- air bubbles can be released to the process.

Take the influence of the hydrostatic water column into consideration.




A00259

- 1 Device
- 2 Shutoff device
- 3 Siphon

#### 5.4.2 Level measurement

- Always install the device below the lowest measuring point.
- Do not install the device at the following positions:
  - In the filling curtain
  - In the tank outlet
  - in the suction area of a pump
  - Or at a point in the tank which could be affected by pressure pulses from the agitator.
- A functional test can be carried out more easily if you mount the device downstream from a shutoff device.



#### 5.5 Mounting instructions for oxygen applications

Oxygen and other gases can react explosively to oils, grease and plastics, such that, among other things, the following precautions must be taken:

- All components of the system, such as measuring devices, must be cleaned in accordance with the BAM requirements.
- Dependent on the materials used, a certain maximum temperature and a maximum pressure for oxygen applications must not be exceeded.
- The following table lists devices (devices only, not accessories or enclosed accessories), which are suitable for gaseous oxygen applications.

| Device | p <sub>max</sub> for oxygen applications | T <sub>max</sub> for oxygen applications | Option 1) |
|--------|------------------------------------------|------------------------------------------|-----------|
| PTC31B | 40 bar (600 psi)                         | -10 to +60 °C (+14 to +140 °F)           | НВ        |

1) Product Configurator, order code for "Service"

#### 5.6 Post-installation check

|   | Is the device undamaged (visual inspection)?                                                          |
|---|-------------------------------------------------------------------------------------------------------|
|   | Does the device comply with the measuring point specifications?  For example:                         |
|   | ■ Process temperature                                                                                 |
| _ | ■ Process pressure                                                                                    |
|   | Ambient temperature range                                                                             |
|   | Measuring range                                                                                       |
|   | Are the measuring point identification and labeling correct (visual inspection)?                      |
|   | Is the device adequately protected against precipitation and direct sunlight?                         |
|   | Are the securing screws tightened securely?                                                           |
|   | Is the pressure compensation element pointing downwards at an angle or to the side?                   |
|   | To prevent moisture from penetrating, ensure that the connecting cables/plugs are pointing downwards. |

#### 6 Electrical connection

#### 6.1 Connecting the measuring unit

#### 6.1.1 Terminal assignment

#### **MARNING**

#### Risk of injury from the uncontrolled activation of processes!

- ► Switch off the supply voltage before connecting the device.
- ▶ Make sure that downstream processes are not started unintentionally.

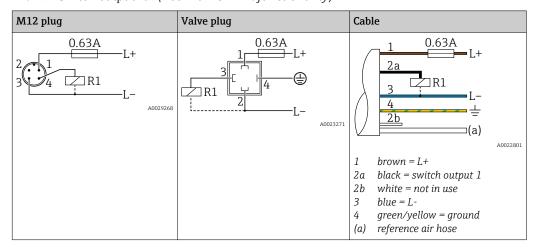
#### **WARNING**

#### Electrical safety is compromised by an incorrect connection!

- $\blacktriangleright$  In accordance with IEC/EN61010 a separate circuit breaker must be provided for the device .
- ► The device must be operated with a 630 mA fine-wire fuse (slow-blow).
- ▶ Protective circuits against reverse polarity are integrated.

#### **NOTICE**

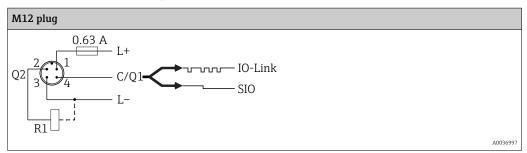
#### Damage to analog input of PLC resulting from incorrect connection


▶ Do not connect the active PNP switch output of the device to the 4 to 20 mA input of a PLC.

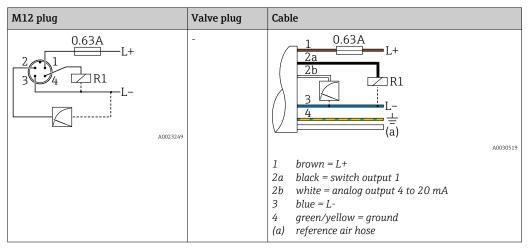
Connect the device in the following order:

- 1. Check that the supply voltage corresponds to the supply voltage indicated on the nameplate.
- 2. Connect the device in accordance with the following diagram.

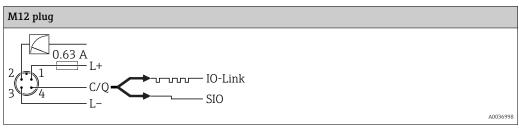
Switch on supply voltage.


1 x PNP switch output R1 (not with IO-Link functionality)




#### 2 x PNP switch output R1 and R2 (not with IO-Link functionality)




#### IO-Link: 2 x PNP switch output R1 and R2



### $1 \times PNP$ switch output R1 with additional analog output 4 to 20 mA (active), (not with IO-Link functionality)



IO-Link: 1 x PNP switch output R1 with additional analog output 4 to 20 mA (active)



#### 6.1.2 Supply voltage

Supply voltage IO-Link: 10 to 30 V DC at a DC power unit

IO-Link communication is guaranteed only if the supply voltage is at least 18 V.

#### 6.1.3 Current consumption and alarm signal

| Intrinsic power consumption           | Alarm current (for devices with analog output) 1) |  |
|---------------------------------------|---------------------------------------------------|--|
| ≤ 60 mA                               | ≥21 mA (factory setting)                          |  |
| Maximum current consumption: ≤ 300 mA |                                                   |  |

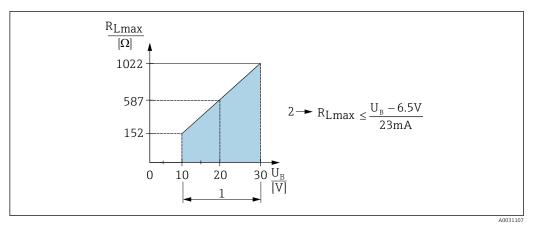
 Setting min. alarm current ≤3.6mA can be ordered via the product order structure. Min. alarm current ≤3.6mA can be configured at the device or via IO-Link.

#### 6.2 Switching capacity

- Switch state ON <sup>1)</sup>:  $I_a \le 200 \text{ mA}^{2}$ ; switch state OFF:  $I_a \le 100 \text{ }\mu\text{A}$
- Switch cycles: >10,000,000
- Voltage drop PNP: ≤2 V
- Overload protection: Automatic load testing of switching current;
  - Max. capacitive load:  $1 \mu F$  at max. supply voltage (without resistive load)
  - Max. cycle duration: 0.5 s; min.  $t_{on}$ : 40  $\mu$ s
  - Periodic disconnection from protective circuit in the event of overcurrent (f = 2 Hz) and "F804" displayed

#### 6.3 Connection data

#### 6.3.1 Load (for devices with analog output)


In order to guarantee sufficient terminal voltage, a maximum load resistance  $R_L$  (including line resistance) must not be exceeded depending on the supply voltage  $U_B$  of the supply unit.

The maximum load resistance depends on the terminal voltage and is calculated according to the following formula:

22

<sup>1) 100</sup> mA can be guaranteed over the entire temperature range for the switch outputs "2 x PNP" and "1 x PNP + 4 to 20 mA output". For lower ambient temperatures, higher currents are possible but cannot be guaranteed. Typical value at 20 °C (68 °F) approx. 200 mA. 200 mA can be guaranteed over the entire temperature range for the "1 x PNP" current output.

<sup>2)</sup> Larger currents are supported, thus deviating from the IO-Link standard.



1 Power supply 10 to 30 V DC

 $2 R_{Lmax}$  maximum load resistance

 $U_B$  Supply voltage

#### If load is too great:

- failure current is output and "S803" displayed (output: MIN alarm current)
- Periodic checking to establish if it is possible to quit fault state
- In order to guarantee sufficient terminal voltage, a maximum load resistance RL (including line resistance) must not be exceeded depending on the supply voltage UB of the supply unit.

#### 6.4 Post-connection check

| Is the device or cable undamaged (visual check)?                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------|
| Do the cables comply with the requirements?                                                                                                |
| Do the cables have adequate strain relief?                                                                                                 |
| Are all the cable glands installed, firmly tightened and leak-tight?                                                                       |
| Does the supply voltage match the specifications on the nameplate?                                                                         |
| Is the terminal assignment correct?                                                                                                        |
| If required: has protective ground connection been established?                                                                            |
| If supply voltage is present: is the device ready for operation and do values appear on the display module or is the green status LED lit? |

#### 7 Operation options

#### 7.1 Operation with an operating menu

#### 7.1.1 IO-Link

#### IO-Link information

IO-Link is a point-to-point connection for communication between the measuring device and an IO-Link master. The measuring device features an IO-Link communication interface type 2 with a second IO function on pin 4. This requires an IO-Link-compatible assembly (IO-Link master) for operation. The IO-Link communication interface enables direct access to the process and diagnostic data. It also provides the option of configuring the measuring device on the fly.

Physical layer, the measuring device supports the following features:

- IO-Link specification: version 1.1
- IO-Link Smart Sensor Profile 2nd Edition (supports minimum scope of IdentClass)
- SIO mode: yes
- Speed: COM2; 38.4 kBaud
- Minimum cycle time: 2.5 msec.
- Process data width: 32 bit
- IO-Link data storage: yes
- Block parameterization: yes

#### IO-Link download

#### http://www.endress.com/download

- Select "Software" as the media type.
- Select "Device Driver" as the software type.
   Select IO-Link (IODD).
- In the "Text Search" field enter the device name.

#### https://ioddfinder.io-link.com/

Search by

- Manufacturer
- Article number
- Product type

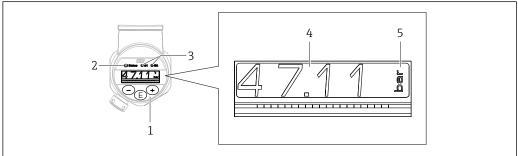
#### 7.1.2 Operating concept

Operation with an operating menu is based on an operation concept with "user roles".

| User role                   | Meaning                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Operator<br>(display level) | Operators are responsible for the devices during normal "operation". This is usually limited to reading process values either directly at the device or in a control room. Should an error occur, these users simply forward the information on the errors but do not intervene themselves.                                                                                                                              |
| Maintenance<br>(user level) | Service engineers usually work with the devices in the phases following device commissioning. They are primarily involved in maintenance and troubleshooting activities for which simple settings have to be made on the device. Technicians work with the devices over the entire life cycle of the product. Thus, commissioning and advanced settings and configurations are some of the tasks they have to carry out. |

#### 7.1.3 Structure of the operating menu

The menu structure has been implemented according to VDMA 24574-1 and complemented by Endress+Hauser-specific menu items.


| User role                | Submenu                                     | Meaning/use                                                                                                                                                                                                                                                                                                                 |  |
|--------------------------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Operator (display level) | Display/operat.                             | Display of measured values, fault and information messages                                                                                                                                                                                                                                                                  |  |
| Maintenance (user level) | Parameters on<br>the topmost<br>menu level. | Contains all the parameters that are needed to commission measuring operations. A wide range of parameters, which can be used to configure a typical application, is available at the start. A making settings for all these parameters, the measuring operations should be completely configured in the majority of cases. |  |
| par<br>med               |                                             | The submenu "EF" (Extended Functions) contains additional parameters which allow more accurate configuration of the measurement, conversion of the measured value and scaling of the output signal.                                                                                                                         |  |
|                          | DIAG                                        | Contains all the parameters that are needed to detect and analyze operating errors.                                                                                                                                                                                                                                         |  |

#### 7.2 Operation with local display

#### 7.2.1 Overview

A 1-line liquid crystal display (LCD) is used for display and operation. The local display shows measured values, fault messages and information messages and therefore supports the user through each operating step.

During measuring operation, the display shows measured values, fault messages and notice messages. In addition, it is possible to switch to menu mode via the operating keys.



A002212

- 1 Operating keys
- 2 Status LED
- 3 Switch output LEDs
- 4 Measured value
- 5 Unit

The second switch output is not used for the device version with current output.

#### 7.2.2 Information on the operational states

| Operational states       | Function of status-LED and onsite display                                                                                                                                                                                                                         |  |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Operation                | <ul> <li>Status LED is lit green</li> <li>LEDs of switch output 1 and switch output 2 signal the status of each switch output</li> <li>No activity of LED for switch output 2 if current output is active</li> <li>White background lighting</li> </ul>           |  |  |  |
| Problem                  | <ul> <li>Status LED lit steady red</li> <li>Red display background</li> <li>LED of switch output 1 and switch output 2 off (switch output is deactivated)</li> </ul>                                                                                              |  |  |  |
| Warning                  | <ul> <li>Status LED flashing red</li> <li>White display background</li> <li>LEDs of switch output 1 and switch output 2 signal the status of each switch output</li> </ul>                                                                                        |  |  |  |
| For Device Search        | ■ The green LED is lit (= operational) on the device and starts to flash with increased luminosity. Flash frequency   □ LEDs of switch output 1 and switch output 2 signal the status of each switch output   □ Display background depending on the device status |  |  |  |
| IO-Link<br>communication | ■ Status LED flashes green as per IO-Link specification (regardless of measuring operation, error or warning). Flash frequency  □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □                                                                                               |  |  |  |

## 7.3 General value adjustment and rejection of illegal entries

Parameter (not numerical value) is flashing: parameter can be adjusted or selected.

When adjusting a numerical value: the numerical value does not flash. The first digit of the numerical value starts to flash only when the  $\square$  key is pressed by way of confirmation. Enter the desired value with the  $\square$  or  $\square$  key and press the  $\square$  key to confirm. Following confirmation, the data are recorded directly and are active.

- Entry is OK: value is accepted and shown for one second on the display against a white background.
- Entry is not OK: the message "FAIL" appears for one second on the display against a red background. The value entered is rejected. In the event of an incorrect setting which affects the TD, an diagnostic message is displayed.

#### 7.4 Navigation and selection from list

The capacitive operating keys are used for navigation in the operating menu and to select an option from a picklist.

| Operating key(s)  | Meaning                                                                                                                                                                                                                |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>+</b> A0017879 | <ul> <li>Navigate downwards in the picklist</li> <li>Edit the numerical values or characters within a function</li> </ul>                                                                                              |
| A0017880          | <ul> <li>Navigate upwards in the picklist</li> <li>Edit the numerical values or characters within a function</li> </ul>                                                                                                |
| A0017881          | <ul> <li>Confirm entry</li> <li>Jump to the next item</li> <li>Select a menu item and activate the edit mode</li> <li>The key lock function (KYL) is accessed by pressing the key for longer than 2 seconds</li> </ul> |

## Operating key(s) Meaning Simultaneously A0017889 Simultaneously A0017880 ESC functions: Exit edit mode for a parameter without saving the changed value. You are in a menu at a selection level. Each time you press the keys simultaneously, you go up a level in the menu. Long ESC: press the keys for longer than 2 seconds

#### 7.5 Locking and unlocking operation

The device features

- Automatic key locking
- Parameter settings lock.

Key locking is indicated on the local display by "E > 2".

Locking of the parameter settings is indicated as soon as an attempt is made to change a parameter.

#### 7.5.1 Disabling the key lock

The keys are locked automatically if the device remains at the topmost menu level (display of pressure measurement value) for 60 seconds.

Call up the key lock function (KYL)

- 1. Press the E key for at least 2 seconds and then release it
- 2. By confirming with E "ON" is displayed
- 3. Use ± and □ to toggle between "ON" and "OFF"
- 4. Key locking is disabled as soon as 🗉 is pressed to confirm "OFF"

The display changes to the main value level (topmost menu level) if the  $\square$  key is pressed briefly. The display changes to the key locking if the  $\square$  key is pressed for at least 2 seconds.

If in the case of "KYL", "ON" or "OFF", more than 10 seconds elapse without a key being pressed, you return to the topmost menu level with active key locking.

The function can be accessed anytime outside the main measured value display and within the operating menu, i.e. if the  $\square$  key is pressed for at least 2 seconds key locking can be performed anytime at any menu item. Locking is effective immediately. If you quit the context menu, you will return to the same point from which key locking was selected.

#### 7.5.2 Locking and unlocking parameter settings

The device settings can be protected from unauthorized access.

COD parameter: define the locking code

| 0000      | Device is permanently unlocked (factory setting) |  |
|-----------|--------------------------------------------------|--|
| 0001-9999 | Device is locked                                 |  |

LCK parameter: unlock parameter locking (enter the COD)

If parameters are locked, the word "LCK" appears on the local display as soon as an attempt is made to change a parameter.

#### Examples:

Locking the device with a customer-specific code

- 1. EF  $\rightarrow$  ADM  $\rightarrow$  COD
- 2. Enter a COD not equal to 0000 (value range: 0001 to 9999)
- 3. Wait 60 seconds or restart the device
- 4. Parameters are locked (protected against changes)

Changing a parameter when the device is locked (taking the example of STL)

1. STL, LCK is displayed

- 2. Enter the customer-specific value defined in COD
- 3. STL can be edited
- 4. The device is locked again after 60 seconds or following a restart

Unlocking the locking mechanism permanently

- 1.  $EF \rightarrow ADM \rightarrow COD$
- 2. LCK is displayed, enter the customer-specific value defined in COD
- 3. Enter "0000"
- 4. The device is unlocked (even after the device is restarted)

#### Navigation examples 7.6

#### 7.6.1 Parameters with a picklist

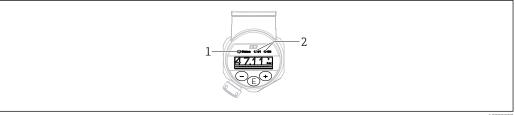
Example: Display measured value rotated by 180°

Menu path:  $EF \rightarrow DIS \rightarrow DRO$ 

| Press ⊕ or □ key until "DRO" is displayed.                     | D R O |
|----------------------------------------------------------------|-------|
| The default setting is "NO" (display is not rotated).          | N O   |
| Press ⊕ or □ until "YES" appears (display is rotated by 180°). | Y E S |
| Press E to confirm the setting.                                | D R O |

#### 7.6.2 **User-definable parameters**

Example: setting the "TAU" damping parameter.


