Technical Information

Liquiline CM44P

Universal four-wire multichannel controller for process photometers and Memosens sensors

Field device or cabinet device

Application
- Food and beverages
- Life science
- Power stations
- Chemical industry
- Other industrial applications

Your benefits
- Highly flexible:
 - Able to connect up to 2 process photometers
 - Mathematics functions calculate new measured values
 - Digital fieldbuses (HART, PROFIBUS, Modbus, Ethernet/IP) and integrated web server
 - Choice of cleaning function, controller and alarm relay
 - Optional digital or analog inputs/outputs
- Maximum process safety thanks to standardized operating concept across all devices in the Liquiline, sampler and analyzer platform
- Fast commissioning thanks to:
 - Memosens: lab-calibrated sensors & hot plug-and-play
 - Preconfigured Liquiline transmitter
 - Easy extension and adaptation
- Minimum inventory:
 - Cross-platform, modular concept (e.g. identical modules irrespective of parameters)
 - Integration into Fieldcare and W@M facilitates effective asset management

Endress+Hauser
People for Process Automation
Table of contents

<table>
<thead>
<tr>
<th>Function and system design</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring system with photometer</td>
<td>4</td>
</tr>
<tr>
<td>Measuring system with optional Memosens sensors</td>
<td>5</td>
</tr>
<tr>
<td>Application example</td>
<td>6</td>
</tr>
<tr>
<td>Device architecture</td>
<td>7</td>
</tr>
<tr>
<td>Slot and port assignment</td>
<td>7</td>
</tr>
<tr>
<td>Order of the modules</td>
<td>7</td>
</tr>
<tr>
<td>Basic rule for hardware upgrades</td>
<td>7</td>
</tr>
<tr>
<td>Determining the hardware delivery status</td>
<td>8</td>
</tr>
<tr>
<td>Terminal diagram</td>
<td>8</td>
</tr>
<tr>
<td>Device configuration using the example of a CM44P-**</td>
<td>9</td>
</tr>
<tr>
<td>Block circuit diagram of CM44P-**</td>
<td>10</td>
</tr>
<tr>
<td>Communication and data processing</td>
<td>11</td>
</tr>
<tr>
<td>Dependability</td>
<td>11</td>
</tr>
<tr>
<td>Reliability</td>
<td>11</td>
</tr>
<tr>
<td>Maintainability</td>
<td>13</td>
</tr>
<tr>
<td>Safety</td>
<td>16</td>
</tr>
<tr>
<td>Input</td>
<td>17</td>
</tr>
<tr>
<td>Measured variables</td>
<td>17</td>
</tr>
<tr>
<td>Measuring ranges</td>
<td>17</td>
</tr>
<tr>
<td>Types of input</td>
<td>17</td>
</tr>
<tr>
<td>Input signal</td>
<td>17</td>
</tr>
<tr>
<td>Cable specification</td>
<td>17</td>
</tr>
<tr>
<td>Digital inputs, passive</td>
<td>17</td>
</tr>
<tr>
<td>Electrical specification</td>
<td>17</td>
</tr>
<tr>
<td>Span</td>
<td>17</td>
</tr>
<tr>
<td>Nominal input current</td>
<td>18</td>
</tr>
<tr>
<td>PFM function</td>
<td>18</td>
</tr>
<tr>
<td>Test voltage</td>
<td>18</td>
</tr>
<tr>
<td>Cable specification</td>
<td>18</td>
</tr>
<tr>
<td>Current input, passive</td>
<td>18</td>
</tr>
<tr>
<td>Span</td>
<td>18</td>
</tr>
<tr>
<td>Signal characteristic</td>
<td>18</td>
</tr>
<tr>
<td>Internal resistance</td>
<td>18</td>
</tr>
<tr>
<td>Test voltage</td>
<td>18</td>
</tr>
<tr>
<td>Output</td>
<td>18</td>
</tr>
<tr>
<td>Output signal</td>
<td>18</td>
</tr>
<tr>
<td>Signal on alarm</td>
<td>19</td>
</tr>
<tr>
<td>Load</td>
<td>19</td>
</tr>
<tr>
<td>Linearization/transmission behavior</td>
<td>19</td>
</tr>
<tr>
<td>Digital outputs, passive</td>
<td>19</td>
</tr>
<tr>
<td>Electrical specification</td>
<td>19</td>
</tr>
<tr>
<td>External power supply</td>
<td>19</td>
</tr>
<tr>
<td>PFM function</td>
<td>19</td>
</tr>
<tr>
<td>Auxiliary voltage</td>
<td>20</td>
</tr>
<tr>
<td>Test voltage</td>
<td>20</td>
</tr>
<tr>
<td>Cable specification</td>
<td>20</td>
</tr>
<tr>
<td>Current outputs, active</td>
<td>20</td>
</tr>
<tr>
<td>Span</td>
<td>20</td>
</tr>
<tr>
<td>Signal characteristic</td>
<td>20</td>
</tr>
<tr>
<td>Electrical specification</td>
<td>20</td>
</tr>
<tr>
<td>Cable specification</td>
<td>20</td>
</tr>
<tr>
<td>Relay outputs</td>
<td>20</td>
</tr>
<tr>
<td>Electrical specification</td>
<td>20</td>
</tr>
<tr>
<td>Cable specification</td>
<td>21</td>
</tr>
<tr>
<td>Protocol-specific data</td>
<td>21</td>
</tr>
<tr>
<td>HART</td>
<td>21</td>
</tr>
<tr>
<td>PROFIBUS DP</td>
<td>21</td>
</tr>
<tr>
<td>Modbus RS485</td>
<td>22</td>
</tr>
<tr>
<td>Modbus TCP</td>
<td>22</td>
</tr>
<tr>
<td>EtherNet/IP</td>
<td>22</td>
</tr>
<tr>
<td>Web server</td>
<td>23</td>
</tr>
<tr>
<td>Power supply</td>
<td>23</td>
</tr>
<tr>
<td>Supply voltage</td>
<td>23</td>
</tr>
<tr>
<td>Power consumption</td>
<td>23</td>
</tr>
<tr>
<td>Fuse</td>
<td>23</td>
</tr>
<tr>
<td>Overvoltage protection</td>
<td>23</td>
</tr>
<tr>
<td>Cable entries (field device only)</td>
<td>24</td>
</tr>
<tr>
<td>Cable specification</td>
<td>24</td>
</tr>
<tr>
<td>Electrical connection</td>
<td>24</td>
</tr>
<tr>
<td>Connecting optional modules</td>
<td>26</td>
</tr>
<tr>
<td>Protective ground connection</td>
<td>28</td>
</tr>
<tr>
<td>Sensor connection</td>
<td>28</td>
</tr>
<tr>
<td>Performance characteristics</td>
<td>31</td>
</tr>
<tr>
<td>Response time</td>
<td>31</td>
</tr>
<tr>
<td>Reference temperature</td>
<td>31</td>
</tr>
<tr>
<td>Measured error for sensor inputs</td>
<td>31</td>
</tr>
<tr>
<td>Measured error for current inputs and outputs</td>
<td>31</td>
</tr>
<tr>
<td>Frequency tolerance of digital inputs and outputs</td>
<td>32</td>
</tr>
<tr>
<td>Resolution of current inputs and outputs</td>
<td>32</td>
</tr>
<tr>
<td>Repeatability</td>
<td>32</td>
</tr>
<tr>
<td>Installation</td>
<td>32</td>
</tr>
<tr>
<td>Installation conditions</td>
<td>32</td>
</tr>
<tr>
<td>Installation</td>
<td>33</td>
</tr>
<tr>
<td>Mounting on DIN rail as per IEC 60715</td>
<td>34</td>
</tr>
<tr>
<td>Wall mounting</td>
<td>35</td>
</tr>
<tr>
<td>Mounting the external display</td>
<td>36</td>
</tr>
<tr>
<td>Environment</td>
<td>36</td>
</tr>
<tr>
<td>Ambient temperature range</td>
<td>36</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>36</td>
</tr>
<tr>
<td>Humidity</td>
<td>36</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>36</td>
</tr>
<tr>
<td>Climate class (cabinet device only)</td>
<td>37</td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>37</td>
</tr>
<tr>
<td>Electromagnetic compatibility</td>
<td>37</td>
</tr>
<tr>
<td>Electrical safety</td>
<td>37</td>
</tr>
<tr>
<td>Degree of contamination</td>
<td>37</td>
</tr>
<tr>
<td>Pressure compensation to environment (field device only)</td>
<td>37</td>
</tr>
</tbody>
</table>
Liquiline CM44P

Mechanical construction 38
Dimensions 38
Weight ... 41
Materials ... 42

Operability .. 42
display ... 42
Operating concept 42
Local operation 43
Remote operation 43
Language packages 45

Certificates and approvals 45
EU mark ... 45

Ordering information 46
Product page 46
Product Configurator 46
Scope of delivery 46

Accessories .. 46
Measuring cable 46
Sensors .. 46
Additional functionality 51
Software .. 53
Other accessories 53
Function and system design

Measuring system with photometer

An optical measuring system comprises:

- Transmitter, e.g. Liquiline CM44P
- Sensor (photometer), e.g. OUSAF11/12/21/22/44/46, OUSTF10 or OUSB766
- Cable set, e.g. CUK80
- The correct assembly for the sensor, e.g. OUA260
- The following are optional:
 - Post retainer
 - Protective cover
 - Memosens sensors (→ 5)

Example of a measuring system with a photometer sensor

1. pipe
2. Transmitter CM44P
3. CUK80 cable set
4. Sensor: detector
5. Flow assembly OUA260
6. Sensor: light source (lamp)
7. CUK80 cable set

You can combine your measuring point with a variety of Memosens sensors and suitable assemblies (→ 5). For more information, visit www.endress.com/cm44p
Measuring system with optional Memosens sensors

The overview shows examples of measuring systems. Other sensors and assemblies can be ordered for conditions specific to your application (www.endress.com/products).

Measuring point

A measuring system comprises:
- Transmitter Liquiline
- Optional display (for cabinet device)
- Sensors with Memosens technology
- Assemblies to suit the sensors used
- Post or rail mounting (optional, for field device)
- Weather protection cover (optional, for field device)

pH value or ORP

- pH measurement in the pharmaceutical industry
- Retractable assembly Cleanfit CPA871
- Sensor Orbisint CPS11D
- Measuring cable CYK10
- ORP in drinking water
- Dipfit CYA112 immersion assembly
- Sensor Orbisint CPS12D
- Measuring cable CYK10

Conductivity

Inductive conductivity measurement in the food industry
- Sensor Indumax CLS554D
- Sensor fixed cable
Conductive conductivity measurement in power plant cooling water
- Sensor Condumax CLS15D
- Measuring cable CYK10

Nitrate and SAC

- Nitrate in wastewater
 - Sensor CAS51D-**A2 with fixed cable
 - Dipfit CYA112 immersion assembly
 - Holder CYH112
- SAC in the wastewater treatment outlet
 - Sensor CAS51D-**2C2 with fixed cable
 - Dipfit CYA112 immersion assembly
 - Holder CYH112

Oxygen

Oxygen in aeration basins
- Dipfit CYA112 immersion assembly
- Holder CYH112
- Sensor
 - COS61D (optical) with fixed cable (→ Fig.)
 - COS51D (amperometric), cable CYK10

Turbidity and interface

Turbidity in industrial water
- Sensor Turbimax CUS51D with fixed cable (→ Fig.)
- Assembly Flowfit CUA250
- Spray head CUR3 (optional)
- Interface in the primary clarifier
- Sensor Turbimax CUS71D
- Assembly CYA112
- Holder CYH112

Disinfection

Free available chlorine (and pH) in drinking water
- Sensor CCS142D
- Sensor CPS11D
- Measuring cable CYK10
- Flow assembly CCA250

Ion-selective electrodes

Ammonium and nitrate measurement in the aeration basin
- Sensor CAS40D with fixed cable
- Holder CYH112

If mounting outdoors, always use the weather protection cover (see ‘Accessories’) to protect the transmitter against weather conditions.
Application example

Measuring point in chromatography monitoring

Transmitter CM44P-AADINP1M22A1FG15BAEA+PK (cabinet device) with:
- 1 photometer input, 2 Memosens inputs, PROFIBUS, 2 analog outputs and 2 digital inputs
- Optional display
- Photometer OUSAF44 (item 4)
- Flow assembly OUA260-AA1C5B1A3A with 2 mm path length and POPL, Triclamp 1/2", quartz window, item 3 (www.endress.com/oua260)
- Flow assembly CYA680 with 2x Pg 13.5 process connection for Memosens sensors, item 1
- pH and temperature with CPS71D, item 2 (www.endress.com/cps71d)
- Conductivity, conductive four-pin sensor CLS82D, item 5 (www.endress.com/cls82d)

Data retention
- Storage of all measured values, incl. values of external sources, in the non-volatile memory (data logbook)
- Data called up on site via user-defined measuring menu and load curve display of the data logbook
- Transmission of data by ethernet, CDI interface or SD card and storage in a tamper-proof database (Field Data Manager)
- Data export to csv file (for Microsoft Excel)
Device architecture

Slot and port assignment

- Inputs are assigned to measuring channels in the ascending order of the slots and ports. Adjacent example: “CH1: 1:1 pH glass” means: Channel 1 (CH1) is slot 1 (basic module) : Port 1 (input 1), pH glass sensor
- Outputs and relays are named according to their function, e.g. ‘current output’, and are displayed with the slot and port numbers in ascending order

Order of the modules

Depending on the version ordered, the device is supplied with a number of electronic modules, which are assigned in a specific sequence in ascending order to slots 0 to 7. If you do not have a particular module, the next moves up automatically:
- The basic module (which is always present) always occupies slots 0 and 1
- Fieldbus module 485 or Ethernet module ETH (only one of the two modules can be used)
- Photometer module PEM
- Memosens input module 2DS (DS = digital sensor)
- Extension module for digital inputs and outputs DIO (DIO = digital input and output)
- Current input module 2AI (AI = analog input)
- Current output module 4AO or 2AO (AO = analog output)
- Relay modules AOR, 4R or 2R (AOR = analog output + relay, R = relay)

- Modules with 4 ports are connected before modules of the same type with 2 ports.

Basic rule for hardware upgrades

Please note the following if upgrading the device:
- The sum of all current inputs and outputs may not exceed 8!
- A maximum of two ‘DIO’ modules may be used.
Determining the hardware delivery status

You must be aware of the type of modules and the number of them supplied with the device you have ordered to determine the delivery status of your Liquiline.

- **Basic module**
 One basic module in all versions. Always occupies slots 0 and 1.

- **Fieldbus module**
 Optional, and only one fieldbus module is possible.

- **Input modules**
 - Must be clearly assigned to the number of optional inputs ordered.
 - Examples:
 - 2 current inputs = module 2AI
 - 2 inputs for photometer sensors = module PEM
 - 4 Memosens inputs = 2 inputs with basic module + module 2DS with 2 further inputs

- **Current outputs and relays**
 Various module combinations can exist.
The following table will help you determine which modules your device has, depending on the type and number of outputs.

<table>
<thead>
<tr>
<th>Current outputs</th>
<th>Relays</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td>1 x 2R</td>
<td>1 x 4R</td>
</tr>
<tr>
<td>4</td>
<td>1 x 2AO</td>
<td>1 x AOR</td>
<td>1 x 2AO + 1 x 4R</td>
</tr>
<tr>
<td>6</td>
<td>1 x 4AO</td>
<td>1 x 4AO + 1 x 2R</td>
<td>1 x 4AO + 1 x 4R</td>
</tr>
<tr>
<td>8</td>
<td>1 x 4AO + 1 x 2AO</td>
<td>1 x 4AO + 1 x 2AO + 1 x 2R</td>
<td>1 x 4AO + 1 x 2AO + 1 x 4R</td>
</tr>
</tbody>
</table>

- Sum up the number of modules and sort them according to the specified sequence → 7.