Menu path:  $EF \rightarrow TAU$ 

| Press ⊕ or □ key until "TAU" is displayed.                                                   | T A U  |
|----------------------------------------------------------------------------------------------|--------|
| Press E to set the damping (min. = 0.0 s; max.= 999.9 s).                                    | 0. 3 0 |
| Press ⊕ or ⊡ to go up or down.  Press © to confirm the entry and to go to the next position. | 1. 5   |
| Press ■ to quit the setting function and to go to the "TAU" menu item.                       | T A U  |

#### 7.7 **Status LEDs**

The Ceraphant also uses LEDs to signal the status:

- Two LEDs indicate the status of the switch outputs (switch output 2 can optionally be used as a current output)
- One LED indicates if the device is switched on or if an error or fault has occurred



- Status LED
- Switch output LEDs

#### 7.8 Resetting to factory settings (reset)

See parameter description for RES  $\rightarrow$   $\stackrel{\triangle}{=}$  71

30

#### 8 System integration

#### 8.1 Process data

The measuring device has one current output and one or two switch outputs (depending on the version ordered). The status of the switch outputs and the pressure value are transmitted in the form of process data via IO-Link.

- In the SIO mode, the switch output is switched at pin 4 of the M12 plug. In the IO-Link communication mode, this pin is reserved exclusively for communication.
- If the "with current output" option is ordered, the current output at pin 2 of the M12 plug is always active or can optionally be deactivated via IO-Link or at the display or configured as DC-PMP.
- The device's process data are transmitted cyclically in 32-bit chunks.

| Bit              | 0 (LSB)        | 1 | ••• | 28 | 29 (MSB) | 30  | 31  |
|------------------|----------------|---|-----|----|----------|-----|-----|
| Measuring device | Pressure value |   |     |    |          | OU1 | OU2 |

Bit 30 and bit 31 indicate the state of the switch outputs.

Here, 1 or DC 24 V corresponds to the logical "closed" state on the switch output. The remaining 30 bits contain the analog raw measured value of the device. This value has yet to be scaled by the target system to the nominal operating range of the existing measuring device.

| Bit     | Process value | Value range            |
|---------|---------------|------------------------|
| 31      | OU1           | 0 = open<br>1 = closed |
| 30      | OU2           | 0 = open<br>1 = closed |
| 0 to 29 | Raw value     | Integer                |

The pressure value is provided by the measuring device as int30. The decimal separator must be set with a gradient. The number of decimal places displayed is based on the display format of the device. The gradients depend on the unit in question. The following units are available:

bar: 0.0001kPa: 0.01MPa: 0.00001psi: 0.001

#### Examples:

| Pressure value | Transmitted | Scaled with gradient |
|----------------|-------------|----------------------|
| -320 mbar      | -3200       | -0.32                |
| 22 bar         | 220000      | 22                   |
| 133 kPa        | 13300       | 133                  |
| 665 psi        | 665000      | 665                  |
| 399.5 bar      | 3995000     | 399.5                |

## 8.2 Reading out and writing device data (ISDU – Indexed Service Data Unit)

Device data are always exchanged acyclically and at the request of the IO-Link master. Using the device data, the following parameter values or device statuses can be read out:

#### 8.2.1 Endress+Hauser-specific device data

| Designation                          | ISDU<br>(dec) | ISDU<br>(hex) | Size<br>(byte) | Data type  | Access | Default<br>value | Value range                                                                                          | Offset /<br>Gradient                                                  | Data<br>storage |
|--------------------------------------|---------------|---------------|----------------|------------|--------|------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|
| Extended Ordercode                   | 259           | 0x0103        | 60             | String     | r/-    |                  |                                                                                                      |                                                                       |                 |
| ENP_VERSION                          | 257           | 0x0101        | 16             | String     | r/-    | 36587            |                                                                                                      |                                                                       |                 |
| Device Type                          | 256           | 0x0100        | 2              | Uinteger16 | r/-    | 0x92FE           |                                                                                                      |                                                                       |                 |
| Simulation Switch Output<br>(OU1)    | 85            | 0x0055        |                |            | r/w    | Off              | 0 ~ off,<br>1 ~ low,<br>2 ~ high,                                                                    |                                                                       |                 |
| Simulation Current Output<br>(OU2)   | 66            | 0x0042        | 1              | uint       | r/w    | Off              | 4 ~ 4 mA,<br>5 ~ 8 mA,<br>6 ~ 12 mA,<br>7 ~16 mA,<br>8 ~ 20 mA,<br>9 ~ 21.95 mA,<br>otherwise 3.5 mA |                                                                       | No              |
| Simulation switch output (OU2)       | 86            | 0x0056        | 1              | uint       | r/w    | Off              | 0 ~ off,<br>1 ~ low,<br>2 ~ high                                                                     |                                                                       | No              |
| Device search                        | 87            | 0x0057        | 1              | uint       | r/w    | Off              | 0 ~ off<br>1 ~ on                                                                                    |                                                                       | No              |
| Operating Mode (FUNC)                | 88            | 0x0058        | 1              | uint       | r/w    | 1                | 0 ~ off,<br>1 ~ I,<br>2 ~ PNP                                                                        |                                                                       | Yes             |
| Unit changeover (UNI)                | 67            | 0x0043        | 1              | uint       | r/w    |                  | 0 ~ bar,<br>1 ~ kPa,<br>2~ psi,<br>3~ MPa                                                            |                                                                       | Yes             |
| Zero point configuration (ZRO)       | 68            | 0x0044        | 4              | int        | r/w    | 0                | in 00.00%, default 0.00%                                                                             |                                                                       | Yes             |
| Zero point adoption (GTZ)            | 69            | 0x0045        | 1              | uint       | -/w    |                  |                                                                                                      |                                                                       | No              |
| Damping (TAU)                        | 70            | 0x0046        | 2              | uint       | r/w    | 20               | in 000.0 sec, default<br>2.0 sec                                                                     | 0 / 0.1                                                               | Yes             |
| Lower Range Value for 4<br>mA (STL)  | 71            | 0x0047        | 4              | int        | r/w    | 0                | in 00.00%, default 0.00%                                                                             | bar: 0 / 0.001<br>kPa: 0 / 0.1<br>MPa: 0 /<br>0.0001<br>psi: 0 / 0.01 | Yes             |
| Upper Range Value for 20<br>mA (STU) | 72            | 0x0048        | 4              | int        | r/w    | 10000            | in 00.00%, default 100.00%                                                                           | bar: 0 / 0.001<br>kPa: 0 / 0.1<br>MPa: 0 /<br>0.0001<br>psi: 0 / 0.01 | Yes             |
| Pressure applied for 4mA (GTL)       | 73            | 0x0049        | 1              | uint       | -/w    |                  |                                                                                                      |                                                                       | No              |
| Pressure applied for 20mA (GTU)      | 74            | 0x004A        | 1              | uint       | -/w    |                  |                                                                                                      |                                                                       | No              |
| Alarm current (FCU)                  | 75            | 0x004B        | 1              | uint       | r/w    | MAX              | 0 ~ MIN,<br>1 ~ MAX,<br>2~ HOLD                                                                      |                                                                       | Yes             |

| Designation                                                                             | ISDU<br>(dec) | ISDU<br>(hex) | Size<br>(byte) | Data type | Access | Default<br>value | Value range                                                                                                                      | Offset /<br>Gradient                                                  | Data<br>storage |
|-----------------------------------------------------------------------------------------|---------------|---------------|----------------|-----------|--------|------------------|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------|
| Switch point value / Upper<br>value for pressure window,<br>output 1 (SP1 / FH1)        | 77            | 0x004D        | 4              | int       | r/w    | 9000             | in 00.00%, default 90.00%                                                                                                        | bar: 0 / 0.001<br>kPa: 0 / 0.1<br>MPa: 0 /<br>0.0001<br>psi: 0 / 0.01 | Yes             |
| Switchback point value /<br>Lower value for pressure<br>window, output 1 (rP1 /<br>FL1) | 78            | 0x004E        | 4              | int       | r/w    | 1000             | in 00.00%, default 10.00%                                                                                                        | bar: 0 / 0.001<br>kPa: 0 / 0.1<br>MPa: 0 /<br>0.0001<br>psi: 0 / 0.01 | Yes             |
| Switching delay time, output 1 (dS1)                                                    | 79            | 0x004F        | 2              | uint      | r/w    | 0                | in 00.00 sec                                                                                                                     | 0 / 0.01                                                              | Yes             |
| Switchback delay time, output 1 (dR1)                                                   | 80            | 0x0050        | 2              | uint      | r/w    | 0                | in 00.00 sec                                                                                                                     | 0 / 0.01                                                              | Yes             |
| Output 1 (OU1)                                                                          | 81            | 0x0051        | 1              | uint      | r/w    | HNO              | 0 ~ HNO <sup>1)</sup> ,<br>1 ~ HNC <sup>1)</sup> ,<br>2 ~ FNO <sup>1)</sup> ,<br>3 ~ FNC <sup>1)</sup>                           |                                                                       | Yes             |
| Switch point value / Upper<br>value for pressure window,<br>output 2 (SP2 / FH2)        | 89            | 0x0059        | 4              | int       | r/w    | 9500             | in 00.00%, default<br>95.00%                                                                                                     | bar: 0 / 0.001<br>kPa: 0 / 0.1<br>MPa: 0 /<br>0.0001<br>psi: 0 / 0.01 | Yes             |
| Switchback point value /<br>Lower value for pressure<br>window, output 2 (rP2 /<br>FL2) | 90            | 0x005A        | 4              | int       | r/w    | 1500             | in 00.00%, default 15.00%                                                                                                        | bar: 0 / 0.001<br>kPa: 0 / 0.1<br>MPa: 0 /<br>0.0001<br>psi: 0 / 0.01 | Yes             |
| Switching delay time, output 2 (dS2)                                                    | 91            | 0x005B        | 2              | uint      | r/w    | 0                | in 00.00 sec                                                                                                                     | 0 / 0.01                                                              | Yes             |
| Switchback delay time,<br>output 2 (dR2)                                                | 92            | 0x005C        | 2              | uint      | r/w    | 0                | in 00.00 sec                                                                                                                     | 0 / 0.01                                                              | Yes             |
| Output 2 (OU2)                                                                          | 93            | 0x005D        | 1              | uint      | r/w    | HNC              | 0 ~ HNO <sup>1)</sup> ,<br>1 ~ HNC <sup>1)</sup> ,<br>2 ~ FNO <sup>1)</sup> ,<br>3 ~ FNC <sup>1)</sup>                           |                                                                       | Yes             |
| Hi Max value (maximum indicator)                                                        | 82            | 0x0052        | 4              | int       | r/-    |                  |                                                                                                                                  |                                                                       | No              |
| Lo Min value (minimum indicator)                                                        | 83            | 0x0053        | 4              | int       | r/-    |                  |                                                                                                                                  |                                                                       | No              |
| Revisioncounter (RVC)                                                                   | 84            | 0x0054        | 2              | uint      | r/-    |                  |                                                                                                                                  |                                                                       | No              |
| unlocking code (LCK)                                                                    | 94            | 0x005E        | 2              | uint      | -/w    | 0                |                                                                                                                                  |                                                                       | Yes             |
| locking code (COD)                                                                      | 95            | 0x005F        | 2              | uint      | -/w    | 0                |                                                                                                                                  |                                                                       | Yes             |
| Measured value display<br>(DVA)                                                         | 96            | 0x0060        | 1              | uint      | r/w    | 0                | 0~ PV for device with non-active current output 1~ PV% only for devices with active current output 2~display set switch point SP |                                                                       | Yes             |
| Display measured value rotated by 180° (DRO)                                            | 97            | 0x0061        | 1              | uint      | r/w    | NO               | 0 ~ NO,<br>1 ~ YES                                                                                                               |                                                                       | Yes             |
| Switch display on or off (DOF)                                                          | 98            | 0x0062        | 1              | uint      | r/w    | NO               | 0 ~ NO,<br>1 ~ YES                                                                                                               |                                                                       | Yes             |

<sup>1)</sup> For an explanation of the abbreviations, see the parameter description  $\rightarrow~ binom{1}{2}$ 

#### 8.2.2 IO-Link-specific device data

| Designation              | ISDU (dec) | ISDU (hex)       | Size (byte) | Data type | Access | Default value                 |
|--------------------------|------------|------------------|-------------|-----------|--------|-------------------------------|
| Serial number            | 21         | 0x0015           | max. 16     | String    | r/-    |                               |
| Firmware version         | 23         | 0x0017           | max. 64     | String    | r/-    |                               |
| ProductID                | 19         | 0x0013           | max. 64     | String    | r/-    | PTx3xB                        |
| ProductName              | 18         | 0x0012           | max. 64     | String    | r/-    | Ceraphant                     |
| ProductText              | 20         | 0x0014           | max. 64     | String    | r/-    | Absolute and gauge pressure   |
| VendorName               | 16         | 0x0010           | max. 64     | String    | r/-    | Endress+Hauser                |
| VendorId                 | 7 to 8     | 0x0007 to 0x0008 |             |           | r/-    | 17                            |
| VendorText               | 17         | 0x0011           | max. 64     | String    | r/-    | People for Process Automation |
| DeviceId                 | 9 to 11    | 0x0009 to 0x000B |             |           | r/-    | 0x000700                      |
| Hardware revision        | 22         | 0x0016           | max. 64     | String    | r/-    |                               |
| Application Specific Tag | 24         | 0x0018           | 32          | String    | r/w    |                               |
| Actual Diagnostics (STA) | 260        | 0x0104           | 4           | String    | r/-    |                               |
| Last Diagnostic (LST)    | 261        | 0x0105           | 4           | String    | r/-    |                               |

#### 8.2.3 System commands

| Designation                                    | ISDU (dec) | ISDU (hex) | Value range           | Access |
|------------------------------------------------|------------|------------|-----------------------|--------|
| Reset to factory settings (RES)                | 130        | 0x0082     |                       | w      |
| Device Access Locks.Data Storage Lock          | 12         | 0x000C     | 0 ~ False<br>2 ~ True | rw     |
| Device Access Locks.Local Parametrization Lock | 130        |            |                       | w      |

#### 8.3 Overview of diagnostic events

→ 🖺 45

#### 9 Commissioning

If an existing configuration is changed, measuring operation continues! The new or modified entries are only accepted once the setting has been made.

If block parameterization is used, a parameter change is only adopted after the parameter download.

#### **A** WARNING

Risk of injury from the uncontrolled activation of processes!

▶ Make sure that downstream processes are not started unintentionally.

#### **WARNING**

If a pressure smaller than the minimum permitted pressure or greater than the maximum permitted pressure is present at the device, the following messages are output in succession:

- ▶ S140
- ► F270

#### **NOTICE**

An IO-DD with corresponding default values is used for all pressure measuring ranges. This IO-DD applies for all measuring ranges! The default values of this IO-DD can be inadmissible for this device. IO-Link messages (e.g. "Parameter value above limit") may be displayed when the device is updated with these default values. Existing values are not accepted in this case. The default values apply exclusively to the 10 bar (150 psi) sensor.

► The data must first be read out of the device before default values are written from the IO-DD to the device.

#### 9.1 Function check

Before commissioning your measuring point, ensure that the post-installation and post-connection check have been performed:

- "Post-installation check" checklist → 🖺 19
- "Post-connection check" checklist

#### 9.2 Commissioning with an operating menu

Commissioning comprises the following steps:

- Configure pressure measurement → 🖺 36
- Where applicable, perform position adjustment  $\rightarrow \triangleq 38$

#### 9.3 Configuring pressure measurement

## 9.3.1 Calibration without reference pressure (dry calibration = calibration without medium)

#### Example:

In this example, a device with a 400 mbar (6 psi) sensor is configured for the measuring range 0 to 300 mbar (0 to 4.4 psi).

The following values should be assigned:

- 0 mbar = 4 mA value
- 300 mbar (4.4 psi) = 20 mA value

#### Prerequisite:

This is a theoretical calibration, i.e. the pressure values for the lower and upper range are known. It is not necessary to apply pressure.

- For a description of the parameters mentioned and possible error messages, see the "Description of device parameters" section  $\rightarrow \stackrel{\triangle}{=} 56$  and  $\rightarrow \stackrel{\triangle}{=} 44$ .

#### Performing the configuration

- 1. Select a pressure unit, here "bar" for example, via the **Unit changeover (UNI)** parameter.
- 2. Select Value for 4 mA (STL) parameter. Enter the value (0 bar (0 psi)) and confirm.
  - This pressure value is assigned to the lower current value (4 mA).
- 3. Select **Value for 20 mA (STU)** parameter. Enter the value (300 mbar (4.4 psi)) and confirm.
  - This pressure value is assigned to the upper current value (20 mA).

The measuring range is configured for 0 to 300 mbar (0 to 4.4 psi).

# 9.3.2 Calibration with reference pressure (wet calibration = calibration with medium)

#### Example:

In this example, a device with a 400 mbar (6 psi) sensor is configured for the measuring range 0 to 300 mbar (0 to 4.4 psi).

The following values should be assigned:

- 0 mbar = 4 mA value
- 300 mbar (4.4 psi) = 20 mA value

#### Prerequisite:

The pressure values 0 mbar and 300 mbar (4.4 psi) can be specified. The device is already mounted, for example.

- For a description of the parameters mentioned and possible error messages, see the "Description of device parameters" section  $\rightarrow \triangleq 56$  and  $\rightarrow \triangleq 44$ .

#### Performing the configuration

- 1. Select a pressure unit, here "bar" for example, via the **Unit changeover (UNI)** parameter.
- 2. The pressure for the LRV (4 mA value) is present at the device, here 0 bar (0 psi) for example. Select **Pressure applied for 4mA (GTL)** parameter. The selection is confirmed by pressing "Get Lower Limit".
  - → The pressure value present is assigned to the lower current value (4 mA).
- 3. The pressure for the URV (20 mA value) is present at the device, here 300 mbar (4.4 psi)for example. Select **Pressure applied for 20mA (GTU)** parameter. The selection is confirmed by pressing "Get Lower Limit".
  - → The pressure value present is assigned to the upper current value (20 mA).

The measuring range is configured for 0 to 300 mbar (0 to 4.4 psi).

### 9.4 Performing position adjustment

#### Zero point configuration (ZRO)

**Navigation** Display:  $EF \rightarrow Zero point configuration (ZRO)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Zero point configuration (ZRO)

**Description** (typically absolute pressure sensor)

The pressure resulting from the orientation of the device can be corrected here. The pressure difference between zero (set point) and the measured pressure must be

known.

**Prerequisite** An offset is possible (parallel shifting of the sensor characteristic) to correct the

orientation and any zero point drift. The set value of the parameter is subtracted from the "raw measured value". The requirement to be able to perform a zero point shift without

changing the span is met with the offset function.

Maximum offset value =  $\pm$  20 % of the sensor nominal range.

If an offset value is entered that shifts the span beyond the physical limits of the sensor, the value is admitted but a warning message is generated and displayed via IO-Link. The warning message only disappears when the span is within the sensor limits, taking the

offset value currently configured into consideration.

The sensor can

• be operated in a physically unfavorable range, i.e. outside its specifications, or

• be operated by making appropriate corrections to the offset or span.

Raw measured value – (manual offset) = display value (measured value)

**Example** ■ Measured value = 0.002 mbar (0.029 psi)

• Set the measured value in the parameter to 0.002.

Measured value (after pos. zero adjust) = 0.000 mbar (0 psi)

• The current value is also corrected.

**Note** Setting in increments of 0.001. As the value is entered numerically, the increment

depends on the measuring range

**Options** No selection. The user is free to edit the values.

Factory setting 0

#### Zero point adoption (GTZ)

**Navigation** Display:  $EF \rightarrow Zero point adoption (GTZ)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Zero point adoption (GTZ)

**Description** (typically gauge pressure sensor)

The pressure resulting from the orientation of the device can be corrected here.

The pressure difference between zero (set point) and the measured pressure need not be

known.

#### **Prerequisite**

The pressure value present is automatically adopted as the zero point.

An offset is possible (parallel shifting of the sensor characteristic) to correct the orientation and any zero point drift. The accepted value of the parameter is subtracted from the "raw measured value". The requirement to be able to perform a zero point shift without changing the span is met with the offset function.

Maximum offset value =  $\pm$  20 % of the sensor nominal range.

If an offset value is entered that shifts the span beyond the physical limits of the sensor, the value is admitted but a warning message is generated and displayed via IO-Link. The warning message only disappears when the span is within the sensor limits, taking the offset value currently configured into consideration.

#### The sensor can

- be operated in a physically unfavorable range, i.e. outside its specifications, or
- be operated by making appropriate corrections to the offset or span.

Raw measured value – (manual offset) = display value (measured value)

#### Example 1

- Measured value = 0.002 mbar (0.029 psi)
- Use the **Zero point adoption (GTZ)** parameter to correct the measured value with the value, e.g. 0.002 mbar (0.029 psi). This means that you are assigning the value 0.000 (0 psi) to the pressure present.
- Measured value (after pos. zero adjust) = 0.000 mbar (0 psi)
- The current value is also corrected.
- Where applicable, check and correct switch points and span settings.

#### Example 2

Sensor measuring range: -0.4 to +0.4 bar (-6 to +6 psi) (SP1 = 0.4 bar (6 psi); STU = 0.4 bar (6 psi))

- Measured value = 0.08 bar (1.2 psi)
- Use the **Zero point adoption (GTZ)** parameter to correct the measured value with the value, e.g. 0.08 bar (1.2 psi). This means that you are assigning the value 0 mbar (0 psi) to the pressure present.
- Measured value (after pos. zero adjust) = 0 mbar (0 psi)
- The current value is also corrected.
- Warnings C431 or C432 appear because the value 0 bar (0 psi) was assigned to the real value of 0.08 bar (1.2 psi) present and the sensor measuring range was thus exceeded  $bv \pm 20\%$ .

SP1 and STU values must be readjusted downwards by 0.08 bar (1.2 psi).

### 9.5 Configuring process monitoring

To monitor the process, it is possible to specify a pressure range which is monitored by the limit switch. Both monitoring versions are described below. The monitoring function allows the user to define optimum ranges for the process (with high yields etc.) and deploy limit switches to monitor the ranges.

### 9.5.1 Digital process monitoring (switch output)

It is possible to select defined switch points and switchback points which act as NO or NC contacts depending on whether a window function or hysteresis function is configured.

| Function   | Selection                  | Output     | Abbreviation for operation |
|------------|----------------------------|------------|----------------------------|
| Hysteresis | Hysteresis normally open   | Closing    | HNO                        |
| Hysteresis | Hysteresis normally closed | NC contact | HNC                        |
| Window     | Window normally open       | Closing    | FNO                        |
| Window     | Window normally closed     | NC contact | FNC                        |

If the device is restarted within the given hysteresis, the switch output is open (0 V present at the output).

### 9.5.2 Analog process monitoring (4 to 20 mA output)

- The 3.8 to 20.5 mA signal range is controlled according to NAMUR NE 43.
- The alarm current and current simulation are exceptions:
  - If the defined limit is exceeded, the device continues measuring linearly. The output current increases linearly up to 20.5 mA and holds the value until the measured value drops below 20.5 mA again or the device detects an error → ≅ 44.

### 9.6 Current output

#### Operating Mode (FUNC)

**Navigation** Display:  $EF \rightarrow Operating Mode (FUNC)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Operating Mode (FUNC)

**Description** Enables the desired behavior of output 2 (not IO-Link output)

**Options** Options:

- OFF
- 4-20 mA (I) ((can only be selected if the device has been ordered with 4-20mA))
- DC-PNP (PNP)

#### Value for 4 mA (STL)

**Navigation** Display:  $STL \rightarrow Value \text{ for 4 mA (STL)}$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Current output  $\rightarrow$  Value for 4 mA (STL)

**Description** Assignment of the pressure value which should correspond to the 4 mA value.

It is possible to invert the current output. To do so, assign the pressure upper range value

to the lower measuring current.

**Note** Enter the value for 4 mA in the selected pressure unit anywhere within the measuring

range. The value can be entered in increments of 0.1 (increment depends on the

measuring range).

**Options** No selection. The user is free to edit the values.

**Factory setting** 0.0 or as per order specifications

#### Value for 20 mA (STU)

**Navigation** Display: STU → Value for 20 mA (STU)

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Current output  $\rightarrow$  Value for 20 mA (STU)

**Description** Assignment of the pressure value which should correspond to the 20 mA value.

It is possible to invert the current output. To do so, assign the pressure lower range value

to the upper measuring current.

**Note** Enter the value for 20 mA in the selected pressure unit anywhere within the measuring

range. The value can be entered in increments of 0.1 (increment depends on the

measuring range).

**Options** No selection. The user is free to edit the values.

**Factory setting** Upper measuring limit or as per order specifications.

#### Pressure applied for 4mA (GTL)

**Navigation** Display:  $EF \rightarrow I \rightarrow Pressure applied for 4mA (GTL)$ 

IO-Link: Parameter → Application → Current output → Pressure applied for 4mA (GTL)

#### Description

The pressure value present is automatically adopted for the 4 mA current signal. Parameter for which the current range can be assigned to any section of the nominal range. This occurs by assigning the pressure lower range value to the lower measuring current and the pressure upper range value to the upper measuring current.

The pressure lower range value and upper range value can be configured independently of one another so the pressure measuring span does not remain constant.

The LRV and URV pressure measuring span can be edited over the entire sensor range. An invalid TD value is indicated by diagnostic message S510. An invalid position offset is indicated by diagnostic message C431.

The editing operation cannot result in the device being operated outside the minimum and maximum sensor limits.

Incorrect entries are declined as indicated by the following messages, and the last valid value prior to the change is used again:

- Parameter value above limit (0x8031)
- Parameter value below limit (0x8032)

The measured value currently present is accepted as the value for 4mA anywhere within the measuring range.

The sensor characteristic curve is shifted such that the pressure present becomes the zero value.

#### Pressure applied for 20mA (GTU)

#### Navigation

Display: EF  $\rightarrow$  I  $\rightarrow$  Pressure applied for 20mA (GTU)

IO-Link: Parameter → Application → Current output → Pressure applied for 20mA (GTU)

#### Description

The pressure value present is automatically adopted for the 20 mA current signal. Parameter for which the current range can be assigned to any section of the nominal range. This occurs by assigning the pressure lower range value to the lower measuring current and the pressure upper range value to the upper measuring current.

The pressure lower range value and upper range value can be configured independently of one another so the pressure measuring span does not remain constant.

The LRV and URV pressure measuring span can be edited over the entire sensor range. An invalid TD value is indicated by diagnostic message S510. An invalid position offset is indicated by diagnostic message C431.

The editing operation cannot result in the device being operated outside the minimum and maximum sensor limits.

Incorrect entries are declined, and the last valid value prior to the change is used again. The measured value currently present is accepted as the value for 20 mA anywhere within the measuring range.

There is a parallel shift of the sensor characteristic so that the pressure present becomes the max value.

### 9.7 Application examples

### 9.7.1 Compressor control with hysteresis function

Example: The compressor is started when the pressure drops below a certain value. The compressor is switched off when a certain value is exceeded.

- 1. Set the switch point to 2 bar (29 psi)
- 2. Set the switchback point to 1 bar (14.5 psi)
- 3. Configure the switch output as an "NC contact" (HNC function)

The compressor is controlled by the defined settings.

### 9.7.2 Pump control with hysteresis function

Example: The pump should switch on when 2 bar (29 psi) is reached (increasing pressure) and switch off when 1 bar (14.5 psi) is reached (decreasing pressure).

- 1. Set the switch point to 2 bar (29 psi)
- 2. Set the switchback point to 1 bar (14.5 psi)
- 3. Configure the switch output as an "NO contact" (HNO function)

The pump is controlled by the defined settings.

# 10 Diagnostics and troubleshooting

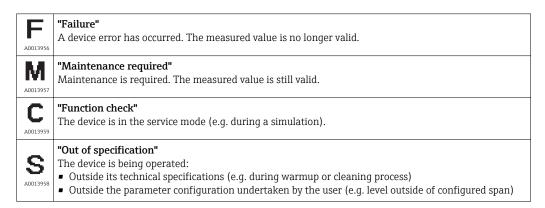
### 10.1 Troubleshooting

If an illegal configuration exists in the device, the device switches to the failsafe mode.

#### Example:

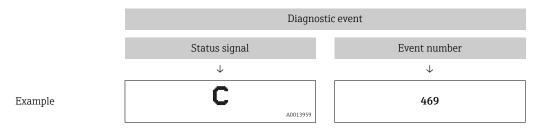
- The diagnostic message "C485" is displayed via IO-Link.
- The device is in the simulation mode.
- If the device configuration is corrected, e.g. by resetting the device, the device quits the fault state and switches to the measuring mode.

#### General errors


| Problem                                                                                    | Possible cause                                                                                                                                                                                                                                                                                                                                                                                                                                            | Remedy                                                                                                        |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Device does not respond                                                                    | Supply voltage does not match that specified on the nameplate.                                                                                                                                                                                                                                                                                                                                                                                            | Apply correct voltage.                                                                                        |
|                                                                                            | Supply voltage has incorrect polarity.                                                                                                                                                                                                                                                                                                                                                                                                                    | Reverse polarity of supply voltage.                                                                           |
|                                                                                            | Connecting cables are not in contact with the terminals.                                                                                                                                                                                                                                                                                                                                                                                                  | Check for electrical contact between cables and correct.                                                      |
| No display                                                                                 | The local display might be switched off.                                                                                                                                                                                                                                                                                                                                                                                                                  | Switch on the local display (see the "DOF" parameter description).                                            |
| Device measures incorrectly.                                                               | Configuration error.                                                                                                                                                                                                                                                                                                                                                                                                                                      | Check and correct the parameter configuration.                                                                |
| No communication                                                                           | <ul> <li>Communication cable not connected.</li> <li>Communication cable incorrectly attached to device.</li> <li>Communication cable incorrectly attached to the IO-Link master.</li> </ul>                                                                                                                                                                                                                                                              | Check wiring and cables.                                                                                      |
| Output current ≤ 3.6 mA                                                                    | Signal line is not wired correctly.                                                                                                                                                                                                                                                                                                                                                                                                                       | Check wiring.                                                                                                 |
| No transmission of process data                                                            | There is an error in the device.                                                                                                                                                                                                                                                                                                                                                                                                                          | Correct errors that are displayed as a diagnostic event → 🖺 46.                                               |
| Parameter plausibility<br>check has failed (IO-Link<br>message as per IO-Link<br>standard) | An IO-DD with corresponding default values is used for all pressure measuring ranges. This IO-DD applies for all measuring ranges! The default values of this IO-DD can be inadmissible for this device. IO-Link messages (e.g. "Parameter value above limit") may be displayed when the device is updated with these default values. Existing values are not accepted in this case. The default values apply exclusively to the 10 bar (150 psi) sensor. | The data must first be read out of the device before default values are written from the IO-DD to the device. |

### 10.2 Diagnostic events

### 10.2.1 Diagnostic message


Faults detected by the self-monitoring system of the measuring device are output as a diagnostic message via IO-Link and displayed as a diagnostic message in alternation with the measured value display.

#### Status signals



#### Diagnostics event and event text

The fault can be identified by means of the diagnostic event.



If two or more diagnostics events are pending simultaneously, only the message with the highest priority is shown.

The last diagnostic message is displayed - see Last Diagnostic (LST) in the **Diagnosis** submenu  $\Rightarrow \implies 56$ .

## 10.2.2 Overview of diagnostic events

| Status<br>signal/<br>Diagnostic<br>event | Diagnostic<br>behavior | IO-Link<br>EventQualifier | EventCode            | Event text                                                | Cause                                                                                                                                                                               | Corrective measure                                                                                                                                                                                                                                                       |
|------------------------------------------|------------------------|---------------------------|----------------------|-----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S140                                     | Warning                | IO-Link Warning           | 0x180F               | Sensor signal outside of permitted ranges                 | Overpressure or low pressure present                                                                                                                                                | Operate device in the specified measuring range                                                                                                                                                                                                                          |
| F270 <sup>1)</sup>                       | Fault                  | IO-Link Error             | 0x1800               | Overpressure/low pressure                                 | Overpressure or low pressure present                                                                                                                                                | <ul><li>Check the process pressure</li><li>Check sensor range</li><li>Restart device</li></ul>                                                                                                                                                                           |
| F270 1)                                  | Fault                  | IO-Link Error             | 0x1800               | Defect in electronics/sensor                              | Defect in electronics/<br>sensor                                                                                                                                                    | Replace device                                                                                                                                                                                                                                                           |
| C431 <sup>2)</sup>                       | Warning                | IO-Link Warning           | 0x1805               | Invalid position<br>adjustment (Current<br>output)        | The adjustment performed would cause the sensor nominal range to be exceeded or undershot.                                                                                          | Position adjustment + parameter of the current output must be within the sensor nominal range  Check position adjustment (see Zero point configuration (ZRO) parameter)  Check measuring range (see Value for 20 mA (STU) and Value for 4 mA (STL) parameters)           |
| C432                                     | Warning                | IO-Link Warning           | 0x1806               | Invalid position<br>adjustment<br>(Switching Output<br>1) | The adjustment performed causes the switch points to be outside the sensor nominal range.                                                                                           | Position adjustment + parameter of the hysteresis and window function must be within the sensor nominal range  • Check position adjustment (see Zero point configuration (ZRO) parameter)  • Check the switch point, switchback point for hysteresis and window function |
| C432                                     | Warning                | IO-Link Warning           | 0x1807               | Invalid position<br>adjustment<br>(Switching Output<br>2) | The adjustment performed causes the switch points to be outside the sensor nominal range.                                                                                           | Position adjustment + parameter of the hysteresis and window function must be within the sensor nominal range  • Check position adjustment (see Zero point configuration (ZRO) parameter)  • Check the switch point, switchback point for hysteresis and window function |
| F437                                     | Fault                  | IO-Link Error             | 0x1810               | Incompatible configuration                                | Invalid device configuration                                                                                                                                                        | <ul><li>Restart device</li><li>Reset device</li><li>Replace device</li></ul>                                                                                                                                                                                             |
| C469                                     | Fault                  | IO-Link Error             | 0x1803               | Switch points for output 1 violated                       | Switch point ≤ switchback point                                                                                                                                                     | Check switch points at output                                                                                                                                                                                                                                            |
| C469                                     | Fault                  | IO-Link Error             | 0x1809               | Switch points for output 2 violated                       | Switch point ≤ switchback point                                                                                                                                                     | Check switch points at output                                                                                                                                                                                                                                            |
| C485                                     | Warning                | IO-Link Warning           | 0x8C01 <sup>3)</sup> | Simulation active                                         | During simulation of the switch output or current output, the device issues a warning message.                                                                                      | Switch off simulation.                                                                                                                                                                                                                                                   |
| S510                                     | Fault                  | IO-Link Error             | 0x1802               | Turn down violated                                        | A change in the span<br>results in a violation of the<br>turn down (max. TD 5:1)<br>Values for adjustment<br>(lower range value and<br>upper range value) are too<br>close together | <ul> <li>Operate device in the specified<br/>measuring range</li> <li>Check the measuring range</li> </ul>                                                                                                                                                               |

| Status<br>signal/<br>Diagnostic<br>event | Diagnostic<br>behavior | IO-Link<br>EventQualifier | EventCode | Event text                                   | Cause                                                                                                                                                                         | Corrective measure                                                                                                                                                                                                                                                                                                         |
|------------------------------------------|------------------------|---------------------------|-----------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| S803                                     | Fault                  | IO-Link Error             | 0x1804    | Current loop                                 | Impedance of load resistance at analog output is too high                                                                                                                     | <ul> <li>Check the cabling and load at the current output.</li> <li>If the current output is not required, switch the current output off via the configuration.</li> <li>Connect current output with load.</li> <li>If the current output is not required, switch the current output off via the configuration.</li> </ul> |
| F804                                     | Fault                  | IO-Link Error             | 0x1808    | Overload at switch output 1 or 2             | Load current too high                                                                                                                                                         | <ul> <li>Increase load resistance at switch<br/>output</li> <li>Check output wiring</li> </ul>                                                                                                                                                                                                                             |
| F804                                     | Fault                  | IO-Link Error             | 0x1808    | Overload at switch output 1 or 2             | Switch output defective                                                                                                                                                       | Replace device                                                                                                                                                                                                                                                                                                             |
| S971                                     | Warning                | IO-Link Warning           | 0x1811    | Measured value is<br>outside sensor<br>range | The current is outside the permitted range 3.8 to 20.5 mA. The present pressure value is outside the configured measuring range (but within the sensor range, if applicable). | Operate the device within the set span                                                                                                                                                                                                                                                                                     |

- 1) The switch output is open and the current output adopts the configured alarm current. Errors concerning the switch output are not displayed because the switch output is in a safe state.
- 2) If no remedial measures are taken, the warning messages are displayed following a device restart if configuration (span, switch points and offset) is performed with a gauge pressure device and readings are > URL + 10 % or < LRL + 5 % and with an absolute pressure device and readings are > URL + 10% or < LRL.
- 3) EventCode as per IO-Link standard 1.1

#### 10.3 Behavior of the device in the event of a fault

The device displays warnings and faults via I/O-Link. All the device warnings and faults are for information purposes only and do not have a safety function. The errors diagnosed by the device are displayed via IO-Link in accordance with NE107. In accordance with the diagnostic message, the device behaves as per a warning or fault condition. It is necessary to distinguish between the following types of errors here:

- Warning:
  - The device continues measuring if this type of error occurs. The output signal is not affected (exception: simulation is active).
  - The local display alternates between the warning and the main measured value.
  - The switch outputs remain in the state defined by the switch points.
  - The status LED flashes red (not for IO-Link).
  - The background remains white in the event of a warning
- Fault:
  - The device does **not** continue measuring if this type of error occurs. The output signal adopts its fault state (value in the event of an error see the following section).
  - The fault state is displayed via IO-Link.
  - The fault state is indicated on the local display.
  - The switch outputs assume the "opened" state.
  - For the analog output option, an error is signaled with the configured alarm current behavior.