This will give you the slot assignment for your device.

Terminal diagram

The unique terminal name is derived from:

- **Slot no.**: Port no. : Terminal

Example, NO contact of a relay

Device with 2 inputs for digital sensors, 4 current outputs and 4 relays

- **Base module** BASE-E (contains 2 sensor inputs, 2 current outputs)
- **PEM module** (1 photometer sensor)
- **2AO module** (2 current outputs)
- **4R module** (4 relays)

![Terminal diagram](image)
Device configuration using the example of a CM44P-**

| Ordered basic device (example) | CM44P-**DINP1M22A1FA*(cabinet device)
- Functionality:
 - 1x photometer (module PEM)
 - 2x Memosens (module BASE-E)
 - PROFINET communication (module 485)
 - 2 current outputs without HART (on BASE-E module)
 - 2 current inputs (module AI)

3 slots are still free in this example. More or fewer slots can be free in other versions. |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Extension options without additional modules</td>
<td>None</td>
</tr>
</tbody>
</table>
| Modification options without additional modules | Communication type changed by entering activation code. This disables the communication type used previously!
- Modbus RS485 (71140889)
- Modbus TCP (71140890)
- EtherNet/IP (71219868)
- Retrofit to HART by removing module 485 and entering activation code for HART (71128428) |
| Extension options by using extension modules in free slots 5-7 | Only the following is possible for the example above:
- Module 2R (71125375) or 4R (71125376): 2 or 4 relays
- Module DIO (71135638): 2 digital inputs and 2 digital outputs
If extended to four Memosens channels:
- Module 2DS (71135631): 2 Memosens inputs
- Use of the 2 current outputs in the basic module by entering activation code (71140891)
Additional inputs or outputs and relays if fieldbus module 485 is removed:
- Module 2AO (71135632): 2 current outputs
- Module AOR (71111053): 2 current outputs, 2 relays
- Module 2R (71125375) or 4R (71125376): 2 or 4 relays
If you replace module 485 with ETH, you can operate up to 6 current outputs in addition to the ETH module's ethernet or Modbus function. Only two current outputs are possible with 485. |
| Basic rule for extensions | The sum of all current inputs and outputs may not exceed 8! |
| Restrictions if using CUS71D sensors for interface measurement | If CUS71D sensors are used, the maximum number of Memosens inputs is limited to two. Any combination of CUS71D or other sensors is possible. |
| Product Configurator | www.endress.com/cm44p |
Block circuit diagram of CM44P-**

1. Current output 1:1, + HART (both optional)
2. Max. 7 x current output (optional)
3. Memosens input (2 x standard + 2 x optional)
4. PROFIBUS DP/Modbus/Ethernet (optional)
5. 2 x current input (optional)
6. Power supply
7. Service interface
8. Power supply, fixed cable sensors
9. Alarm relay
10. 2 or 4 x relays (optional)
11. 2 digital inputs and outputs (optional)
12. Photometer: 2x lamp voltage and detector
Communication and data processing

Types of communication:
- Fieldbuses
 - HART
 - PROFIBUS DP (Profile 3.02)
 - Modbus TCP or RS485
- EtherNet/IP

Only one type of Fieldbus communication can ever be active. The last activation code entered decides which bus is used.

The device drivers available make it possible to perform a basic setup and display measured values and diagnostics information via the fieldbus. A full device configuration via the fieldbus is not possible.

Extension module 485 and current outputs
For PROFIBUS DP, Modbus and Ethernet communication protocols:
A maximum of 2 current outputs can be used in parallel.

Extension module ETH and current outputs
- Communication via Ethernet or EtherNet/IP
- A maximum of 6 current outputs can be used in parallel.

Bus termination on the device
- Via slide switch at bus module 485
- Displayed via LED “T” on bus module 485

Dependability

Reliability

Memosens

Memosens makes your measuring point safer and more reliable:
- Non-contact, digital signal transmission enables optimum galvanic isolation
- No contact corrosion
- Completely watertight
- Sensor can be calibrated in a lab, thus increasing the availability of the measuring point in the process
- Intrinsically safe electronics mean operation in hazardous areas is not a problem.
- Predictive maintenance thanks to recording of sensor data, e.g.:
 - Total hours of operation
 - Hours of operation with very high or very low measured values
 - Hours of operation at high temperatures
 - Number of steam sterilizations
 - Sensor condition

Heartbeat diagnostics
- Heartbeat diagnostics screen with graphic indicators for the health of the device and sensor and with a maintenance or (sensor-dependent) calibration timer
- Heartbeat status information on the health of the device and the condition of the sensor
 - ☹: Sensor/device condition or maintenance timer > 20 %; no action is required
 - 😞: Sensor/device condition or maintenance timer > 5 < 20 %, maintenance not yet urgent but should be scheduled
 - 😞: Sensor/device condition or maintenance timer < 5 %, maintenance is recommended
- The Heartbeat sensor condition is the assessment of the calibration results and the sensor diagnostic functions.

An unhappy smiley can be due to the calibration result, the measured value status or to the operating hours limit having been exceeded. These limits can be configured in the sensor setup in a way that adapts the Heartbeat diagnostics to the application.
Heartbeat and NAMUR category
The Heartbeat status indicates the sensor or device condition while the NAMUR categories (F, C, M, S) assess the reliability of the measured value. The two conditions can correlate but do not have to.

- **Example 1**
 - The number of remaining cleaning cycles for the sensor reaches 20% of the defined maximum number. The Heartbeat symbol changes from 🗓️ to 🏷️. The measured value is still reliable so the NAMUR status signal does not change.
 - If the maximum number of cleaning cycles is exceeded, the Heartbeat symbol changes from 🗓️ to 🍀. While the measured value can still be reliable, the NAMUR status signal changes to M (maintenance required).

- **Example 2**
 - The sensor breaks. The Heartbeat status changes immediately from 📆 to ℹ️ and the NAMUR status signal also changes immediately to F (failure).

Heartbeat Monitoring
Sensor data from Memosens sensors are transmitted via the EtherNet/IP and Modbus TCP fieldbus protocols. These data can be used for predictive maintenance, for instance.

Examples include:
- Total hours of operation
- Hours of operation with very high or very low measured values
- Hours of operation at high temperatures
- Number of steam sterilizations
- Sensor identification
- Calibration information

Heartbeat Verification
Heartbeat Verification makes it possible to verify the correct operation of the measuring device without interrupting the process. This verification can be documented anytime.

Sensor Check System (SCS)
The Sensor Check System (SCS) monitors the high impedance of the pH glass. An alarm is issued if a minimum impedance value is undershot or a maximum impedance is exceeded.

- Glass breakage is the main reason for a drop in high impedance values
- The reasons for increasing impedance values include:
 - Dry sensor
 - Worn pH glass membrane

Process Check System (PCS)
The process check system (PCS) checks the measuring signal for stagnation. An alarm is triggered if the measuring signal does not change over a specific period (several measured values).

The main causes of stagnating measured values are:
- Contaminated sensor, or sensor outside of medium
- Sensor defective
- Process error (e.g. through control system)

Self-monitoring functions
Current inputs are deactivated in the event of overcurrent and reactivated once the overcurrent stops. Board voltages are monitored and the board temperature is also measured.

USP and EP
The limit functions for pharmaceutical water in accordance with USP and EP specifications are implemented in the software for conductivity measurements:
- "Water for Injection" (WFI) as per USP <645> and EP
- "Highly Purified Water" (HPW) as per EP
- "Purified Water" (PW) as per EP

The uncompensated conductivity value and the temperature are measured for the USP/EP limit functions. The measured values are compared against the tables defined in the standards. An alarm is triggered if the limit value is exceeded. Furthermore, it is also possible to configure an early warning alarm that signals undesired operating states before they occur.
ChemocleanPlus

Freely programmable sequence control
- e.g. for automatic sensor cleaning in retractable assemblies for reliable measurement results in processes with a high risk of contamination
- Individual, time-based activation of 4 outputs e.g. relays
- Starting, stopping or pausing of activities via digital input or fieldbus signals e.g. from limit position switches

Maintainability

Modular design

The modular transmitter design means it can be easily adapted to suit your needs:
- Retrofit extension modules for new or extended range of functions, e.g. current outputs, relays and digital communication
- Upgrade to maximum 2 photometers and 4 Memosens inputs
- Optional: M12 sensor connector for connecting any kind of Memosens sensor
- Optional: CDI connector for external access to the service interface (avoids having to unscrew the housing cover)
Data logger function

- Adjustable scan time: 1 to 3600 s (1 h)
- Data logbooks:
 - Max. 8 data logbooks
 - 150,000 entries per logbook
 - Graphic display (load curves) or numerical list
- Calibration logbook: max. 75 entries
- Hardware version logbook:
 - Hardware configuration and modifications
 - Max. 125 entries
- Version logbook:
 - E.g. software updates
 - Max. 50 entries
- Operation logbook: max. 250 entries
- Diagnostics logbook: max. 250 entries

Logbooks remain unchanged even after a software update.

SD card

The exchangeable storage medium enables:
- Quick and easy software updates and upgrades
- Data storage of internal device memory (e.g. logbooks)
- Transfer of complete configurations to a device with an identical setup (backup function)
- Transfer of configurations without the TAG and bus address to devices with an identical setup (copy function)
- Saving of screenshots for documentation purposes

Endress+Hauser offers industry-approved SD cards as accessories. These memory cards provide maximum data security and integrity. Other SD cards up to a maximum weight of 5 g can also be used. However, Endress+Hauser does not accept any responsibility for the data security of such cards.

External signals for device control and for activating external devices

Hardware options, e.g. module "DIO" with 2 digital inputs and 2 digital outputs or fieldbus module "485" enable the following:
- via a digital input signal
 - measuring range switching for conductivity (upgrade code required, see accessories)
 - switching between different calibration datasets in the case of optical sensors
 - an external hold
 - a cleaning interval to be triggered
 - switching on and off a PID controller, e.g. via the proximity switch of the CCA250
 - the use of the input as an "analog input" for pulse-frequency modulation (PFM)
- via a digital output signal
 - the static transmission (similar to a relay) of diagnostic states, point level switch states etc.
 - the dynamic transmission (comparable to a non-wearing "analog output") of PFM signals, e.g. to control dosing pumps.
FieldCare and Field Data Manager

FieldCare
Configuration and asset management software based on FDT/DTM technology
- Complete device configuration when connected via FXA291 and service interface
- Access to a number of configuration parameters and identification, measuring and diagnostic data when connected via HART modem
- Logbooks can be downloaded in CSV format or binary format for "Field Data Manager" software

Field Data Manager
Visualization software and database for measuring, calibration and configuration data
- SQL database which is protected against manipulation
- Functions to import, save and print out logbooks
- Load curves to display measured values

Virtual process values (mathematical functions)
In addition to "real" process values, which are provided by connected physical sensors or analog inputs, mathematical functions can be used to calculate a maximum of 6 "virtual" process values.

The "virtual" process values can be:
- Output via a current output or a fieldbus
- Used as a controlled variable
- Assigned as a measured variable to a limit switch
- Used as a measured variable to trigger cleaning
- Displayed in user-defined measuring menus

The following mathematical functions are possible:
- Calculation of pH from two conductivity values according to VGB 405 RL, e.g. in boiler feedwater
- Difference between two measured values from different sources, e.g. for membrane monitoring
- Differential conductivity, e.g. for monitoring the efficiency of ion exchangers
- Degassed conductivity, e.g. for process controls in power plants
- Redundancy for monitoring two or three redundant sensors
- pH calculation based on the measured values of a pH and an ORP sensor
- Calculation of the remaining capacity of a cation exchanger
- Formula editor
Concentration tables

When the device is delivered from the factory, tables are saved in the device that allow inductive conductivity measurements to be converted to concentrations of certain substances. 4 user-defined tables are also possible.

The following factory concentration tables are available:

<table>
<thead>
<tr>
<th>Substance</th>
<th>Concentration range</th>
<th>Temperature range</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaOH</td>
<td>0 to 15 %</td>
<td>0 to 100 °C (32 to 212 °F)</td>
</tr>
<tr>
<td>NaOH</td>
<td>25 to 50 %</td>
<td>2 to 80 °C (36 to 176 °F)</td>
</tr>
<tr>
<td>HCl</td>
<td>0 to 20 %</td>
<td>0 to 65 °C (32 to 149 °F)</td>
</tr>
<tr>
<td>HNO₃</td>
<td>0 to 30 %</td>
<td>2 to 80 °C (36 to 176 °F)</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>0.5 to 27 % and 35 to 85 %</td>
<td>0 to 100 °C (32 to 212 °F)</td>
</tr>
<tr>
<td>H₂SO₄</td>
<td>93 to 100 %</td>
<td>10 to 115 °C (50 to 239 °F)</td>
</tr>
<tr>
<td>H₃PO₄</td>
<td>0 to 40 %</td>
<td>2 to 80 °C (36 to 176 °F)</td>
</tr>
<tr>
<td>NaCl</td>
<td>0 to 26 %</td>
<td>2 to 80 °C (36 to 176 °F)</td>
</tr>
</tbody>
</table>

Safety

Real-time clock

The device has a real-time clock, which is buffered by a button cell battery if the power supply fails. This ensures that the device continues to keep the correct date and time when it is restarted and that the time stamp for the logbooks is correct.

Data security

All settings, logbooks etc. are stored in a non-volatile memory to ensure that the data are retained even in the event of a disruption to the power supply.

Measuring range switching for conductivity

- Can be used in CIP processes e.g. for safe monitoring of phase separations
- Switching between 4 complete parameter sets:
 - Conductivity operating mode
 - Concentration tables
 - Temperature compensation
 - Output signal range
 - Limit value switch
- Via digital inputs or fieldbus

Measured value compensation for oxygen and conductivity

- Pressure or temperature compensation
- Input signals from external sensors via current input or fieldbus
- Signals from connected temperature sensors

Password protection

Password-protected login
- For remote operation via web server
- For local operation

Process safety

Two independent PID controllers
- One- or two-sided control
- Limit switches
- 4 cleaning programs which can be programmed independently of each other

IT security

Our warranty is valid only if the device is installed and used as described in the Operating Instructions. The device is equipped with security mechanisms to protect it against any inadvertent changes to the settings.

IT security measures, which provide additional protection for the device and associated data transfer, must be implemented by the operators themselves in line with their security standards.
Input

Measured variables

Photometer
- Absorption (UV, color, NIR, cell growth)
- Turbidity

Memosens sensors
- Documentation of the connected sensor

Measuring ranges

Photometer
- OUSAF12, OUSAF21, OUSAF22, OUSAF44, OUSAF46
 - 0 to 2.5 AU
 - Max. 50 OD (depending on the optical path length)
- OUSAF11
 - 0 to 3 AU
 - 0 to 6 OD (depending on the optical path length)
- OUSTF10
 - 0 to 200 FTU
 - 0 to 200 ppm DE
- OUSBT66
 - 0 to 4 AU
 - 0 to 8 OD (depending on the optical path length)

Memosens sensors
- Documentation of the connected sensor

Types of input

- Digital sensor inputs for sensors with Memosens protocol
- Analog current inputs (optional)
- Digital inputs (optional)
- Analog photometer inputs

Input signal

- Depending on version:
 - Max. 2 x analog photometers
 - Max. 4 x binary sensor signal
 - 2 x 0/4 to 20 mA (optional), passive, potentially isolated from one another and from the sensor inputs
 - 0 to 30 V

Cable specification

Cable type
- Cable set CUK80 for photometer sensors
- Memosens data cable CYK10 or sensor fixed cable, each with cable end sleeves or M12 round-pin connector (optional, for field housing)