### 10.4 Signal on alarm 4 to 20 mA

The response of the output to error is regulated in accordance with NAMUR NE43.

The behavior of the current output in the event of faults is defined in the following parameters:

- Alarm current FCU "HLD" (HOLD) (optional, see the following table): Last measured current value is held. When the device starts, the current output is set to "Lower alarm current" ( $\leq$  3.6 mA).  $\Rightarrow$   $\cong$  62
- 1
- The selected alarm current is used for all errors.
- Errors and warning messages are displayed via IO-Link.
- Errors and warning messages are displayed only on the primary value page (topmost display level) and are not displayed in the operating menu.
- In the operating menu the error is only indicated by the color of the display background.
- The status LED always indicates an error.
- It is not possible to acknowledge errors and warnings. The relevant message disappears if the event is no longer pending.
- The failsafe mode can be changed directly when a device is running (see the following table).

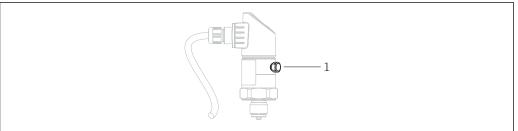
| Changing the failsafe mode | After confirming with 🗉        |
|----------------------------|--------------------------------|
| from MAX to MIN            | active immediately             |
| from MIN to MAX            | active immediately             |
| from HLD (HOLD) to MAX     | active immediately             |
| from HLD (HOLD) to MIN     | active immediately             |
| from MIN to HLD (HOLD)     | active outside the fault state |
| from MAX to HLD (HOLD)     | active outside the fault state |

### 10.5 Behavior of the device in the event of a voltage drop

A diagnostic message is not output. The configuration and the settings made are retained.

# 10.6 Behavior of the device in the event of an incorrect entry

In the case of incorrect entries, the value entered is not accepted. No fault or warning is issued in this case. The value to be adjusted cannot be changed to a value outside the specified limit. This makes it impossible to configure the device using incorrect values. An exception to this is the configuration of the span that results in a violation of the turn down, which in turn gives rise to a fault state.


### 10.7 Resetting to factory settings (reset)

See Reset to factory settings (RES) parameter description  $\rightarrow \equiv 71$ .

#### 11 Maintenance

No special maintenance work is required.

Keep the pressure compensation element (1) free from contamination.



40022140

### 11.1 Exterior cleaning

Please note the following points when cleaning the device:

- The cleaning agents used should not corrode the surface and the seals.
- Mechanical damage to the process isolating diaphragm, e.g. due to sharp objects, must be avoided.

# 12 Repairs

### 12.1 General notes

### 12.1.1 Repair concept

Repairs are not possible.

### 12.2 Return

The measuring device must be returned if the wrong device has been ordered or delivered.

As an ISO-certified company and also due to legal regulations, Endress+Hauser is obliged to follow certain procedures when handling any returned products that have been in contact with medium. To ensure swift, safe and professional device returns, please read the return procedures and conditions on the Endress+Hauser website at <a href="https://www.services.endress.com/return-material">www.services.endress.com/return-material</a>

### 12.3 Disposal

When disposing, separate and recycle the device components based on the materials.

#### Overview of the onsite display operating menu 13

Depending on the parameter configuration, not all submenus and parameters are available. Information on this can be found in the parameter description under "Prerequisite".

| Switch ou | ıtput <sup>1)</sup> |                      | Level<br>0 | Level | Level<br>2 | Level | Description                                                | De            | etails     |
|-----------|---------------------|----------------------|------------|-------|------------|-------|------------------------------------------------------------|---------------|------------|
| 1 x PNP   | 2 x PNP             | 1 x PNP +<br>4-20 mA |            |       |            |       |                                                            |               |            |
| <b>V</b>  | V                   | V                    | KYL        |       | s shown o  |       | isplay, this means that the keys of the device are locked. |               |            |
| V         | V                   | V                    | SP1        |       |            |       | Switch point value, output 1                               | $\rightarrow$ | ₿ 63       |
| <b>v</b>  | V                   | V                    | RP1        |       |            |       | Switchback point value, output 1                           | $\rightarrow$ | ₿ 63       |
| <b>v</b>  | V                   | V                    | FH1        |       |            |       | Upper value for pressure window, output 1                  | $\rightarrow$ | ₿ 63       |
| V         | V                   | V                    | FL1        |       |            |       | Lower value for pressure window, output 1                  | $\rightarrow$ | ₿ 63       |
|           | V                   | B <sup>2)</sup>      | SP2        |       |            |       | Switch point, output 2                                     | $\rightarrow$ | ₿ 65       |
|           | V                   | B 2)                 | RP2        |       |            |       | Switchback point, output 2                                 | $\rightarrow$ | ₿ 65       |
|           | V                   | B 2)                 | FH2        |       |            |       | Upper value for pressure window, output 2                  | $\rightarrow$ | ₿ 65       |
|           | V                   | B 2)                 | FL2        |       |            |       | Lower value for pressure window, output 2                  | $\rightarrow$ | ₿ 65       |
|           |                     | A 3)                 | STL        |       |            |       | Value for 4 mA (LRV)                                       | $\rightarrow$ | ₿ 40       |
|           |                     | A 3)                 | STU        |       |            |       | Value for 20 mA (URV)                                      | $\rightarrow$ | ₿ 41       |
|           |                     |                      | EF         | FUNC  |            |       | Extended functions                                         | $\rightarrow$ | ₿ 40       |
|           | V                   | V                    |            |       | OFF        |       |                                                            | -             |            |
|           |                     | V                    |            |       | I 4)       |       |                                                            | -             |            |
|           | V                   | V                    |            |       | PNP        |       |                                                            | -             |            |
|           |                     |                      |            | UNI   |            |       |                                                            | $\rightarrow$ | ₿ 58       |
| V         | V                   | ~                    |            |       | BAR        |       | Unit bar                                                   | -             |            |
| V         | V                   | V                    |            |       | KPA        |       | Unit kPa (depends on the sensor measuring range)           | -             |            |
| <b>V</b>  | V                   | V                    |            |       | MPA        |       | Unit MPa (depends on the sensor measuring range)           | -             |            |
| <b>V</b>  | V                   | V                    |            |       | PSI        |       | Unit psi                                                   | -             |            |
| <b>V</b>  | V                   | ~                    |            | ZRO   |            |       | Zero point configuration                                   | $\rightarrow$ | ₿ 38       |
| <b>V</b>  | V                   | ~                    |            | GTZ   |            |       | Zero point adoption                                        | $\rightarrow$ | ₿ 38       |
| V         | V                   | V                    |            | TAU   |            |       | Damping                                                    | $\rightarrow$ | ₿ 60       |
|           |                     | A 3)                 |            | I     |            |       | Current output                                             | -             |            |
|           |                     |                      |            |       | GTL        |       | Pressure applied for 4mA (LRV)                             | $\rightarrow$ | ₿ 41       |
|           |                     |                      |            |       | GTU        |       | Pressure applied for 20mA (URV)                            | $\rightarrow$ | ₿ 42       |
|           |                     |                      |            |       | FCU        |       | Alarm current                                              | $\rightarrow$ | ₿ 62       |
|           |                     | A 3)                 |            |       |            | MIN   | In the event of an error: MIN (≤3.6 mA)                    | -             |            |
|           |                     | A 3)                 |            |       |            | MAX   | In the event of an error: MAX (≥21 mA)                     | -             |            |
|           |                     | A 3)                 |            |       |            | HLD   | Last current value (HOLD)                                  | -             |            |
| <b>'</b>  | V                   | ~                    |            | dS1   |            |       | Switching delay time, output 1                             | $\rightarrow$ | <b>6</b> 7 |
| V         | V                   | V                    |            | dR1   |            |       | Switchback delay time, output 1                            | $\rightarrow$ | ₿ 67       |
|           |                     |                      |            | Ou1   |            |       | Output 1                                                   | -             |            |
| V         | V                   | V                    |            |       | HNO        |       | NO contact for hysteresis function                         | $\rightarrow$ | ₿ 70       |
| <b>v</b>  | V                   | V                    |            |       | HNC        |       | NC contact for hysteresis function                         | $\rightarrow$ | ₿ 70       |

| Switch output 1) |         | Level<br>0           | Level | Level<br>2        | rel Level | Description | Details                                                    |               |             |
|------------------|---------|----------------------|-------|-------------------|-----------|-------------|------------------------------------------------------------|---------------|-------------|
| 1 x PNP          | 2 x PNP | 1 x PNP +<br>4-20 mA |       |                   |           |             |                                                            |               |             |
| /                | ~       | V                    |       |                   | FNO       |             | NO contact for window function                             | $\rightarrow$ | ₿ 70        |
| /                | V       | V                    |       |                   | FNC       |             | NC contact for window function                             | $\rightarrow$ | ₿ 70        |
|                  | V       | B 2)                 |       | dS2               |           |             | Switching delay time, output 2                             | $\rightarrow$ | ₿ 68        |
|                  | ~       | B 2)                 |       | dR2               |           |             | Switchback delay time, output 2                            | $\rightarrow$ | ₿ 68        |
|                  |         |                      |       | Ou2               |           |             | Output 2                                                   | -             |             |
|                  | V       | B 2)                 |       |                   | HNO       |             | NO contact for hysteresis function                         | $\rightarrow$ | ₿ 70        |
|                  | V       | B 2)                 |       |                   | HNC       |             | NC contact for hysteresis function                         | $\rightarrow$ | ₿ 70        |
|                  | V       | B 2)                 |       |                   | FNO       |             | NO contact for window function                             | $\rightarrow$ | ₿ 70        |
|                  | V       | B 2)                 |       |                   | FNC       |             | NC contact for window function                             | $\rightarrow$ | ₿ 70        |
| /                | ~       | V                    |       | HI                |           |             | Max value (maximum indicator)                              | $\rightarrow$ | ₿ 70        |
| <b>/</b>         | V       | V                    |       | LO                |           |             | Min value (minimum indicator)                              | $\rightarrow$ | ₿ 71        |
| /                | V       | V                    |       | RVC               |           |             | Revision counter                                           | $\rightarrow$ | ₿ 71        |
| /                | V       | V                    |       | RES               |           |             | Reset                                                      | $\rightarrow$ | ₿ 71        |
|                  |         |                      |       | ADM               |           |             | Administration                                             | -             |             |
| /                | V       | V                    |       |                   | LCK       |             | Unlocking code                                             | $\rightarrow$ | ₽ 72        |
| /                | V       | V                    |       | -                 | COD       |             | Locking code                                               | $\rightarrow$ | ₽ 72        |
|                  |         |                      |       | DIS               |           |             | Display                                                    | -             |             |
| V                | V       | V                    |       |                   | DVA       | PV          | Display measured value                                     | $\rightarrow$ | ₽ 73        |
|                  |         | A 3)                 |       |                   |           | PV'/,       | Display the measured value as a percentage of the set span | -             |             |
| /                | V       | V                    |       |                   |           | SP          | Display set switch point                                   | -             |             |
| /                | V       | V                    |       |                   | DRO       |             | Display measured value rotated by 180°                     | $\rightarrow$ | ₿ 73        |
| /                | V       | V                    |       |                   | DOF       |             | Display off                                                | $\rightarrow$ | <b>1</b> 73 |
|                  |         |                      | DIAG  |                   |           |             | Diagnosis                                                  | -             |             |
| ·                | V       | V                    |       | STA               |           |             | Current device status                                      | $\rightarrow$ | ₿ 56        |
| ·                | V       | V                    |       | LST               |           |             | Last device status                                         | $\rightarrow$ | ₿ 56        |
|                  |         |                      |       | SM1               |           |             | Simulation output 1                                        | $\rightarrow$ | ₿ 56        |
| /                | V       | V                    |       |                   | OFF       |             |                                                            | -             |             |
| /                | V       | V                    |       |                   | OPN       |             | Switch output opened                                       | -             |             |
| /                | V       | V                    |       |                   | CLS       |             | Switch output closed                                       | -             |             |
|                  |         |                      |       | SM2 <sup>5)</sup> |           |             | Simulation output 2                                        | $\rightarrow$ | ₿ 58        |
|                  |         |                      |       | -                 |           |             | Current output simulation                                  | $\rightarrow$ | <b>1</b> 57 |
|                  | V       | V                    |       |                   | OFF       |             |                                                            | -             |             |
|                  | V       | B 2)                 |       |                   | OPN       |             | Switch output opened                                       | -             |             |
|                  | V       | B 2)                 |       |                   | CLS       |             | Switch output closed                                       | -             |             |
|                  |         | A 3)                 |       |                   | 3.5       |             | Simulation value for analog output in mA                   | -             |             |
|                  |         | A 3)                 |       |                   | 4         |             | Simulation value for analog output in mA                   | -             |             |
|                  |         | A 3)                 |       |                   | 8         |             | Simulation value for analog output in mA                   | -             |             |
|                  |         | A 3)                 |       |                   | 12        |             | Simulation value for analog output in mA                   | -             |             |
|                  |         | A 3)                 |       |                   | 16        |             | Simulation value for analog output in mA                   |               |             |

| Switch output <sup>1)</sup> |         |                      | Level<br>0 | Level | Level<br>2 | Level<br>3 | Description                              | Details |
|-----------------------------|---------|----------------------|------------|-------|------------|------------|------------------------------------------|---------|
| 1 x PNP                     | 2 x PNP | 1 x PNP +<br>4-20 mA |            |       |            |            |                                          |         |
|                             |         | A 3)                 |            |       | 20         |            | Simulation value for analog output in mA | -       |
|                             |         | A 3)                 |            |       | 21.95      |            | Simulation value for analog output in mA | -       |

- The assignment of the outputs cannot be modified. 1)
- B = Functionality is active if "PNP" has been configured in the "FUNC" menu. A = Functionality is active if "I" has been configured in the "FUNC" menu. I can only be selected if the device has been ordered with 4-20 mA. 2)
- 3)
- 4)
- For devices with a 4-20 mA current output: can only be selected if the output is switched on.

# 14 Overview of the IO-Link operating menu

Depending on the parameter configuration, not all submenus and parameters are available. Information on this can be found in the parameter description under "Prerequisite".

| Level 0        | Level 1      | Level 2              | Level 3                                                                        | Details |  |  |  |  |  |  |
|----------------|--------------|----------------------|--------------------------------------------------------------------------------|---------|--|--|--|--|--|--|
| Identification | Serial numb  | er                   |                                                                                | -       |  |  |  |  |  |  |
|                | Firmware ve  | ersion               |                                                                                | -       |  |  |  |  |  |  |
|                | Extended Or  | dercode              |                                                                                | → 🖺 56  |  |  |  |  |  |  |
|                | ProductNam   | ie                   |                                                                                | -       |  |  |  |  |  |  |
|                | ProductText  |                      |                                                                                | -       |  |  |  |  |  |  |
|                | VendorNam    | e                    |                                                                                | -       |  |  |  |  |  |  |
|                | VendorText   | VendorText           |                                                                                |         |  |  |  |  |  |  |
|                | Hardware re  | Hardware revision    |                                                                                |         |  |  |  |  |  |  |
|                | ENP_VERSI    | ENP_VERSION          |                                                                                |         |  |  |  |  |  |  |
|                | Application  | Specific Tag         |                                                                                | → 🖺 56  |  |  |  |  |  |  |
|                | Device Type  |                      |                                                                                | -       |  |  |  |  |  |  |
| Diagnosis      | Actual Diagr | nostics (STA)        |                                                                                | → 🖺 56  |  |  |  |  |  |  |
|                | Last Diagnos | stic (LST)           |                                                                                | → 🖺 56  |  |  |  |  |  |  |
|                | Simulation S | Switch Output (OU1)  |                                                                                | → 🖺 56  |  |  |  |  |  |  |
|                | Simulation ( | Current Output (OU2) |                                                                                | → 🖺 57  |  |  |  |  |  |  |
|                | Simulation S | Switch Output (OU2)  |                                                                                | → 🖺 58  |  |  |  |  |  |  |
|                | Device Searc | ch                   |                                                                                | → 🖺 57  |  |  |  |  |  |  |
| Parameter      | Application  | Sensor               | Operating Mode (FUNC)                                                          | → 🖺 40  |  |  |  |  |  |  |
|                |              |                      | Unit changeover (UNI)                                                          | → 🖺 58  |  |  |  |  |  |  |
|                |              |                      | Zero point configuration (ZRO)                                                 | → 🖺 38  |  |  |  |  |  |  |
|                |              |                      | Zero point adoption (GTZ)                                                      | → 🖺 38  |  |  |  |  |  |  |
|                |              |                      | Damping (TAU)                                                                  | → 🖺 60  |  |  |  |  |  |  |
|                |              | Current output       | Value for 4 mA (STL)                                                           | → 🖺 40  |  |  |  |  |  |  |
|                |              |                      | Value for 20 mA (STU)                                                          | → 🖺 41  |  |  |  |  |  |  |
|                |              |                      | Pressure applied for 4mA (GTL)                                                 | → 🖺 41  |  |  |  |  |  |  |
|                |              |                      | Pressure applied for 20mA (GTU)                                                | → 🖺 42  |  |  |  |  |  |  |
|                |              |                      | Alarm current (FCU)                                                            | → 🖺 62  |  |  |  |  |  |  |
|                |              | Switch output 1      | Switch point value / Upper value for pressure window, output 1 (SP1 / FH1)     | → 🖺 63  |  |  |  |  |  |  |
|                |              |                      | Switchback point value / Lower value for pressure window, output 1 (RP1 / FL1) | → 🖺 63  |  |  |  |  |  |  |
|                |              |                      | Switching delay time, output 1 (dS1)                                           | → 🖺 67  |  |  |  |  |  |  |
|                |              |                      | Switchback delay time, output 1 (dR1)                                          | → 🖺 67  |  |  |  |  |  |  |
|                |              |                      | Output 1 (OU1)                                                                 | → 🖺 70  |  |  |  |  |  |  |
|                |              | Switch output 2      | Switch point value / Upper value for pressure window, output 2 (SP2 / FH2)     | → 🖺 65  |  |  |  |  |  |  |
|                |              |                      | Switchback point value / Lower value for pressure window, output 2 (RP2 / FL2) | → 🖺 65  |  |  |  |  |  |  |
|                |              |                      | Switching delay time, output 2 (dS2)                                           | → 🖺 68  |  |  |  |  |  |  |
|                |              |                      | Switchback delay time, output 2 (dR2)                                          | → 🖺 68  |  |  |  |  |  |  |
|                |              |                      | Output 2 (OU2)                                                                 | → 🖺 70  |  |  |  |  |  |  |

| Level 0     | Level 1      | Level 2                   | Level 3                                       | Details |
|-------------|--------------|---------------------------|-----------------------------------------------|---------|
|             | System       | Device Management         | Hi Max value (maximum indicator)              | → 🖺 70  |
|             |              |                           | Lo Min value (minimum indicator)              | → 🖺 71  |
|             |              |                           | Revisioncounter (RVC)                         | → 🖺 71  |
|             |              |                           | Reset to factory settings (RES)               | → 🖺 71  |
|             |              |                           | Device Access Locks.Data Storage Lock         | → 🖺 72  |
|             |              | User Administration (ADM) | unlocking code (LCK)                          | → 🖺 72  |
|             |              |                           | locking code (COD)                            | → 🖺 72  |
|             |              |                           | Device Access Lock.Local Parametrization Lock | → 🖺 73  |
|             |              | Display (DIS)             | Measured value display (DVA)                  | → 🖺 73  |
|             |              |                           | Display measured value rotated by 180° (DRO)  | → 🖺 73  |
|             |              |                           | Switch display on or off (DOF)                | → 🖺 73  |
| Observation | Pressure     |                           |                                               | → 🖺 74  |
|             | Switch State | Output (Ou1)              |                                               | → 🖺 74  |
|             | Switch State | Output (Ou2)              |                                               | → 🖺 74  |

## 15 Description of device parameters

**Extended Ordercode** 

**Navigation** IO-Link: Identification → Extended Ordercode

**Description** Used to replace the device.

Displays the extended order code (max. 60 alphanumeric characters).