Cable length

All sensors except OUSBT66

Max. 100 m (330 ft)

OUSBT66

Maximum 20 m (65 ft)

Digital inputs, passive

Electrical specification

- Drawing power (passive)
- Galvanically isolated

Span

- High: 11 to 30 V DC
- Low: 0 to 5 V DC
Nominal input current | max. 8 mA
---|---
PFM function | Minimum pulse width: 500 µs (1 kHz)
Test voltage | 500 V
Cable specification | Max. 2.5 mm² (14 AWG)

Current input, passive

<table>
<thead>
<tr>
<th>Span</th>
<th>> 0 to 20 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal characteristic</td>
<td>Linear</td>
</tr>
<tr>
<td>Internal resistance</td>
<td>Non-linear</td>
</tr>
<tr>
<td>Test voltage</td>
<td>500 V</td>
</tr>
</tbody>
</table>

Output

Output signal
Depending on version:
- 2 x 0/4 to 20 mA, active, galvanically isolated from one another and from the sensor circuits
- 4 x 0/4 to 20 mA, active, galvanically isolated from one another and from the sensor circuits
- 6 x 0/4 to 20 mA, active, galvanically isolated from one another and from the sensor circuits
- 8 x 0/4 to 20 mA, active, galvanically isolated from one another and from the sensor circuits
- Optional HART communication (only via current output 1:1)

<table>
<thead>
<tr>
<th>HART</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal encoding</td>
<td>FSK ± 0.5 mA above current signal</td>
</tr>
<tr>
<td>Data transmission rate</td>
<td>1200 baud</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>Yes</td>
</tr>
<tr>
<td>Load (communication resistor)</td>
<td>250 Ω</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFIBUS DP/RS485</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal encoding</td>
<td>EIA/TIA-485, PROFIBUS DP-compliant acc. to IEC 61158</td>
</tr>
<tr>
<td>Data transmission rate</td>
<td>9.6 kBd, 19.2 kBd, 45.45 kBd, 93.75 kBd, 187.5 kBd, 500 kBd, 1.5 MBd, 6 MBd, 12 MBd</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>Yes</td>
</tr>
<tr>
<td>Connectors</td>
<td>Spring terminal (max. 1.5 mm), bridged internally (T-function), optional M12</td>
</tr>
<tr>
<td>Bus termination</td>
<td>Internal slide switch with LED display</td>
</tr>
</tbody>
</table>
Modbus RS485

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal encoding</td>
<td>EIA/TIA-485</td>
</tr>
<tr>
<td>Data transmission rate</td>
<td>2,400, 4,800, 9,600, 19,200, 38,400, 57,600 and 115,200 baud</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>Yes</td>
</tr>
<tr>
<td>Connectors</td>
<td>Spring terminal (max. 1.5 mm), bridged internally (T-function), optional M12</td>
</tr>
<tr>
<td>Bus termination</td>
<td>Internal slide switch with LED display</td>
</tr>
</tbody>
</table>

Ethernet and Modbus TCP

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal encoding</td>
<td>IEEE 802.3 (Ethernet)</td>
</tr>
<tr>
<td>Data transmission rate</td>
<td>10/100 MBd</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>Yes</td>
</tr>
<tr>
<td>Connection</td>
<td>RJ45</td>
</tr>
<tr>
<td>IP address</td>
<td>DHCP (default) or configuration via menu</td>
</tr>
</tbody>
</table>

EtherNet/IP

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal encoding</td>
<td>IEEE 802.3 (Ethernet)</td>
</tr>
<tr>
<td>Data transmission rate</td>
<td>10/100 MBd</td>
</tr>
<tr>
<td>Galvanic isolation</td>
<td>Yes</td>
</tr>
<tr>
<td>Connection</td>
<td>RJ45</td>
</tr>
<tr>
<td>IP address</td>
<td>DHCP (default) or configuration via menu</td>
</tr>
</tbody>
</table>

Signal on alarm

Adjustable, as per NAMUR Recommendation NE 43
- In measuring range 0 to 20 mA (HART is not available with this measuring range):
 Failure current from 0 to 23 mA
- In measuring range 4 to 20 mA:
 Failure current from 2.4 to 23 mA
- Factory setting for failure current for both measuring ranges:
 21.5 mA

Load

Max. 500 Ω

Linearity/transmission behavior

Linear

Digital outputs, passive

Electrical specification

- Passive
- Open collector, max. 30 V, 15 mA
- Maximum voltage drop 3 V

External power supply

When using an onsite auxiliary voltage supply and an onsite digital input:
Recommended minimum auxiliary voltage = 3 V + \(V_{ih\text{min}} \)
\(V_{ih\text{min}} \) = minimum input voltage required (high-level input voltage)

PFM function

Minimum pulse width: 500 µs (1 kHz)
Auxiliary voltage

Electrical specification
- Galvanically isolated
- Unregulated, 24 V DC
- Max. 50 mA (per DIO module)

Test voltage
500 V

Cable specification
Max. 2.5 mm² (14 AWG)

Current outputs, active

<table>
<thead>
<tr>
<th>Span</th>
<th>0 to 23 mA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.4 to 23 mA for HART communication</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Signal characteristic</th>
<th>Linear</th>
</tr>
</thead>
</table>

Electrical specification

Output voltage
Max. 24 V

Test voltage
500 V

Cable specification

- **Cable type**
 Recommended: shielded cable
- **Cable specification**
 Max. 2.5 mm² (14 AWG)

Relay outputs

Electrical specification

Relay types
- 1 single-pin changeover contact (alarm relay)
- 2 or 4 single-pin changeover contacts (optional with extension modules)

Maximum load
- Alarm relay: 0.5 A
- All other relays: 2.0 A

Relay switching capacity

Base module (Alarm relay)

<table>
<thead>
<tr>
<th>Switching voltage</th>
<th>Load (max.)</th>
<th>Switching cycles (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V AC, cosΦ = 0.8 to 1</td>
<td>0.1 A</td>
<td>700,000</td>
</tr>
<tr>
<td></td>
<td>0.5 A</td>
<td>450,000</td>
</tr>
<tr>
<td>115 V AC, cosΦ = 0.8 to 1</td>
<td>0.1 A</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>0.5 A</td>
<td>650,000</td>
</tr>
<tr>
<td>24 V DC, L/R = 0 to 1 ms</td>
<td>0.1 A</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>0.5 A</td>
<td>350,000</td>
</tr>
</tbody>
</table>
Extension modules

<table>
<thead>
<tr>
<th>Switching voltage</th>
<th>Load (max.)</th>
<th>Switching cycles (min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V AC, cosΦ = 0.8 to 1</td>
<td>0.1 A</td>
<td>700,000</td>
</tr>
<tr>
<td></td>
<td>0.5 A</td>
<td>450,000</td>
</tr>
<tr>
<td></td>
<td>2 A</td>
<td>120,000</td>
</tr>
<tr>
<td>115 V AC, cosΦ = 0.8 to 1</td>
<td>0.1 A</td>
<td>1,000,000</td>
</tr>
<tr>
<td></td>
<td>0.5 A</td>
<td>650,000</td>
</tr>
<tr>
<td></td>
<td>2 A</td>
<td>170,000</td>
</tr>
<tr>
<td>24 V DC, L/R = 0 to 1 ms</td>
<td>0.1 A</td>
<td>500,000</td>
</tr>
<tr>
<td></td>
<td>0.5 A</td>
<td>350,000</td>
</tr>
<tr>
<td></td>
<td>2 A</td>
<td>150,000</td>
</tr>
</tbody>
</table>

Cable specification
Max. 2.5 mm² (14 AWG)

Protocol-specific data

HART

- Manufacturer ID: 11h
- Device type: 155Dh
- Device revision: 001h
- HART version: 7.2
- Device description files (DD/DTM): www.endress.com/hart
- Device Integration Manager DIM
- Device variables: 16 user-definable and 16 predefined device variables, dynamic variables PV, SV, TV, QV
- Supported features: PDM DD, AMS DD, DTM, Field Xpert DD