**Factory setting** As per order specifications

ENP\_VERSION

**Navigation** IO-Link: Identification → ENP VERSION

**Description** Displays the ENP version (ENP: electronic name plate)

**Application Specific Tag** 

**Navigation** IO-Link: Identification → Application Specific Tag

**Description** Used for unique identification of device in the field.

Enter device tag (max. 32 alphanumeric characters).

**Factory setting** As per order specifications

**Actual Diagnostics (STA)** 

**Navigation** Display: DIAG → Actual Diagnostics (STA)

IO-Link: Diagnosis → Actual Diagnostics (STA)

**Description** Displays the current device status.

Last Diagnostic (LST)

**Navigation** Display: DIAG → Last Diagnostic (LST)

IO-Link: Diagnosis → Last Diagnostic (LST)

**Description** Displays the latest device status (error or warning) that was rectified during operation.

Simulation Switch Output (OU1)

#### **Navigation** Display: DIAG $\rightarrow$ SM1 $\rightarrow$ Simulation Switch Output (OU1)

IO-Link: Diagnosis → Simulation Switch Output (OU1)

#### Description

i

When IO-Link communication is active, the simulation affects the process data only. It does not affect the physical switch output.

If a simulation is active, a warning to this effect is displayed so that it is obvious to the user that the device is in the simulation mode. A visual warning is indicated on the local display (C485 - Simulation active) and a warning is communicated via IO-Link (C485 - Simulation active). The simulation must be ended actively via the menu. If the device is disconnected from the power supply during the simulation and power is then resupplied, the simulation mode is not resumed, and instead the device continues operation in the measuring mode.

#### **Options**

- OFF
- OPN (switch output open)CLS (switch output closed)

#### Simulation Current Output (OU2)

**Navigation** Display: Diag → SM2 → Simulation Current Output (OU2)

IO-Link: Diagnosis → Simulation Current Output (OU2)

**Description** Simulation affects the process data and the physical current output.

If a simulation is active, a warning to this effect is displayed so that it is obvious to the user that the device is in the simulation mode. A warning is communicated via IO-Link (C485 - simulation active). The simulation must be ended actively via the menu. If the device is disconnected from the power supply during the simulation and then power is resupplied afterwards, the simulation mode is not resumed, and instead the device continues

operation in the measuring mode.

#### **Options**

- OFF
- 3.5 mA
- 4 mA
- 8 mA
- 12 mA
- 16 mA
- 20 mA
- 21.95 mA

#### **Device Search**

**Navigation** IO-Link: Diagnosis → Device Search

**Description** This parameter is used to uniquely identify the device during installation. The green LED is

lit (= operational) on the device and starts to flash with increased luminosity.

Options • OFF

■ ON

**Factory setting** OFF

#### Simulation Switch Output (OU2) Simulation output 2 (for devices with 2 switch outputs)

**Navigation** Display: DIAG → Simulation Switch Output (OU2)

IO-Link: Diagnosis → Simulation Switch Output (OU2)

**Description** Switch output simulation.

If a simulation is active, a warning to this effect is displayed so that it is obvious to the user that the device is in the simulation mode. A visual warning is indicated on the local display (C485 - Simulation Active). The simulation must be ended actively via the menu. If the device is disconnected from the power supply during the simulation and then power is resupplied afterwards, the simulation mode is not resumed, and instead the device

continues operation in the measuring mode.

Options • OFF

OPN (switch output open)CLS (switch output closed)

#### **Operating Mode (FUNC)**

**Navigation** Display:  $EF \rightarrow Operating Mode (FUNC)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Operating Mode (FUNC)

**Description** Enables the desired behavior of output 2 (not IO-Link output)

**Options** Options:

OFF

■ 4-20 mA (I) ((can only be selected if the device has been ordered with 4-20mA))

■ DC-PNP (PNP)

#### Unit changeover (UNI)

**Navigation** Display:  $EF \rightarrow Unit$  changeover (UNI)

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Unit changeover (UNI)

**Description** Select the pressure engineering unit. If a new pressure engineering unit is selected, all

pressure-specific parameters are converted.

Options • bar

kPaMpapsi

**Factory setting** Depends on order specifications.

#### Zero point configuration (ZRO)

**Navigation** Display:  $EF \rightarrow Zero point configuration (ZRO)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Zero point configuration (ZRO)

**Description** (typically absolute pressure sensor)

The pressure resulting from the orientation of the device can be corrected here. The pressure difference between zero (set point) and the measured pressure must be

known.

**Prerequisite** An offset is possible (parallel shifting of the sensor characteristic) to correct the

orientation and any zero point drift. The set value of the parameter is subtracted from the "raw measured value". The requirement to be able to perform a zero point shift without

changing the span is met with the offset function.

Maximum offset value =  $\pm 20$  % of the sensor nominal range.

If an offset value is entered that shifts the span beyond the physical limits of the sensor, the value is admitted but a warning message is generated and displayed via IO-Link. The warning message only disappears when the span is within the sensor limits, taking the offset value currently configured into consideration.

The sensor can

• be operated in a physically unfavorable range, i.e. outside its specifications, or

• be operated by making appropriate corrections to the offset or span.

Raw measured value – (manual offset) = display value (measured value)

**Example** ■ Measured value = 0.002 mbar (0.029 psi)

• Set the measured value in the parameter to 0.002.

■ Measured value (after pos. zero adjust) = 0.000 mbar (0 psi)

■ The current value is also corrected.

**Note** Setting in increments of 0.001. As the value is entered numerically, the increment

depends on the measuring range

**Options** No selection. The user is free to edit the values.

Factory setting 0

#### Zero point adoption (GTZ)

**Navigation** Display:  $EF \rightarrow Zero point adoption (GTZ)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Zero point adoption (GTZ)

**Description** (typically gauge pressure sensor)

The pressure resulting from the orientation of the device can be corrected here.

The pressure difference between zero (set point) and the measured pressure need not be

known.

#### **Prerequisite**

The pressure value present is automatically adopted as the zero point.

An offset is possible (parallel shifting of the sensor characteristic) to correct the orientation and any zero point drift. The accepted value of the parameter is subtracted from the "raw measured value". The requirement to be able to perform a zero point shift without changing the span is met with the offset function.

Maximum offset value =  $\pm 20$  % of the sensor nominal range.

If an offset value is entered that shifts the span beyond the physical limits of the sensor, the value is admitted but a warning message is generated and displayed via IO-Link. The warning message only disappears when the span is within the sensor limits, taking the offset value currently configured into consideration.

The sensor can

- be operated in a physically unfavorable range, i.e. outside its specifications, or
- be operated by making appropriate corrections to the offset or span.

Raw measured value – (manual offset) = display value (measured value)

#### Example 1

- Measured value = 0.002 mbar (0.029 psi)
- Use the **Zero point adoption (GTZ)** parameter to correct the measured value with the value, e.g. 0.002 mbar (0.029 psi). This means that you are assigning the value 0.000 (0 psi) to the pressure present.
- Measured value (after pos. zero adjust) = 0.000 mbar (0 psi)
- The current value is also corrected.
- Where applicable, check and correct switch points and span settings.

#### Example 2

Sensor measuring range: -0.4 to +0.4 bar (-6 to +6 psi) (SP1 = 0.4 bar (6 psi); STU = 0.4 bar (6 psi))

- Measured value = 0.08 bar (1.2 psi)
- Use the **Zero point adoption (GTZ)** parameter to correct the measured value with the value, e.g. 0.08 bar (1.2 psi). This means that you are assigning the value 0 mbar (0 psi) to the pressure present.
- Measured value (after pos. zero adjust) = 0 mbar (0 psi)
- The current value is also corrected.
- Warnings C431 or C432 appear because the value 0 bar (0 psi) was assigned to the real value of 0.08 bar (1.2 psi) present and the sensor measuring range was thus exceeded by  $\pm$  20%.

SP1 and STU values must be readjusted downwards by 0.08 bar (1.2 psi).

#### Damping (TAU)

**Navigation** Display:  $EF \rightarrow Damping (TAU)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Sensor  $\rightarrow$  Damping (TAU)

**Description** The damping affects the speed at which the measured value reacts to changes in pressure.

**Input range** 0.0 to 999.9 seconds in increments of 0.1 seconds

**Factory setting** 2 seconds

#### Value for 4 mA (STL)

### **Navigation** Display: STL $\rightarrow$ Value for 4 mA (STL)

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Current output  $\rightarrow$  Value for 4 mA (STL)

60

**Description** Assignment of the pressure value which should correspond to the 4 mA value.

It is possible to invert the current output. To do so, assign the pressure upper range value

to the lower measuring current.

**Note** Enter the value for 4 mA in the selected pressure unit anywhere within the measuring

range. The value can be entered in increments of 0.1 (increment depends on the

measuring range).

**Options** No selection. The user is free to edit the values.

**Factory setting** 0.0 or as per order specifications

#### Value for 20 mA (STU)

**Navigation** Display:  $STU \rightarrow Value \text{ for } 20 \text{ mA (STU)}$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Current output  $\rightarrow$  Value for 20 mA (STU)

**Description** Assignment of the pressure value which should correspond to the 20 mA value.

It is possible to invert the current output. To do so, assign the pressure lower range value

to the upper measuring current.

**Note** Enter the value for 20 mA in the selected pressure unit anywhere within the measuring

range. The value can be entered in increments of 0.1 (increment depends on the

measuring range).

**Options** No selection. The user is free to edit the values.

**Factory setting** Upper measuring limit or as per order specifications.

#### Pressure applied for 4mA (GTL)

**Navigation** Display:  $EF \rightarrow I \rightarrow Pressure applied for 4mA (GTL)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Current output  $\rightarrow$  Pressure applied for 4mA (GTL)

#### Description

The pressure value present is automatically adopted for the 4 mA current signal. Parameter for which the current range can be assigned to any section of the nominal range. This occurs by assigning the pressure lower range value to the lower measuring current and the pressure upper range value to the upper measuring current.

The pressure lower range value and upper range value can be configured independently of one another so the pressure measuring span does not remain constant.

The LRV and URV pressure measuring span can be edited over the entire sensor range. An invalid TD value is indicated by diagnostic message S510. An invalid position offset is indicated by diagnostic message C431.

The editing operation cannot result in the device being operated outside the minimum and maximum sensor limits.

Incorrect entries are declined as indicated by the following messages, and the last valid value prior to the change is used again:

- Parameter value above limit (0x8031)
- Parameter value below limit (0x8032)

The measured value currently present is accepted as the value for 4mA anywhere within the measuring range.

The sensor characteristic curve is shifted such that the pressure present becomes the zero value.

#### Pressure applied for 20mA (GTU)

#### Navigation

Display:  $EF \rightarrow I \rightarrow Pressure applied for 20mA (GTU)$ 

IO-Link: Parameter → Application → Current output → Pressure applied for 20mA (GTU)

#### Description

The pressure value present is automatically adopted for the 20 mA current signal. Parameter for which the current range can be assigned to any section of the nominal range. This occurs by assigning the pressure lower range value to the lower measuring current and the pressure upper range value to the upper measuring current.

The pressure lower range value and upper range value can be configured independently of one another so the pressure measuring span does not remain constant.

The LRV and URV pressure measuring span can be edited over the entire sensor range. An invalid TD value is indicated by diagnostic message S510. An invalid position offset is indicated by diagnostic message C431.

The editing operation cannot result in the device being operated outside the minimum and maximum sensor limits.

Incorrect entries are declined, and the last valid value prior to the change is used again. The measured value currently present is accepted as the value for 20 mA anywhere within the measuring range.

There is a parallel shift of the sensor characteristic so that the pressure present becomes the max value.

#### Alarm current (FCU)

#### **Navigation**

Display:  $EF \rightarrow I \rightarrow Alarm$  current (FCU)

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Current output (OU2)  $\rightarrow$  Alarm current (FCU)

#### Description

The device displays warnings and faults. This is done via IO-Link using the diagnostic message stored in the device. The purpose of all device diagnostics is solely to provide information to the user; they do not have a safety function. The errors diagnosed by the device are displayed via IO-Link in accordance with NE107. In accordance with the diagnostic message, the device behaves as per a warning or fault condition:

#### Warning (S971, S140, C485, C431, C432):

With this type of error, the device continues to measure. The output signal does not adopt its fault state (value in the event of an error). The main measured value and the state in the form of the letter plus a defined number are displayed alternately (0.5 Hz) via IO-Link. The switch outputs remain in the state defined by the switch points.

#### Fault (F437, S803, F270, S510, C469, F804):

With this type of error, the device does not continue to measure. The output signal adopts its fault state (value in the event of an error). The fault state is displayed via IO-Link in the form of the letter plus a defined number. The switch output changes to the defined state (open). For the analog output option, an error is also signaled and transmitted via the 4 to 20mA signal. In NE43, NAMUR defines a current  $\leq$ 3.6 mA and  $\geq$ 21 mA as a device failure. A corresponding diagnostic message is displayed. Current levels available for selection: The selected alarm current is used for all errors. Diagnostic messages are displayed with numbers and letter via IO-Link. It is not possible to acknowledge all the diagnostic messages. The relevant message disappears if the event is no longer pending.

The messages are displayed in order of priority:
Highest priority = first message displayed

Lowest priority = last message displayed

**Options** 

Min: Lower alarm current (≤3.6 mA)
 Max: Upper alarm current (≥21 mA)

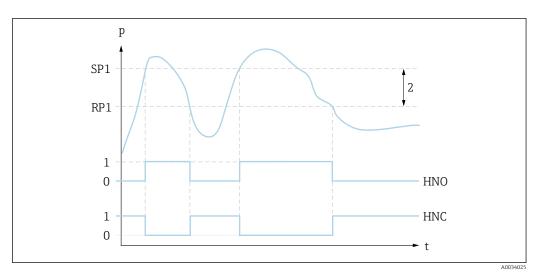
**Factory setting** 

Max or as per order specifications

Switch point value / Upper value for pressure window, output 1 (SP1 / FH1)
Switchback point value / Lower value for pressure window, output 1 (RP1 / FL1)

**Navigation** 

Display: SP1 / FH1 / RP1 / FL1  $\rightarrow$  Switch point value.../Switchback point value... IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Switch output (OU1)  $\rightarrow$  Switch point value.../Switchback point value...


**Prerequisite** 

The following functions are available only if a hysteresis function has been configured for the switch output (Output 1 (Ou1)).

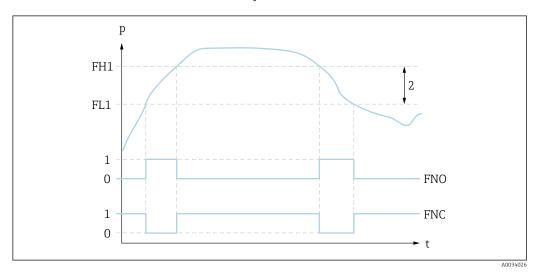
The hysteresis is implemented using the **SP1** and **RP1** parameters. Since the parameter

Description of behavior of SP1 / RP1

settings depend on one another, the parameters are described all together. The switch point "SP1" and switchback point "RP1" can be defined with these functions (e.g. for pump control). When the set switch point "SP1" is reached (with increasing pressure), an electrical signal change takes place at the switch output. When the set switchback point "RP1" is reached (with decreasing pressure), an electrical signal change takes place at the switch output. The difference between the value of switch point "SP1" and the value of switchback point "RP1" is known as the hysteresis. The configured value for the switch point "SP1" must be greater than the switchback point "RP1"! A diagnostic message is displayed if a switch point "SP1" is entered that is  $\leq$  the switchback point "RP1". While it is possible to make this entry, it does not take effect in the device. The entry must be corrected!



- 0 0-signal. Output open in quiescent state.
- 1 1-signal. Output closed in quiescent state.
- 2 Hysteresis
- SP1 Switch point
- RP1 Switchback point
- HNO NO contact
- HNC NC contact


To prevent switch-on and switch-off if values are around the switch point "SP1" or switchback point "RP1", a delay can be set for the relevant points. In this regard, see the Switching delay time, output 1 (dS1) and Switchback delay time, output 1 (dR1) parameter descriptions.

#### **Prerequisite**

The following functions are available only if a window function has been configured for the switch output (output 1 (Ou1)).

# Description of behavior of FH1 / FL1

The window function is implemented using the **FH1** and **FL1** parameters. Since the parameter settings depend on one another, the parameters are described all together. The upper value of the pressure window "FH1" and the lower value of the pressure window "FL1" can be defined with these functions (e.g. for monitoring a certain pressure range). When the lower value of the pressure window "FL1" is reached (with increasing or decreasing pressure), an electrical signal change takes place at the switch output. When the upper value of the pressure window "FH1" is reached (with increasing or decreasing pressure), an electrical signal change takes place at the switch output. The difference between the upper value of the pressure window "FH1" and the lower value of the pressure window "FH1" is known as the pressure window. The upper value of the pressure window "FH1" must be greater than the lower value of the pressure window "FH1" is less than the lower value of the pressure window "FL1". While it is possible to make this entry, it does not take effect in the device. The entry must be corrected!



- 0 0-signal. Output open in quiescent state.
- 1 1-signal. Output closed in quiescent state.
- 2 Pressure window (difference between the value of the high window "FH1" and the low window "FL1")

FNO NO contact

FNC NC contact

FH1 Upper value of the pressure window

FL1 Lower value of the pressure window

#### **Options**

No selection. The user is free to edit the values.

#### **Factory setting**

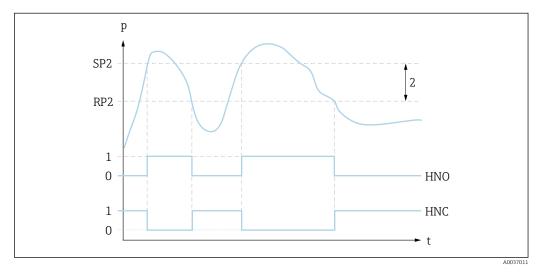
Factory setting (if no customer-specific setting is ordered): Switch point SP1 / FH1: 90%; switchback point RP1 / FL1: 10%

Switch point value / Upper value for pressure window, output 2 (SP2 / FH2)
Switchback point value / Lower value for pressure window, output 2 (RP2 / FL2)

Navigation

Display: SP2 / FH2 / RP2 / FL2  $\rightarrow$  Switch point value.../Switchback point value... IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Switch output (OU2)  $\rightarrow$  Switch point value.../

Switchback point value...


Prerequisite

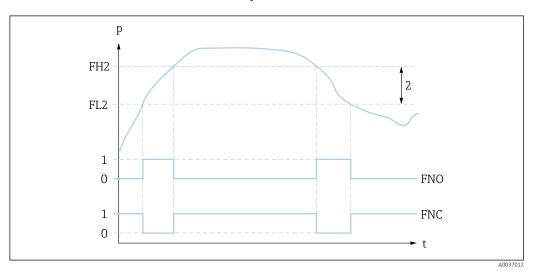
The following functions are available only if a hysteresis function has been configured for the switch output (Output 2 (Ou2)).

# Description of behavior of SP2 / RP2

The hysteresis is implemented using the **SP2** and **RP2** parameters. Since the parameter settings depend on one another, the parameters are described all together.

The switch point "SP2" and switchback point "RP2" can be defined with these functions (e.g. for pump control). When the set switch point "SP2" is reached (with increasing pressure), an electrical signal change takes place at the switch output. When the set switchback point "RP2" is reached (with decreasing pressure), an electrical signal change takes place at the switch output. The difference between the value of the switch point "SP2" and the switchback point "RP2" is known as the hysteresis. The configured value for the switch point "SP2" must be greater than the switchback point "RP2"! A diagnostic message is displayed if a switch point "SP2" is entered that is  $\leq$  the switchback point "RP2". While it is possible to make this entry, it does not take effect in the device. The entry must be corrected!




- 0 O-signal. Output open in quiescent state.
- 1 1-signal. Output closed in quiescent state.
- 2 Hysteresis
- SP2 Switch point
- RP2 Switchback point
- HNO NO contact
- HNC NC contact
- To prevent switch-on and switch-off if values are around the switch point "SP2" or switchback point "RP2", a delay can be set for the relevant points. In this regard, see the Switching delay time, output 2 (dS2) and Switchback delay time, output 2 (dR2) parameter descriptions.

#### **Prerequisite**

Description of behavior of FH2 / FL2

The following functions are available only if a window function has been configured for the switch output (Output 2 (Ou2)).

The window function is implemented using the **FH2** and **FL2** parameters. Since the parameter settings depend on one another, the parameters are described all together. The upper value of the pressure window "FH2" and the lower value of the pressure window "FL2" can be defined with these functions (e.g. for monitoring a certain pressure range). When the lower value of the pressure window "FL2" is reached (with increasing or decreasing pressure), an electrical signal change takes place at the switch output. When the upper value of the pressure window "FH2" is reached (with increasing or decreasing pressure), an electrical signal change takes place at the switch output. The difference between the upper value of the pressure window "FH2" and the lower value of the pressure window "FH2" is known as the pressure window. The upper value of the pressure window "FH2" must be greater than the lower value of the pressure window "FH2" is less than the lower value of the pressure window "FL2". While it is possible to make this entry, it does not take effect in the device. The entry must be corrected!



- 0 0-signal. Output open in quiescent state.
- 1 1-signal. Output closed in quiescent state.
- 2 Pressure window (difference between the value of the high window "FH2" and the low window "FL2")

FNO NO contact

FNC NC contact

FH2 Upper value of the pressure window

FL2 Lower value of the pressure window

#### **Options**

No selection. The user is free to edit the values.

#### **Factory setting**

Factory setting (if no customer-specific setting is ordered): Switch point SP2 / FH2: 90%; switchback point RP2 / FL2: 10%

Switching delay time, output 1 (dS1) Switchback delay time, output 1 (dR1)

#### Note

The switching delay time/switchback delay time function is implemented using the **dS1** and **dR1** parameters. Since the parameter settings depend on one another, the parameters are described all together.

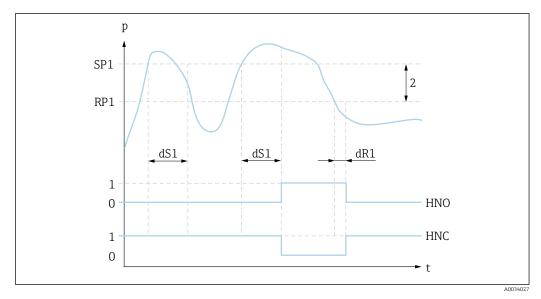
- dS1 = switching delay time, output 1
- dR1 = switchback delay time, output 1

#### **Navigation**

Display:  $EF \rightarrow Switching delay.../Switchback delay...$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Switch output (OU1)  $\rightarrow$  Switching delay.../Switchback delay...

#### Description


To prevent switch-on and switch-off if values are around the switch point "SP1" or the switchback point "RP1", a delay in a range of 0-50 seconds, to two decimal places, can be set for the individual points.

If the measured value leaves the switching range during the delay time, the delay time starts again from scratch.

#### Example

- SP1 = 2 bar (29 psi)
- $\blacksquare$  RP1 = 1 bar (14.5 psi)
- dS1 = 5 seconds
- dR1 = 2 seconds

dS1/:  $\geq$ 2 bar (29 psi) must be present for at least 5 seconds for SP1 to become active. dR1/:  $\geq$ 1 bar (14.5 psi) must be present for at least 2 seconds for RP1 to become active.



- 0 O-signal. Output open in quiescent state.
- 1 1-signal. Output closed in quiescent state.
- 2 Hysteresis (difference between the value of the switch point "SP1" and the value of the switchback point "RP1") HNO NO contact

HNC NC contact

- SP1 Switch point 1
- RP1 Switchback point 1
- dS1 Set time for which the specific switch point must be reached continuously without interruption until an electrical signal change takes place.
- dR1 Set time for which the specific switchback point must be reached continuously without interruption until an electrical signal change takes place.

#### Input range

0.00 - 50.00 seconds

#### **Factory setting**

0

Switching delay time, output 2 (dS2) Switchback delay time, output 2 (dR2)

#### Note

The switching delay time/switchback delay time function is implemented using the **dS2** and **dR2** parameters. Since the parameter settings depend on one another, the parameters are described all together.

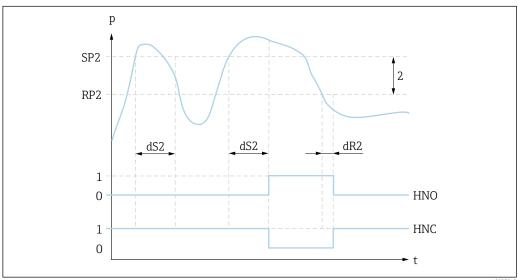
- dS2 = switching delay time, output 2
- dR2 = switchback delay time, output 2

#### **Navigation**

Display: EF → Switching delay.../Switchback delay...

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Switch output (OU2)  $\rightarrow$  Switching delay.../Switchback delay...

### Description


To prevent switch-on and switch-off if values are around the switch point "SP2" or the switchback point "RP2", a delay in a range of 0-50 seconds, to two decimal places, can be set for the individual points.

If the measured value leaves the switching range during the delay time, the delay time starts again from scratch.

#### Example

- SP2 = 2 bar (29 psi)
- RP2 = 1 bar (14.5 psi)
- dS2 = 5 seconds
- dR2 = 2 seconds

 $dS2/: \ge 2$  bar (29 psi) must be present for at least 5 seconds for SP2 to become active.  $dR2/: \ge 1$  bar (14.5 psi) must be present for at least 2 seconds for RP2 to become active.



A0037013

- 0 *O-signal. Output open in quiescent state.*
- 1-signal. Output closed in quiescent state.
- 2 Hysteresis (difference between the value of the switch point "SP2" and the value of the switchback point "RP2") HNO NO contact

HNC NC contact

SP2 Switch point 2

- RP2 Switchback point 2
- dS2 Set time for which the specific switch point must be reached continuously without interruption until an electrical signal change takes place.
- dR2 Set time for which the specific switchback point must be reached continuously without interruption until an electrical signal change takes place.

Input range

0.00 - 50.00 seconds

Factory setting

0

#### Output 1 (OU1)

#### **Navigation** Display: $EF \rightarrow Output \ 1 \ (OU1)$

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Switch output (OU1)  $\rightarrow$  Output 1 (OU1)

#### Description

- Hysteresis normally open (HNO):
  - The switch output is specified as a NO contact with hysteresis properties.
- Hysteresis normally closed (HNC):

The switch output is specified as an NC contact with hysteresis properties.

■ Window normally open (FNO):

The switch output is specified as a NO contact with window properties.

Window normally closed (FNC):

The switch output is specified as an NC contact with window properties.

#### **Options**

- Hysteresis normally open (HNO)
- Hysteresis normally closed (HNC)
- Window normally open (FNO)
- Window normally closed (FNC)

#### **Factory setting**

Hysteresis normally open (HNO) or as per order specifications

#### Output 2 (OU2)

#### Navigation

Display:  $EF \rightarrow Output 2 (OU2)$ 

IO-Link: Parameter  $\rightarrow$  Application  $\rightarrow$  Switch output (OU2)  $\rightarrow$  Output 2 (OU2)

#### Description

- Hysteresis normally open (HNO):
  - The switch output is specified as a NO contact with hysteresis properties.
- Hysteresis normally closed (HNC):

The switch output is specified as an NC contact with hysteresis properties.

- Window normally open (FNO):
  - The switch output is specified as a NO contact with window properties.
- Window normally closed (FNC):

The switch output is specified as an NC contact with window properties.

#### **Options**

- Hysteresis normally open (HNO)
- Hysteresis normally closed (HNC)
- Window normally open (FNO)
- Window normally closed (FNC)

#### **Factory setting**

Hysteresis normally closed (HNC) or as per order specifications

Display: HI

IO-Link: HI Max value (maximum indicator)

#### **Navigation**

Display:  $EF \rightarrow I \rightarrow HI$ 

IO-Link: Parameter → System → Device Management → HI Max value (maximum

indicator)

#### Description

This parameter is used as the maximum indicator and makes it possible to call up

retroactively the highest value ever measured for pressure.

A pressure that is present for at least 2.5 ms is logged to the maximum indicator.

The maximum indicators cannot be reset.

Display: LO

IO-Link: LO Min value (minimum indicator)

**Navigation** Display:  $EF \rightarrow I \rightarrow LO$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  Device Management  $\rightarrow$  LO Min value (minimum indicator)

**Description** This parameter is used as the maximum indicator and makes it possible to call up

retroactively the lowest value ever measured for pressure.

A pressure that is present for at least 2.5 ms is logged to the maximum indicator.

The maximum indicators cannot be reset.

#### Revisioncounter (RVC)

**Navigation** Display:  $EF \rightarrow I \rightarrow Revision counter (RVC)$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  Device Management  $\rightarrow$  Revisioncounter (RVC)

**Description** Counter that indicates the number of parameter changes.

#### Reset to factory settings (RES)

#### Navigation

Display:  $EF \rightarrow I \rightarrow Reset$  to factory settings (RES)

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  Device Management  $\rightarrow$  Reset to factory settings (RES)

#### Description

#### **WARNING**

Confirming the "Standard Command" with "Reset to factory settings" causes an immediate reset to the factory settings of the order configuration.

If the factory settings have been changed, downstream processes might be affected following a reset (the behavior of the switch output or current output might be changed).

▶ Make sure that downstream processes are not started unintentionally.

The reset is not subject to additional locking, such as in the form of device locking. The reset also depends on the device status.

Any customer-specific configuration carried out at the factory is not affected by a reset (customer-specific configuration remains).

The following parameters are not reset when a reset is performed:

- LO Min value (minimum indicator)
- HI Max value (maximum indicator)
- Last Diagnostic (LST)
- Revisioncounter (RVC)

### **Device Access Locks.Data Storage Lock** 1) Activation/deactivation of DataStorage

The "Device Access Locks.Data Storage Lock" parameter is an IO-Link standard parameter. The name of the parameter may be available in the language configured in the IO-Link operating tool that is used. The display depends on the particular operating tool.

**Navigation** IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  User Administration (ADM)  $\rightarrow$  Device Access Locks.Data

Storage Lock

**Description** The device supports DataStorage. If a device is being replaced, this allows the configuration

of the old device to be written to the new device. If, when a device is being replaced, the original configuration of the new device is to be retained, the **Device Access Locks.Data Storage Lock** parameter can be used to prevent the parameters from being overwritten. If this parameter is set to "true", the new device does not adopt the data stored in the master's

DataStorage.

**Options** ■ false

true

**LCK** unlocking code

**Navigation** Display:  $EF \rightarrow ADM \rightarrow LCK$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  User Administration (ADM)  $\rightarrow$  LCK

**Description** The device is unlocked by entering the code defined in COD.

**Input range** 0000-9999

**Note** If parameters are locked, the word "LCK" appears on the local display as soon as an attempt

is made to change a parameter. Locking is enabled again after 60 seconds in the measured

value display and following a device restart.

**COD** locking code

**Navigation** Display:  $EF \rightarrow ADM \rightarrow COD$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  User Administration (ADM)  $\rightarrow$  COD

**Description** A code can be entered to protect parameter settings against unauthorized and unwanted

access.

**Input range** 0000: Device is permanently unlocked

0001-9999: Device is locked

Factory setting 0000

**Note** Locking is enabled after 60 seconds in the measured value display and following a device

restart.

# Device Access Lock.Local Parametrization Lock 1)

1) The "Device Access Lock.Local Parametrization Lock" parameter is an IO-Link standard parameter. The name of the parameter may be available in the language configured in the IO-Link operating tool that is used. The display depends on the particular operating tool.

**Navigation** IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  User Administration  $\rightarrow$  Device Access Lock.Local

Parametrization Lock 1)

1) The "Device Access Lock.Local Parametrization Lock" parameter is an IO-Link standard parameter. The name of the parameter may be available in the language configured in the IO-Link operating tool that is used. The display depends on the particular operating tool.

**Description** With this lock, local parameterization at the device can be denied via IO-Link.

Locking via this parameter can only be unlocked via IO-Link and not locally.

This parameter is only available via IO-Link.

**Note** Entries are denied if the locking code Device Access Lock.Local Parametrization Lock has

been activated via IO-Link.

Entry is not OK: the message "S.LCK" appears for one second on the display against a red

background.

Editing is possible if locking has been unlocked via IO-Link.

**DVA** Measured value display

**Navigation** Display: Display:  $EF \rightarrow DIS \rightarrow DVA$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  Display  $\rightarrow$  DVA

**Description** Configuration of the measured value display and display of the configured switch point.

**Options** ■ PV = display measured value

■ PV,/' = display measured value as a percent (only for devices with a current output)

0% is equivalent to LRV
100% is equivalent to URV
SP1 = display of set switch point

Factory setting PV

**DRO** Display measured value rotated by 180°

**Navigation** Display:  $EF \rightarrow DIS \rightarrow DRO$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  Display  $\rightarrow$  DRO

**Description** Use this function to rotate the measured value display by 180°.

**Options** ■ NO

YES

**DOF** Switch display on or off

**Navigation** Display:  $EF \rightarrow DIS \rightarrow DOF$ 

IO-Link: Parameter  $\rightarrow$  System  $\rightarrow$  Display  $\rightarrow$  DOF

**Description** Use this function to switch the display on or off.

When the user exits the menu, there is a delay of 30 seconds until the display is switched

off (including background lighting).

Options • NO

YES

# 15.1 Observation

# 16 Accessories

# 16.1 Weld-in adapter

Various weld-in adapters are available for installation in vessels or pipes.

| Device | Description                                                                                       | Option 1) | Order number |
|--------|---------------------------------------------------------------------------------------------------|-----------|--------------|
| PTP33B | Weld-in adapter M24, d=65, 316L                                                                   | PM        | 71041381     |
| РТР33В | Weld-in adapter M24, d=65, 316L 3.1 EN10204-3.1 material, inspection certificate                  | PN        | 71041383     |
| PTP31B | Weld-in adapter G½, 316L                                                                          | QA        | 52002643     |
| PTP31B | Weld-in adapter G½, 316L 3.1 EN10204-3.1 material, inspection certificate                         | QB        | 52010172     |
| PTP31B | Weld-in tool adapter G½, brass                                                                    | QC        | 52005082     |
| PTP33B | Weld-in adapter G1, 316L, conical metal joint                                                     | QE        | 52005087     |
| РТР33В | Weld-in adapter G1, 316L, 3.1, conical metal joint, EN10204-3.1 material, inspection certificate  | QF        | 52010171     |
| PTP33B | Weld-in tool adapter G1, brass                                                                    | QG        | 52005272     |
| PTP33B | Weld-in adapter G1, 316L, silicone O-ring seal                                                    | QJ        | 52001051     |
| РТР33В | Weld-in adapter G1, 316L, 3.1, silicone O-ring seal, EN10204-3.1 material, inspection certificate | QK        | 52011896     |

<sup>1)</sup> Product Configurator, order code for "Enclosed accessories"

If installed horizontally and weld-in adapters with a leakage hole are used, ensure that the leakage hole is pointing down. This allows leaks to be detected as quickly as possible.