PROFIBUS DP

- Manufacturer ID: 11h
- Device type: 155Dh
- Profile version: 3.02
- GSD files: www.endress.com/profibus
- Device Integration Manager DIM
- Output values: 16 AI blocks, 8 DI blocks
- Input variables: 4 AO blocks, 8 DO blocks
- Supported features:
 - 1 MSCY0 connection (cyclical communication, master class 1 to slave)
 - 1 MSAC1 connection (acyclical communication, master class 1 to slave)
 - 2 MSAC2 connections (acyclical communication, master class 2 to slave)
 - Device lock: The device can be locked using the hardware or software
 - Addressing using DIL switches or software
 - GSD, PDM DD, DTM
Modbus RS485

<table>
<thead>
<tr>
<th>Protocol</th>
<th>RTU/ASCII</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function codes</td>
<td>03, 04, 06, 08, 16, 23</td>
</tr>
<tr>
<td>Broadcast support for function codes</td>
<td>06, 16, 23</td>
</tr>
<tr>
<td>Output data</td>
<td>16 measured values (value, unit, status), 8 digital values (value, status)</td>
</tr>
<tr>
<td>Input data</td>
<td>4 setpoints (value, unit, status), 8 digital values (value, status), diagnostic information</td>
</tr>
<tr>
<td>Supported features</td>
<td>Address can be configured using switch or software</td>
</tr>
</tbody>
</table>

Modbus TCP

<table>
<thead>
<tr>
<th>TCP port</th>
<th>502</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP connections</td>
<td>3</td>
</tr>
<tr>
<td>Protocol</td>
<td>TCP</td>
</tr>
<tr>
<td>Function codes</td>
<td>03, 04, 06, 08, 16, 23</td>
</tr>
<tr>
<td>Broadcast support for function codes</td>
<td>06, 16, 23</td>
</tr>
<tr>
<td>Output data</td>
<td>16 measured values (value, unit, status), 8 digital values (value, status)</td>
</tr>
<tr>
<td>Input data</td>
<td>4 setpoints (value, unit, status), 8 digital values (value, status), diagnostic information</td>
</tr>
<tr>
<td>Supported features</td>
<td>Address can be configured using DHCP or software</td>
</tr>
</tbody>
</table>

EtherNet/IP

<table>
<thead>
<tr>
<th>Log</th>
<th>EtherNet/IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODVA certification</td>
<td>Yes</td>
</tr>
<tr>
<td>Device profile</td>
<td>Generic device (product type: 0x2B)</td>
</tr>
<tr>
<td>Manufacturer ID</td>
<td>0x049Eh</td>
</tr>
<tr>
<td>Device type ID</td>
<td>0x109Ch</td>
</tr>
<tr>
<td>Polarity</td>
<td>Auto-MIDI-X</td>
</tr>
<tr>
<td>Connections</td>
<td>CIP 12</td>
</tr>
<tr>
<td></td>
<td>I/O 6</td>
</tr>
<tr>
<td></td>
<td>Explicit message 6</td>
</tr>
<tr>
<td></td>
<td>Multicast 3 consumers</td>
</tr>
<tr>
<td>Minimum RPI</td>
<td>100 ms (default)</td>
</tr>
<tr>
<td>Maximum RPI</td>
<td>10000 ms</td>
</tr>
<tr>
<td>System integration</td>
<td>EtherNet/IP EDS</td>
</tr>
<tr>
<td></td>
<td>Rockwell Add-on-Profile Level 3, Faceplate for Factory Talk SE</td>
</tr>
<tr>
<td>IO data</td>
<td>Input (T → O)</td>
</tr>
<tr>
<td></td>
<td>Device status and diagnostic message with highest priority</td>
</tr>
<tr>
<td></td>
<td>Measured values:</td>
</tr>
<tr>
<td></td>
<td>• 16 AI (analog input) + Status + Unit</td>
</tr>
<tr>
<td></td>
<td>• 8 DI (discrete input) + Status</td>
</tr>
<tr>
<td></td>
<td>Output (O → T)</td>
</tr>
<tr>
<td></td>
<td>Actuating values:</td>
</tr>
<tr>
<td></td>
<td>• 4 AO (analog output) + status + unit</td>
</tr>
<tr>
<td></td>
<td>• 8 DO (discrete output) + Status</td>
</tr>
</tbody>
</table>
Web server

The Web server enables full access to the device configuration, measured values, diagnostic messages, logbooks and service data via standard WiFi/WLAN/LAN/GSM or 3G routers with a user-defined IP address.

<table>
<thead>
<tr>
<th>TCP port</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported features</td>
<td></td>
</tr>
<tr>
<td>- Remote-controlled device configuration (1 session)</td>
<td></td>
</tr>
<tr>
<td>- Save/restore device configuration (via SD card)</td>
<td></td>
</tr>
<tr>
<td>- Logbook export (file formats: CSV, FDM)</td>
<td></td>
</tr>
<tr>
<td>- Access to Web server via DTM or Internet Explorer</td>
<td></td>
</tr>
<tr>
<td>- Login</td>
<td></td>
</tr>
<tr>
<td>- Web server can be switched off</td>
<td></td>
</tr>
</tbody>
</table>

Power supply

Supply voltage

CM44P

Depending on the version:
- 100 to 230 V AC, 50/60 Hz
 - Maximum permitted fluctuation of mains supply voltage: ± 15 % of nominal voltage 1)
- 24 V DC
 - Maximum permitted fluctuation of mains supply voltage: + 20/- 15 % of nominal voltage 1)

NOTICE

The device does not have a power switch!

- Provide a protected circuit breaker in the vicinity of the device at the place of installation.
- The circuit breaker must be a switch or power switch, and must be labeled as the circuit breaker for the device.
- At the supply point, the power supply must be isolated from dangerous live cables by double or reinforced insulation in the case of devices with a 24 V supply voltage.

Power consumption

CM44P

Depending on supply voltage
- 100 to 230 V AC:
 - Max. 73 VA (field device)
 - Max. 150 VA (cabinet device)
- 24 V DC:
 - Max. 68 W (field device)
 - Max. 59 W (cabinet device)

Fuse

Fuse not exchangeable

Overvoltage protection

Integrated overvoltage/lightning protection as per EN 61326
Protection category 1 and 3

1) *Specifications only apply if used with power unit supplied by manufacturer.
Cable entries (field device only)

<table>
<thead>
<tr>
<th>Identification of the cable entry on housing base</th>
<th>Suitable gland</th>
</tr>
</thead>
<tbody>
<tr>
<td>B, C, H, I, 1-8</td>
<td>M16x1.5 mm/NPT3/8'/G3/8</td>
</tr>
<tr>
<td>A, D, F, G</td>
<td>M20x1.5 mm/NPT1/2'/G1/2</td>
</tr>
<tr>
<td>E</td>
<td>M12x1.5 mm</td>
</tr>
<tr>
<td>‡</td>
<td></td>
</tr>
</tbody>
</table>

Recommended assignment

<table>
<thead>
<tr>
<th>1-8</th>
<th>Sensors 1-8</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Power supply</td>
</tr>
<tr>
<td>B</td>
<td>RS485 In or M12 DP/RS485</td>
</tr>
<tr>
<td>C</td>
<td>Can be used freely</td>
</tr>
<tr>
<td>D,F,G</td>
<td>Current outputs and inputs, relays</td>
</tr>
<tr>
<td>H</td>
<td>Can be used freely</td>
</tr>
<tr>
<td>I</td>
<td>RS485 Out or M12 Ethernet</td>
</tr>
<tr>
<td>E</td>
<td>Do not use</td>
</tr>
</tbody>
</table>

Cable specification

- **Length of display cable provided (cabinet device only):**
 3 m (10 ft)

- **Maximum permitted length of a display cable (cabinet device only):**
 5 m (16.5 ft)

Electrical connection

Connecting supply voltage

- **A** Internal power supply cable
- **B** Extension power unit

![Diagram 12: Power supply connection on the BASE-E (field device)](image12)

![Diagram 13: Overall wiring diagram BASE-E and extension power unit (B)](image13)
14 Power supply connection with BASE-E (cabinet device)

* Assignment depending on power unit, make sure to connect correctly

The two device versions may only be operated with the power unit supplied and the power unit cable. Also pay attention to the information in the operating manual supplied for the power unit.
Connecting optional modules

With extension modules you can purchase additional functions for your device.