# 16.2 Process adapter M24

The following process adapters can be ordered for the process connections with order option X2J and X3J:

| Device | Description          | Order number | Order number with inspection certificate 3.1 EN10204 |
|--------|----------------------|--------------|------------------------------------------------------|
| PTP33B | Varivent F DN32 PN40 | 52023996     | 52024003                                             |
| PTP33B | Varivent N DN50 PN40 | 52023997     | 52024004                                             |
| PTP33B | DIN11851 DN40        | 52023999     | 52024006                                             |
| PTP33B | DIN11851 DN50        | 52023998     | 52024005                                             |
| PTP33B | SMS 1½"              | 52026997     | 52026999                                             |
| PTP33B | Clamp 1½"            | 52023994     | 52024001                                             |
| PTP33B | Clamp 2"             | 52023995     | 52024002                                             |

# 16.3 M12 plug connectors

| Connector                                                                   | Degree of protection | Material                                                                                                                                                                                            | Option 1) | Order number |
|-----------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|
| M12 (self-terminated connection at M12 plug)  53 (2.09)                     | IP67                 | <ul> <li>Union nut: Cu Sn/Ni</li> <li>Body: PBT</li> <li>Seal: NBR</li> </ul>                                                                                                                       | R1        | 52006263     |
| M12 90 degrees with 5m (16 ft) cable                                        | IP67                 | <ul> <li>Union nut: GD Zn/Ni</li> <li>Body: PUR</li> <li>Cable: PVC</li> <li>Cable colors</li> <li>1 = BN = brown</li> <li>2 = WT = white</li> <li>3 = BU = blue</li> <li>4 = BK = black</li> </ul> | RZ        | 52010285     |
| M12 90 degrees (self-terminated connection at M12 plug)  28 (1.1) 20 (0.79) | IP67                 | <ul> <li>Union nut: GD Zn/Ni</li> <li>Body: PBT</li> <li>Seal: NBR</li> </ul>                                                                                                                       | RM        | 71114212     |

1) Product Configurator, order code for "Enclosed accessories"

76

# 17 Technical data

# 17.1 Input

### 17.1.1 Measured variable

# Measured process variable

Gauge pressure or absolute pressure

# Calculated process variable

Pressure

# 17.1.2 Measuring range

### Ceramic process isolating diaphragm

| Sensor                 | Device                                 | wice Maximum Sensor measuring range |             | Lowest calibratable MWP | OPL          | Factory settings <sup>2)</sup> | Option <sup>3)</sup>         |    |
|------------------------|----------------------------------------|-------------------------------------|-------------|-------------------------|--------------|--------------------------------|------------------------------|----|
|                        |                                        | lower (LRL)                         | upper (URL) | span 1)                 |              |                                |                              |    |
|                        |                                        | [bar (psi)]                         | [bar (psi)] | [bar (psi)]             | [bar (psi)]  | [bar (psi)]                    |                              |    |
| Devices for gauge pres | Devices for gauge pressure measurement |                                     |             |                         |              |                                |                              |    |
| 100 mbar (1.5 psi) 4)  | PTC31B                                 | -0.1 (-1.5)                         | +0.1 (+1.5) | 0.02 (0.3)              | 2.7 (40.5)   | 4 (60)                         | 0 to 100 mbar (0 to 1.5 psi) | 1C |
| 250 mbar (4 psi) 5)    | PTC31B                                 | -0.25 (-4)                          | +0.25 (+4)  | 0.05 (1)                | 3.3 (49.5)   | 5 (75)                         | 0 to 250 mbar (0 to 4 psi)   | 1E |
| 400 mbar (6 psi) 6)    | PTC31B                                 | -0.4 (-6)                           | +0.4 (+6)   | 0.08 (1.2)              | 5.3 (79.5)   | 8 (120)                        | 0 to 400 mbar (0 to 6 psi)   | 1F |
| 1 bar (15 psi) 6)      | PTC31B                                 | -1 (-15)                            | +1 (+15)    | 0.2 (3)                 | 6.7 (100.5)  | 10 (150)                       | 0 to 1 bar (0 to 15 psi)     | 1H |
| 2 bar (30 psi) 6)      | PTC31B                                 | -1 (-15)                            | +2 (+30)    | 0.4 (6)                 | 12 (180)     | 18 (270)                       | 0 to 2 bar (0 to 30 psi)     | 1K |
| 4 bar (60 psi) 6)      | PTC31B                                 | -1 (-15)                            | +4 (+60)    | 0.8 (12)                | 16.7 (250.5) | 25 (375)                       | 0 to 4 bar (0 to 60 psi)     | 1M |
| 10 bar (150 psi) 6)    | PTC31B                                 | -1 (-15)                            | +10 (+150)  | 2 (30)                  | 26.7 (400.5) | 40 (600)                       | 0 to 10 bar (0 to 150 psi)   | 1P |
| 40 bar (600 psi) 6)    | PTC31B                                 | -1 (-15)                            | +40 (+600)  | 8 (120)                 | 40 (600)     | 60 (900)                       | 0 to 40 bar (0 to 600 psi)   | 1S |
| Devices for absolute p | ressure m                              | easurement                          |             |                         |              |                                |                              |    |
| 100 mbar (1.5 psi) 6)  | PTC31B                                 | 0                                   | +0.1 (+1.5) | 0.1 (1.5)               | 2.7 (40.5)   | 4 (60)                         | 0 to 100 mbar (0 to 1.5 psi) | 2C |
| 250 mbar (4 psi) 6)    | PTC31B                                 | 0                                   | +0.25 (+4)  | 0.25 (4)                | 3.3 (49.5)   | 5 (75)                         | 0 to 250 mbar (0 to 4 psi)   | 2E |
| 400 mbar (6 psi) 6)    | PTC31B                                 | 0                                   | +0.4 (+6)   | 0.4 (6)                 | 5.3 (79.5)   | 8 (120)                        | 0 to 400 mbar (0 to 6 psi)   | 2F |
| 1 bar (15 psi) 6)      | PTC31B                                 | 0                                   | +1 (+15)    | 0.4 (6)                 | 6.7 (100.5)  | 10 (150)                       | 0 to 1 bar (0 to 15 psi)     | 2H |
| 2 bar (30 psi) 6)      | PTC31B                                 | 0                                   | +2 (+30)    | 0.4 (6)                 | 12 (180)     | 18 (270)                       | 0 to 2 bar (0 to 30 psi)     | 2K |
| 4 bar (60 psi) 6)      | PTC31B                                 | 0                                   | +4 (+60)    | 0.8 (12)                | 16.7 (250.5) | 25 (375)                       | 0 to 4 bar (0 to 60 psi)     | 2M |
| 10 bar (150 psi) 6)    | PTC31B                                 | 0                                   | +10 (+150)  | 2 (30)                  | 26.7 (400.5) | 40 (600)                       | 0 to 10 bar (0 to 150 psi)   | 2P |
| 40 bar (600 psi) 6)    | PTC31B                                 | 0                                   | +40 (+600)  | 8 (120)                 | 40 (600)     | 60 (900)                       | 0 to 40 bar (0 to 600 psi)   | 2S |

- 1) Highest turn down that can be set at the factory: 5:1. The turn down is preset and cannot be changed.
- 2) Other measuring ranges (e.g. -1 to +5 bar (-15 to 75 psi)) can be ordered with customer-specific settings (see the Product Configurator, order code for "Calibration; Unit" option "U"). It is possible to invert the output signal (LRV = 20 mA; URV = 4 mA). Prerequisite: URV < LRV
- 3) Product Configurator, order code for "Sensor range"
- 4) Vacuum resistance: 0.7 bar (10.5 psi) abs
- 5) Vacuum resistance: 0.5 bar (7.5 psi) abs
- 6) Vacuum resistance: 0 bar (0 psi) abs

Maximum turn down which can be ordered for absolute pressure and gauge pressure sensors

Devices for gauge pressure measurement

- 6 bar (90 psi), 16 bar (240 psi), 25 bar (375 psi): TD 1:1 to TD 2.5:1
- All other measuring ranges: TD 1:1 to TD 5:1

Devices for absolute pressure measurement

- 100 mbar (1.5 psi), 250 mbar (4 psi), 400 mbar (6 psi): TD 1:1
- 1 bar (15 psi): TD 1:1 to TD 2.5:1
- All other measuring ranges: TD 1:1 to TD 5:1

#### Metal process isolating diaphragm

| Sensor                       | Device           | Maximum<br>Sensor meas | uring range  | Lowest calibratable | MWP          | OPL         | Factory settings <sup>2)</sup> | Option 3) |
|------------------------------|------------------|------------------------|--------------|---------------------|--------------|-------------|--------------------------------|-----------|
|                              |                  | lower (LRL)            | upper (URL)  | span 1)             |              |             |                                |           |
|                              |                  | [bar (psi)]            | [bar (psi)]  | [bar (psi)]         | [bar (psi)]  | [bar (psi)] |                                |           |
| Devices for gauge pre        | ssure mea        | surement               |              |                     |              |             |                                |           |
| 400 mbar (6 psi) 4)          | PTP31B<br>PTP33B | -0.4 (-6)              | +0.4 (+6)    | 0.4 (6)             | 1 (15)       | 1.6 (24)    | 0 to 400 mbar (0 to 6 psi)     | 1F        |
| 1 bar (15 psi) <sup>4)</sup> | PTP31B<br>PTP33B | -1 (-15)               | +1 (+15)     | 0.4 (6)             | 2.7 (40.5)   | 4 (60)      | 0 to 1 bar (0 to 15 psi)       | 1H        |
| 2 bar (30 psi) 4)            | PTP31B<br>PTP33B | -1 (-15)               | +2 (+30)     | 0.4 (6)             | 6.7 (100.5)  | 10 (150)    | 0 to 2 bar (0 to 30 psi)       | 1K        |
| 4 bar (60 psi) 4)            | PTP31B<br>PTP33B | -1 (-15)               | +4 (+60)     | 0.8 (12)            | 10.7 (160.5) | 16 (240)    | 0 to 4 bar (0 to 60 psi)       | 1M        |
| 10 bar (150 psi) 4)          | PTP31B<br>PTP33B | -1 (-15)               | +10 (+150)   | 2 (30)              | 25 (375)     | 40 (600)    | 0 to 10 bar (0 to 150 psi)     | 1P        |
| 40 bar (600 psi) 4)          | PTP31B<br>PTP33B | -1 (-15)               | +40 (+600)   | 8 (120)             | 100 (1500)   | 160 (2400)  | 0 to 40 bar (0 to 600 psi)     | 1S        |
| 100 bar (1500 psi) 4)        | PTP31B           | -1 (-15)               | +100 (+1500) | 20 (300)            | 100 (1500)   | 160 (2400)  | 0 to 100 bar (0 to 1500 psi)   | 1U        |
| 400 bar (6000 psi) 4)        | PTP31B           | -1 (-15)               | +400 (+6000) | 80 (1200)           | 400 (6000)   | 600 (9000)  | 0 to 400 bar (0 to 6000 psi)   | 1W        |
| Devices for absolute p       | ressure n        | neasurement            |              |                     |              |             |                                |           |
| 400 mbar (6 psi) 4)          | PTP31B<br>PTP33B | 0 (0)                  | 0.4 (+6)     | 0.4 (6)             | 1 (15)       | 1.6 (24)    | 0 to 400 mbar (0 to 6 psi)     | 2F        |
| 1 bar (15 psi) <sup>4)</sup> | PTP31B<br>PTP33B | 0 (0)                  | 1 (+15)      | 0.4 (6)             | 2.7 (40.5)   | 4 (60)      | 0 to 1 bar (0 to 15 psi)       | 2H        |
| 2 bar (30 psi) 4)            | PTP31B<br>PTP33B | 0 (0)                  | 2 (+30)      | 0.4 (6)             | 6.7 (100.5)  | 10 (150)    | 0 to 2 bar (0 to 30 psi)       | 2K        |
| 4 bar (60 psi) 4)            | PTP31B<br>PTP33B | 0 (0)                  | 4 (+60)      | 0.8 (12)            | 10.7 (160.5) | 16 (240)    | 0 to 4 bar (0 to 60 psi)       | 2M        |
| 10 bar (150 psi) 4)          | PTP31B<br>PTP33B | 0 (0)                  | 10 (+150)    | 2 (30)              | 25 (375)     | 40 (600)    | 0 to 10 bar (0 to 150 psi)     | 2P        |
| 40 bar (600 psi) 4)          | PTP31B<br>PTP33B | 0 (0)                  | +40 (+600)   | 8 (120)             | 100 (1500)   | 160 (2400)  | 0 to 40 bar (0 to 600 psi)     | 2S        |
| 100 bar (1500 psi) 4)        | PTP31B           | 0 (0)                  | +100 (+1500) | 20 (300)            | 100 (1500)   | 160 (2400)  | 0 to 100 bar (0 to 1500 psi)   | 2U        |
| 400 bar (6000 psi) 4)        | PTP31B           | 0 (0)                  | +400 (+6000) | 80 (1200)           | 400 (6000)   | 600 (9000)  | 0 to 400 bar (0 to 6 000 psi)  | 2W        |

<sup>1)</sup> Highest turn down that can be set at the factory: 5:1. The turn down is preset and cannot be changed.

<sup>2)</sup> Other measuring ranges (e.g. -1 to +5 bar (-15 to 75 psi)) can be ordered with customer-specific settings (see the Product Configurator, order code for "Calibration; Unit" option "U"). It is possible to invert the output signal (LRV = 20 mA; URV = 4 mA). Prerequisite: URV < LRV

<sup>3)</sup> Product Configurator, order code for "Sensor range"

<sup>4)</sup> Vacuum resistance: 0.01 bar (0.145 psi) abs

Maximum turn down which can be ordered for absolute pressure and gauge pressure sensors

Ranges 0.5%/0.3%: TD 1:1 to TD 5:1

# 17.2 Output

# 17.2.1 Output signal

| Designation                                             | Option 1) |
|---------------------------------------------------------|-----------|
| PNP switch output + 4 to 20 mA output (4-wire), IO-Link | 7         |
| PNP switch output (3-wire)                              | 4         |
| 2 x PNP switch output (4-wire), IO-Link                 | 8         |

1) Product Configurator, order code for "Output"

# 17.2.2 Range of adjustment

Switch output

Switch point (SP): 0.5 to 100 % in increments of 0.1% (min. 1 mbar \* (0.015 psi)) of the upper range limit (URL) switchback point (RSP): 0 to 99.5% in increments of 0.1% (min. 1 mbar \* (0.015 psi)) of the upper range limit (URL)

Minimum distance between SP and RSP: 0.5 % URL

Analog output (if available)

Lower range value (LRV) and upper range value (URV) can be set anywhere within the sensor range (LRL - URL). Turn down for analog output up to 5:1 of upper sensor limit (URL).

Factory setting (if no customer-specific setting is ordered):
 Switch point SP1: 90 %; switchback point RP1: 10 %;

Switch point SP2: 95 %; switchback point RP2: 15 %;

Analog output: LRV 0 %; URV 100 %

### 17.2.3 Switching capacity

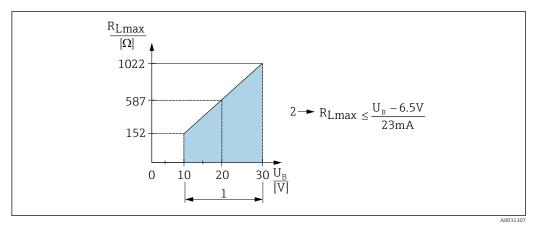
- Switch state ON  $^{3}$ :  $I_a \le 200 \text{ mA}^{4}$ ; switch state OFF:  $I_a \le 100 \text{ }\mu\text{A}$
- Switch cycles: >10,000,000
- Voltage drop PNP: ≤2 V
- Overload protection: Automatic load testing of switching current;
  - Max. capacitive load: 1 μF at max. supply voltage (without resistive load)
  - Max. cycle duration: 0.5 s; min.  $t_{on}$ : 40  $\mu s$
  - Periodic disconnection from protective circuit in the event of overcurrent (f = 2 Hz) and "F804" displayed

# 17.2.4 Signal range 4 to 20 mA

3.8 mA to 20.5 mA

### 17.2.5 Load (for devices with analog output)

In order to guarantee sufficient terminal voltage, a maximum load resistance  $R_L$  (including line resistance) must not be exceeded depending on the supply voltage  $U_B$  of the supply unit.


The maximum load resistance depends on the terminal voltage and is calculated according to the following formula:

80

<sup>\*</sup> For measuring ranges with a negative gauge pressure up to 4 bar (60 psi), the increment when setting the switch point is min. 10 mbar (0.15 psi)

<sup>3) 100</sup> mA can be guaranteed over the entire temperature range for the switch outputs "2 x PNP" and "1 x PNP + 4 to 20 mA output". For lower ambient temperatures, higher currents are possible but cannot be guaranteed. Typical value at 20 °C (68 °F) approx. 200 mA. 200 mA can be guaranteed over the entire temperature range for the "1 x PNP" current output.

<sup>4)</sup> Larger currents are supported, thus deviating from the IO-Link standard.



1 Power supply 10 to 30 V DC

2 R<sub>Lmax</sub> maximum load resistance

 $U_B$  Supply voltage

If load is too great:

- failure current is output and "S803" displayed (output: MIN alarm current)
- Periodic checking to establish if it is possible to quit fault state
- In order to guarantee sufficient terminal voltage, a maximum load resistance RL (including line resistance) must not be exceeded depending on the supply voltage UB of the supply unit.

## 17.2.6 Signal on alarm 4 to 20 mA

The response of the output to error is regulated in accordance with NAMUR NE43.