NOTICE

Unacceptable hardware combinations (due to conflicts in power supply)

Incorrect measurements or total failure of the measuring point as a result of heat build-up or overloading

- If you are planning to extend your controller, make sure the resulting hardware combination is permitted (Configurator at www.endress.com).
- Remember that the sum of all current inputs and outputs may not exceed 8.
- Make sure not to use more than 2 "DIO" modules. More "DIO" modules are not permitted.
- Please contact your Endress+Hauser sales center should you have any questions.

Overview of all the modules available

<table>
<thead>
<tr>
<th>Module name</th>
<th>AOR</th>
<th>2R</th>
<th>4R</th>
<th>2DS</th>
<th>DIO</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 x 0/4 to 20 mA analog outputs</td>
<td>2 relays</td>
<td>4 relays</td>
<td>2 digital sensor inputs</td>
<td>2 digital inputs</td>
</tr>
<tr>
<td></td>
<td>Order No. 71111053</td>
<td>Order No. 71125375</td>
<td>Order No. 71125376</td>
<td>Order No. 71135631</td>
<td>Order No. 71135638</td>
</tr>
<tr>
<td>Relay 1</td>
<td>41</td>
<td>42</td>
<td>41</td>
<td>85</td>
<td>47</td>
</tr>
<tr>
<td>Relay 2</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>85</td>
<td>48</td>
</tr>
<tr>
<td>Relay 3</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>85</td>
<td>47</td>
</tr>
<tr>
<td>Relay 4</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>85</td>
<td>48</td>
</tr>
<tr>
<td>Sensor 1</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>85</td>
<td>47</td>
</tr>
<tr>
<td>Sensor 2</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>85</td>
<td>48</td>
</tr>
</tbody>
</table>
Module name

<table>
<thead>
<tr>
<th>2AO</th>
<th>4AO</th>
<th>2AI</th>
<th>485</th>
<th>ETH</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **2 x 0/4 to 20 mA analog outputs**
- **Order No.** 71135632

- **4 x 0/4 to 20 mA analog outputs**
- **Order No.** 71135633

- **2 x 0/4 to 20mA analog inputs**
- **Order No.** 71135639

- **Ethernet (web server or Modbus TCP)**
- **5V power supply for PROFIBUS DP termination**
- **RS485 (PROFIBUS DP or Modbus RS485)**
- **Order No.** 71135634

- **Web server and Ethernet/IP or Modbus TCP**
- **Order No.** 71272410

PROFIBUS DP (module 485)

Contacts 95, 96 and 99 are bridged in the connector. This ensures that PROFIBUS communication is not interrupted if the connector is disconnected.
Protective ground connection

![Diagram of Protective ground connection]

1. **Cable mounting rail and associated function (field device)**

2. **Mounting rail for functional ground connections (cabinet device)**

 - **1** Cable mounting rail
 - **2** Threaded bolt (protective ground connection, central grounding point)
 - **3** Additional threaded bolts for ground connections
 - **4** Cable clamps (fixing and grounding the sensor cables)

Sensor connection

Photometer sensors

<table>
<thead>
<tr>
<th>Sensor types</th>
<th>Sensor cable</th>
<th>Sensors</th>
</tr>
</thead>
</table>
| Analog photometer sensors without additional internal power supply | CUK50 | • OUSAF12
• OUSAF21
• OUSAF22
• OUSAF44
• OUSAF46
• OUSTF10
• OUSB766 |

<table>
<thead>
<tr>
<th>Sensor types</th>
<th>Sensor cable</th>
<th>Sensors</th>
</tr>
</thead>
</table>
| Digital sensors without additional internal power supply | With plug-in connection and inductive signal transmission | • pH sensors
• ORP sensors
• Combined sensors
• Oxygen sensors (amperometric and optical)
• Conductivity sensors with conductive measurement of conductivity
• Chlorine sensors (disinfection) |
| | Fixed cable | Conductivity sensors with inductive measurement of conductivity |

Sensors with Memosens protocol

<table>
<thead>
<tr>
<th>Sensor types</th>
<th>Sensor cable</th>
<th>Sensors</th>
</tr>
</thead>
</table>
| Digital sensors with additional internal power supply | Fixed cable | • Turbidity sensors
• Sensors for interface measurement
• Sensors for measuring the spectral absorption coefficient (SAC)
• Nitrate sensors
• Optical oxygen sensors
• Ion-sensitive sensors |

The following rule applies if connecting CUS71D sensors:
- The maximum number of Memosens inputs is limited to two.
- Any combination of CUS71D or other sensors is possible.

Types of connection
- Direct connection of sensor cable to terminal connector of the sensor module PEM and of Memosens module 2DS or of base module E (⇒ 18 ff.) (Memosens sensors only)
- Optional for Memosens sensors: Sensor cable plug connected to the M12 sensor socket on the underside of the device (field device)

 With this type of connection, the device is already wired at the factory (⇒ 22).
Sensor cable connected directly

18 Memosens sensors without additional supply voltage

19 Memosens sensors with additional supply voltage

20 Memosens sensors with and without additional supply voltage at sensor module 2DS

21 PEM module

Connecting photometer sensors to PEM module

<table>
<thead>
<tr>
<th>Sensor</th>
<th>Cable color</th>
<th>PEM terminal</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>OUSAF11</td>
<td>YE (thick)</td>
<td>P+</td>
<td>Lamp voltage +</td>
</tr>
<tr>
<td></td>
<td>YE (thin)</td>
<td>S+</td>
<td>Recording lamp voltage +</td>
</tr>
<tr>
<td></td>
<td>BK (thin)</td>
<td>S-</td>
<td>Recording lamp voltage -</td>
</tr>
<tr>
<td></td>
<td>BK (thick)</td>
<td>P-</td>
<td>Lamp voltage -</td>
</tr>
<tr>
<td></td>
<td>RD</td>
<td>A (1)</td>
<td>Sensor +</td>
</tr>
<tr>
<td></td>
<td>BK^1/ WH^2</td>
<td>C(1)</td>
<td>Sensor -</td>
</tr>
<tr>
<td></td>
<td>GY</td>
<td>SH (1)</td>
<td>Shield</td>
</tr>
<tr>
<td>Sensor</td>
<td>Cable color</td>
<td>PEM terminal</td>
<td>Assignment</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>OUSAF21</td>
<td>YE (thick)</td>
<td>P+</td>
<td>Lamp voltage +</td>
</tr>
<tr>
<td>OUSAF22</td>
<td>YE (thin)</td>
<td>S+</td>
<td>Recording lamp voltage +</td>
</tr>
<tr>
<td>OUSTF10</td>
<td>BK (thin)</td>
<td>S-</td>
<td>Recording lamp voltage -</td>
</tr>
<tr>
<td>OUSAF44</td>
<td>BK (thick)</td>
<td>P-</td>
<td>Lamp voltage -</td>
</tr>
<tr>
<td></td>
<td>RD</td>
<td>A (1)</td>
<td>Measuring detector sensor +</td>
</tr>
<tr>
<td></td>
<td>BK</td>
<td>C(1)</td>
<td>Measuring detector sensor -</td>
</tr>
<tr>
<td></td>
<td>GY</td>
<td>SH (1)</td>
<td>Measuring detector screening</td>
</tr>
<tr>
<td></td>
<td>WH</td>
<td>A (2)</td>
<td>Sensor reference +</td>
</tr>
<tr>
<td></td>
<td>GN</td>
<td>C(2)</td>
<td>Sensor reference -</td>
</tr>
<tr>
<td></td>
<td>GY</td>
<td>SH (2)</td>
<td>Reference screening</td>
</tr>
</tbody>
</table>