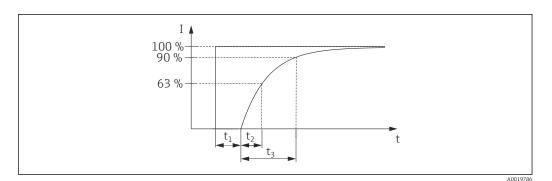
The behavior of the current output in the event of faults is defined in the following parameters:

- Alarm current FCU "HLD" (HOLD) (optional, see the following table): Last measured current value is held. When the device starts, the current output is set to "Lower alarm current" (≤3.6 mA). → 62



- The selected alarm current is used for all errors.
- Errors and warning messages are displayed via IO-Link.
- Errors and warning messages are displayed only on the primary value page (topmost display level) and are not displayed in the operating menu.
- In the operating menu the error is only indicated by the color of the display background.
- The status LED always indicates an error.
- It is not possible to acknowledge errors and warnings. The relevant message disappears if the event is no longer pending.
- The failsafe mode can be changed directly when a device is running (see the following table).

| Changing the failsafe mode | After confirming with 🗉        |
|----------------------------|--------------------------------|
| from MAX to MIN            | active immediately             |
| from MIN to MAX            | active immediately             |
| from HLD (HOLD) to MAX     | active immediately             |
| from HLD (HOLD) to MIN     | active immediately             |
| from MIN to HLD (HOLD)     | active outside the fault state |
| from MAX to HLD (HOLD)     | active outside the fault state |


#### alarm current

| Device                     | Description                                            | Option          |
|----------------------------|--------------------------------------------------------|-----------------|
| PTC31B<br>PTP31B<br>PTP33B | Adjusted min. alarm current                            | IA 1)           |
| PTC31B<br>PTP31B<br>PTP33B | 1 low ≤3.6 mA<br>2 high ≥21 mA<br>3 last current value | U <sup>2)</sup> |

- Product Configurator order code for "Service" Product Configurator order code for "Calibration/unit" 1) 2)

#### 17.2.7 Dead time, time constant

Presentation of the dead time and the time constant:



#### Dynamic behavior 17.2.8

# **Analog electronics**

| Dead time (t <sub>1</sub> ) [ms] | Time constant (T63), t <sub>2</sub> [ms] | Time constant (T90), t <sub>3</sub> [ms] |
|----------------------------------|------------------------------------------|------------------------------------------|
| 7 ms                             | 11 ms                                    | 16 ms                                    |

#### Dynamic behavior of switch output 17.2.9

PNP switch output and 2 x PNP switch output: response time  $\leq$ 20 ms

# 17.3 Performance characteristics of ceramic process isolating diaphragm

## 17.3.1 Reference operating conditions

- As per IEC 60770
- Ambient temperature  $T_A$  = constant, in the range of:+21 to +33 °C (+70 to +91 °F)
- Humidity  $\varphi$  = constant, in the range of 5 to 80 % rH
- Ambient pressure  $p_A$  = constant, in the range of:860 to 1060 mbar (12.47 to 15.37 psi)
- Position of measuring cell = constant, in range: horizontal  $\pm 1^{\circ}$  (see also "Influence of the installation position" section  $\rightarrow \boxminus 16$ )
- Zero based span
- Material of process isolating diaphragm: Al<sub>2</sub>O<sub>3</sub> (aluminum-oxide ceramic, Ceraphire<sup>®</sup>)
- Supply voltage: 24 V DC ±3 V DC
- Load: 320 Ω (at 4 to 20 mA output)

# 17.3.2 Measuring uncertainty for small absolute pressure measuring ranges

The smallest extended uncertainty of measurement that can delivered by our standards is:

- in range 1 to 30 mbar (0.0145 to 0.435 psi): 0.4 % of reading
- in range < 1 mbar (0.0145 psi): 1 % of reading.

# 17.3.3 Influence of the installation position

→ 🗎 16

# 17.3.4 Resolution

Current output: min.  $1.6 \mu A$ 

Display: can be set (factory setting: presentation of the maximum accuracy of the transmitter)

## 17.3.5 Reference accuracy

The reference accuracy contains the non-linearity [DIN EN 61298-2 3.11] including the pressure hysteresis [DIN EN 61298-23.13] and non-repeatability [DIN EN 61298-2 3.11] in accordance with the limit point method as per [DIN EN 60770].

| Device            | % of the calibrated span to the maximum turn down     |      |      |  |  |
|-------------------|-------------------------------------------------------|------|------|--|--|
|                   | Reference accuracy Non-linearity 1) Non-repeatability |      |      |  |  |
| PTC31B - standard | ±0.5                                                  | ±0.1 | ±0.1 |  |  |
| PTC31B - platinum | ±0.3                                                  | ±0.1 | ±0.1 |  |  |

The non-linearity for the 40 bar (600 psi) sensor can be up to  $\pm$  0.15% of the calibrated span up to the maximum turn down.

Overview of the turn down ranges  $\rightarrow \blacksquare 78$ 

# 17.3.6 Thermal change of the zero output and the output span

| Measuring cell   | -20 to +85 °C (-4 to +185 °F) | -40 to -20 °C (-40 to -4 °F)<br>+85 to +100 °C (+185 to +212 °F) |  |
|------------------|-------------------------------|------------------------------------------------------------------|--|
|                  | % of URL for TD 1:1           |                                                                  |  |
| <1 bar (15 psi)  | <1                            | <1.2                                                             |  |
| ≥ 1 bar (15 psi) | <0.8                          | <1                                                               |  |

# 17.3.7 Long-term stability

| 1 year   | 5 years | 8 years        |  |  |  |
|----------|---------|----------------|--|--|--|
| % of URL |         |                |  |  |  |
| ±0.2     | ±0.4    | In preparation |  |  |  |

# 17.3.8 Switch-on time

 $\leq$ 2 s (For small measuring ranges, pay attention to the thermal compensation effects.)

# 17.4 Performance characteristics of metal process isolating diaphragm

## 17.4.1 Reference operating conditions

- As per IEC 60770
- Ambient temperature  $T_A$  = constant, in the range: +21 to +33 °C (+70 to +91 °F)
- Humidity  $\varphi$  = constant, in the range: 5 to 80 % rH
- Ambient pressure  $p_A$  = constant, in the range: 860 to 1060 mbar (12.47 to 15.37 psi)
- Zero based span
- Process isolating diaphragm material: AISI 316L (1.4435)
- Filling oil: synthetic oil polyalphaolefin FDA 21 CFR 178.3620, NSF H1
- Supply voltage: 24 V DC ±3 V DC
- Load: 320  $\Omega$  (at 4 to 20 mA output)

# 17.4.2 Measuring uncertainty for small absolute pressure measuring ranges

The smallest extended uncertainty of measurement that can delivered by our standards is:

- in the range 1 to 30 mbar (0.0145 to 0.435 psi): 0.4 % of reading
- in the range < 1 mbar (0.0145 psi): 1 % of reading.

# 17.4.3 Influence of the installation position

→ 🗎 16

#### 17.4.4 Resolution

Current output: min. 1.6 µA

Display: can be set (factory setting: presentation of the maximum accuracy of the transmitter)

### 17.4.5 Reference accuracy

The reference accuracy contains the non-linearity [DIN EN 61298-2 3.11] including the pressure hysteresis [DIN EN 61298-23.13] and non-repeatability [DIN EN 61298-2 3.11] in accordance with the limit point method as per [DIN EN 60770].

| Device            | % of the calibrated span to the maximum turn down |               |                   |
|-------------------|---------------------------------------------------|---------------|-------------------|
|                   | Reference accuracy                                | Non-linearity | Non-repeatability |
| PTP31B - standard | ±0.5                                              | ±0.1          | ±0.1              |
| PTP31B - platinum | ±0.3                                              | ±0.1          | ±0.1              |
| PTP33B - standard | ±0.5                                              | ±0.1          | ±0.1              |
| PTP33B - platinum | ±0.3                                              | ±0.1          | ±0.1              |

Overview of the turn down ranges  $\rightarrow \triangleq 79$ 

# 17.4.6 Thermal change of the zero output and the output span

# PTP31B

| Measuring cell   | -20 to +85 °C (-4 to +185 °F)       | -40 to -20 °C (-40 to -4 °F)<br>+85 to +100 °C (+185 to +212 °F) |
|------------------|-------------------------------------|------------------------------------------------------------------|
|                  | % of the calibrated span for TD 1:1 |                                                                  |
| <1 bar (15 psi)  | <1                                  | <1.2                                                             |
| ≥ 1 bar (15 psi) | <0.8                                | <1                                                               |

### PTP33B

| Measuring cell   | -20 to +85 °C (-4 to +185 °F)       | -40 to -20 °C (-40 to -4 °F)<br>+85 to +100 °C (+185 to +212 °F) |
|------------------|-------------------------------------|------------------------------------------------------------------|
|                  | % of the calibrated span for TD 1:1 |                                                                  |
| <1 bar (15 psi)  | <1                                  | <1.2                                                             |
| ≥ 1 bar (15 psi) | <0.8                                | <1                                                               |

# 17.4.7 Long-term stability

| Device | 1 year | 5 years  | 8 years |
|--------|--------|----------|---------|
|        |        | % of URL |         |

# 17.4.8 Switch-on time

≤2 s

For small measuring ranges, pay attention to the thermal compensation effects.

# 17.5 Environment

# 17.5.1 Ambient temperature range

| Device | Ambient temperature range <sup>1)</sup>                                                                                                                                                                                                                                              |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTP31B | $-20 \text{ to } +70 ^{\circ}\text{C} (-4 \text{ to } +158 ^{\circ}\text{F})$ $IO\text{-Link: } -40 \text{ to } +70 ^{\circ}\text{C} (-40 \text{ to } +158 ^{\circ}\text{F})$ (in the range of the temperature limits with restrictions in optical properties, such as display speed |
| 111756 | and contrast)                                                                                                                                                                                                                                                                        |

Exception: the following cable is designed for an ambient temperature range of -25 to +70 °C (-13 to +158 °F): Product Configurator order code for "Enclosed accessories" option "RZ".

# 17.5.2 Storage temperature range

 $-40 \text{ to } +85 ^{\circ}\text{C} (-40 \text{ to } +185 ^{\circ}\text{F})$ 

#### 17.5.3 Climate class

| Device                     | Climate class | Note                                                                                                                                                 |
|----------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| PTC31B<br>PTP31B<br>PTP33B | Class 3K5     | Air temperature: $-5$ to $+45$ °C ( $+23$ to $+113$ °F), relative humidity: 4 to 95 % satisfied according to IEC 721-3-3 (condensation not possible) |

# 17.5.4 Degree of protection

| Device                     | Connection | Degree of protection           | Option 1) |
|----------------------------|------------|--------------------------------|-----------|
| PTC31B<br>PTP31B<br>PTP33B | M12 plug   | IP65/67 NEMA type 4X enclosure | M         |

1) Product Configurator order code for "Electrical connection"

## 17.5.5 Vibration resistance

| Test standard       | Vibration resistance                               |
|---------------------|----------------------------------------------------|
| IEC 60068-2-64:2008 | Guaranteed for 5 to 2000Hz: 0.05g <sup>2</sup> /Hz |

# 17.5.6 Electromagnetic compatibility

- Interference emission as per EN 61326-1 equipment B
- Interference immunity as per EN 61326-1 (industrial environment)
- For intended use, the switch output can switch to the communication mode for 0.2 s in the event of transient faults.
- Maximum deviation: 1.5% with TD 1:1

For more details, please refer to the Declaration of Conformity.

# 17.6 Process

# 17.6.1 Process temperature range for devices with ceramic process isolating diaphragm

| Device | Process temperature range       |
|--------|---------------------------------|
| PTC31B | −25 to +100 °C (−13 to +212 °F) |

- For saturated steam applications, use a device with a metal process isolating diaphragm, or provide a siphon for temperature isolation when installing.
- Pay attention to the process temperature range of the seal. See also the following table.

| Seal    | Notes                      | Process temperature range       | Option         |
|---------|----------------------------|---------------------------------|----------------|
| FKM     | -                          | -20 to +100 °C (-4 to +212 °F)  | A 1)           |
| FKM     | Cleaned for oxygen service | -10 to +60 °C (+14 to +140 °F)  | A 1) and HB 2) |
| EPDM 70 | -                          | -25 to +100 °C (−13 to +212 °F) | J 1)           |

- 1) Product Configurator, order code for "Seal"
- 2) Product Configurator, order code for "Service"

#### Applications with changes in temperature

Frequent extreme changes in temperatures can temporarily cause measuring errors. Temperature compensation takes place after a few minutes. Internal temperature compensation is faster the smaller the change in temperature and the longer the time interval.

For further information please contact your local Endress+Hauser Sales Center.

# 17.6.2 Process temperature range for devices with metallic process isolating diaphragm

| Device                       | Process temperature range                                                                             |
|------------------------------|-------------------------------------------------------------------------------------------------------|
| PTP31B                       | -40 to +100 °C (-40 to +212 °F)                                                                       |
| PTP33B                       | −10 to +100 °C (+14 to +212 °F)                                                                       |
| PTP33B                       | At $+135^{\circ}$ C ( $+275^{\circ}$ F) for a maximum of one hour (device in operation but not within |
| Sterilization in place (SIP) | measuring specification)                                                                              |

#### Applications with changes in temperature

Frequent extreme changes in temperatures can temporarily cause measuring errors. Internal temperature compensation is faster the smaller the change in temperature and the longer the time interval.

For further information please contact your local Endress+Hauser Sales Center.

# 17.6.3 Pressure specifications

### **A** WARNING

The maximum pressure for the measuring device depends on the lowest-rated element with regard to pressure.

- ► For pressure specifications, see the "Measuring range" section and "Mechanical construction" section in the Technical Information.
- ► The Pressure Equipment Directive (2014/68/EU) uses the abbreviation "PS". The abbreviation "PS" corresponds to the MWP (maximum working pressure) of the measuring device.
- ► MWP (maximum working pressure): The MWP (maximum working pressure) is specified on the nameplate. This value is based on a reference temperature of +20 °C (+68 °F) and may be applied to the device for an unlimited period of time. Observe the temperature dependency of the MWP.
- ▶ OPL (over pressure limit): The test pressure corresponds to the over pressure limit of the sensor and may only be applied temporarily to ensure that the measurement is within the specifications and no permanent damage develops. In the case of sensor range and process connections where the over pressure limit (OPL) of the process connection is smaller than the nominal value of the sensor, the device is set at the factory, at the very maximum, to the OPL value of the process connection. If you want to use the entire sensor range, select a process connection with a higher OPL value.
- ▶ Devices with ceramic process isolating diaphragm: avoid steam hammering! Steam hammering can cause zero point drifts. Recommendation: Residue (water droplets or condensation) may remain on the process isolating diaphragm following CIP cleaning and can result in local steam hammering the next time steam cleaning takes place. In practice, drying the process isolating diaphragm (e.g. by blowing) has proved to prevent steam hammering.

# Index

| A                                                  | LCK (unlocking code)                                  |
|----------------------------------------------------|-------------------------------------------------------|
| Actual Diagnostics (STA)                           | Local display                                         |
| Alarm current (FCU) 62                             | see Diagnostic message                                |
| Application                                        | see In alarm condition                                |
| Application Specific Tag                           | M                                                     |
| C                                                  | Maintenance                                           |
| C                                                  | Media                                                 |
| CE mark (declaration of conformity)                | Menu                                                  |
| Cleaning                                           | Parameter description                                 |
| COD (locking code)                                 | i arameter description                                |
| Configuration of a pressure measurement            | N                                                     |
| Configuring pressure measurement                   | Nameplate                                             |
| D                                                  | _                                                     |
| Damping (TAU)                                      | 0                                                     |
| Declaration of Conformity                          | Onsite display menu                                   |
| Designated use                                     | Overview                                              |
| Device Access Lock.Local Parametrization Lock 73   | Onsite display operating menu                         |
| Device Access Locks.Data Storage Lock (activation/ | Overview                                              |
| deactivation of Data Storage)                      | Operating menu                                        |
| Device Search                                      | Parameter description                                 |
| Diagnosis                                          | Operating Mode (FUNC) 40, 58                          |
| Symbols                                            | Operational safety                                    |
| Diagnostic event                                   | Output 1 (OU1)                                        |
| Diagnostic events 45                               | Output 2 (OU2)                                        |
| Diagnostic message                                 | P                                                     |
| Display: HI                                        | Pressure applied for 4mA (GTL) 41, 61                 |
| Display: LO                                        | Pressure applied for 20mA (GTU) 42, 62                |
| Disposal                                           | Product safety                                        |
| DOF                                                | •                                                     |
| DRO                                                | R                                                     |
| DVA                                                | Repair concept                                        |
| E                                                  | Reset to factory settings (RES)                       |
| ENP VERSION                                        | Revisioncounter (RVC)                                 |
| Event text                                         | C                                                     |
| Extended Ordercode                                 | S Safet instructions                                  |
| Exterior cleaning                                  | Safety instructions                                   |
|                                                    | Basic                                                 |
| F                                                  | Simulation Current Output (OU2)                       |
| Field of application                               | SM2 for devices with 2 switch outputs                 |
| Residual risks                                     | Staff                                                 |
| Н                                                  | Requirements                                          |
|                                                    | Status signals                                        |
| Hysteresis                                         | Switch point value / Upper value for pressure window, |
| I                                                  | output 1 (SP1 / FH1)                                  |
| In alarm condition                                 | Switch point value / Upper value for pressure window, |
| IO-Link menu                                       | output 2 (SP2 / FH2)                                  |
| Overview                                           | Switchback delay time, output 1 (dR1) 67              |
| IO-Link operating menu                             | Switchback delay time, output 2 (dR2) 68              |
| Overview                                           | Switchback point value / Lower value for pressure     |
| IO-Link: HI Max value (maximum indicator) 70       | window, output 1 (RP1 / FL1) 63                       |
| IO-Link: LO Min value (minimum indicator) 71       | Switchback point value / Lower value for pressure     |
|                                                    | window, output 2 (RP2 / FL2) 65                       |
| L                                                  | Switching delay time, output 1 (dS1) 67               |
| Last Diagnostic (LST)                              | Switching delay time, output 2 (dS2) 68               |

90

| T                                        |
|------------------------------------------|
| Troubleshooting                          |
| U Unit changeover (UNI) - μC-Temperature |
| <b>V</b> Value for 4 mA (STL)            |
| W Window function                        |
| <b>Z</b> Zero point adoption (GTZ)       |



www.addresses.endress.com