OUSAF46

2 PEM modules necessary

<table>
<thead>
<tr>
<th>Sensor</th>
<th>PEM module 1</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>YE (thick)</td>
<td>P+</td>
<td>Lamp voltage +</td>
</tr>
<tr>
<td>YE (thin)</td>
<td>S+</td>
<td>Recording lamp voltage +</td>
</tr>
<tr>
<td>BK (thin)</td>
<td>S-</td>
<td>Recording lamp voltage -</td>
</tr>
<tr>
<td>BK (thick)</td>
<td>P-</td>
<td>Lamp voltage -</td>
</tr>
<tr>
<td>RD</td>
<td>A (1)</td>
<td>Measuring detector sensor +</td>
</tr>
<tr>
<td>BK</td>
<td>C(1)</td>
<td>Measuring detector sensor -</td>
</tr>
<tr>
<td>GY</td>
<td>SH (1)</td>
<td>Measuring detector screening</td>
</tr>
<tr>
<td>WH (lamp)</td>
<td>A (2)</td>
<td>Sensor reference +</td>
</tr>
<tr>
<td>GN (lamp)</td>
<td>C(2)</td>
<td>Sensor reference -</td>
</tr>
<tr>
<td>GY (lamp)</td>
<td>SH (2)</td>
<td>Reference screening</td>
</tr>
</tbody>
</table>

OUSBT66

<table>
<thead>
<tr>
<th>Sensor</th>
<th>PEM module 2</th>
<th>Assignment</th>
</tr>
</thead>
<tbody>
<tr>
<td>WH</td>
<td>A (1)</td>
<td>Measuring detector sensor +</td>
</tr>
<tr>
<td>GN</td>
<td>C(1)</td>
<td>Measuring detector sensor -</td>
</tr>
<tr>
<td>GY</td>
<td>SH (1)</td>
<td>Measuring detector screening</td>
</tr>
<tr>
<td>RD (lamp)</td>
<td>A (2)</td>
<td>Sensor reference +</td>
</tr>
<tr>
<td>BK (lamp)</td>
<td>C(2)</td>
<td>Sensor reference -</td>
</tr>
<tr>
<td>GY (lamp)</td>
<td>SH (2)</td>
<td>Reference screening</td>
</tr>
</tbody>
</table>

1) OUSAF12
2) OUSAF11
Memosens connection via M12 plug-in connection (field device only)

Device versions with a pre-installed M12 socket are ready-wired upon delivery.

Please note the following:
- The internal device wiring is always the same regardless of what kind of sensor you connect to the M12 socket (plug&play).
- The signal or power supply cables are assigned in the sensor head in such a way that the PK and GY power supply cables are either used (e.g. optical sensors) or not (e.g. pH or ORP sensors).

Performance characteristics

Response time

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current outputs</td>
<td>$f_{90} = \text{max. 500 ms for an increase from 0 to 20 mA}$</td>
</tr>
<tr>
<td>Current inputs</td>
<td>$f_{90} = \text{max. 330 ms for an increase from 0 to 20 mA}$</td>
</tr>
<tr>
<td>Digital inputs and outputs</td>
<td>$f_{90} = \text{max. 330 ms for an increase from low to high}$</td>
</tr>
</tbody>
</table>

Reference temperature

$25 \, ^\circ C \, (77 \, ^\circ F)$

Measured error for sensor inputs

Photometer

- 0 to 2.5 AU / to 50 OD
 - 0.3 % of measuring range at $25 \, ^\circ C \, (77 \, ^\circ F)$
 - Max. 1 % of measuring range
- 0 to 200 FTU / 0 to 200 ppm DE
 - Max. 2 % of measuring range

The photometer lamps will not operate at full capacity until a warm-up period of 30 minutes has elapsed. Only then do the specified inaccuracies apply.

Memosens sensors

→ Documentation of the connected sensor

Measured error for current inputs and outputs

Typical measured errors:

- $< 20 \, \mu A$ (with current values $< 4 \, mA$)
- $< 50 \, \mu A$ (with current values 4 to 20 mA)

at $25 \, ^\circ C \, (77 \, ^\circ F)$ each

Additional measured error depending on the temperature:

- $< 1.5 \, \mu A/K$
Frequency tolerance of digital inputs and outputs ≤ 1%

Resolution of current inputs and outputs < 5 µA

Repeatability → Documentation of the connected sensor

Installation

Installation conditions

Mounting plate (field device)

![Mounting plate, dimensions in mm (in)](image)

24 Mounting plate, dimensions in mm (in)

Weather protection cover (field device)

![Weather protection cover, dimensions in mm (in)](image)

25 Dimensions in mm (in)
Installation

Post mounting

You require the post mounting kit (optional) to mount the unit on a pipe, post or railing (square or circular, clamping range 20 to 61 mm (0.79 to 2.40')).

![Diagram of Post Mounting]

- **1** Weather protection cover (optional)
- **2** Post mounting plate (post mounting kit)
- **3** Spring washers and nuts (post mounting kit)
- **4** Pipe clamps (post mounting kit)
- **5** Spring washers and nuts (post mounting kit)
- **6** Pipe or railing (circular/square)
- **7** Mounting plate
- **8** Threaded rods (post mounting kit)

Rail mounting

![Diagram of Rail Mounting]

- **1** Weather protection cover (optional)
- **2** Post mounting plate (post mounting kit)
- **3** Spring washers and nuts (post mounting kit)
- **4** Pipe clamps (post mounting kit)
- **5** Spring washers and nuts (post mounting kit)
- **6** Pipe or railing (circular/square)
- **7** Mounting plate
- **8** Threaded rods (post mounting kit)
- **9** Screws (post mounting kit)
Wall mounting

![Diagram of wall mounting](image)

28 Installation clearance in mm (in)

- **1**: Wall
- **2**: 4 drill holes
- **3**: Mounting plate
- **4**: Screws Ø 6 mm (not part of scope of supply)

1) The size of the drill holes depends on the wall plugs used. The wall plugs and screws must be provided by the customer.

Mounting on DIN rail as per IEC 60715

NOTICE

Incorrect mounting location in the cabinet, spacing regulations not observed

Possible malfunctions as a result of heat buildup and interference from neighboring devices!

- Do not position the device directly above sources of heat. The temperature specification must be observed.
- The components are designed for convection-based cooling. Avoid heat buildup. Ensure openings are not covered, e.g. by cables.
- Observe the specified distances to other devices.
- Physically separate the device from frequency converters and high-voltage devices.
- Recommended installation direction: horizontal. The specified ambient conditions, and particularly the ambient temperatures, only apply for horizontal installation.
- Vertical orientation is also possible. However, this requires additional fixing clips at the place of installation to hold the device in position on the DIN rail.
- Recommended installation of power unit: to the left of the device.
The following minimum clearance specifications must be observed:

- Distances at the side in relation to other devices incl. power units and to the wall of the cabinet:
 at least 20 mm (0.79 inch)

- Distance above and below the device and depth distance (to control cabinet door or other devices
 installed there):
 at least 50 mm (1.97 inch)

[Diagram showing minimum clearances]

30 Minimum clearance in mm (in)

Wall mounting

[Diagram showing wall mounting details]

31 Drilling pattern for wall mounting in mm (in)
Mounting the external display

The mounting plate also serves as the drilling template. The marks on the side help you mark the position of the drill holes.

![Mounting plate of external display, dimensions in mm (in)](image)

- **a** Retaining tab
- **b** Production-related recesses, no function for the user

Environment

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Cabinet device</th>
<th>External display (optional)</th>
<th>Field device</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature range</td>
<td>0 to 50 °C (32 to 120 °F)</td>
<td>–20 to 60 °C (0 to 140 °F)</td>
<td>–20 to 50 °C (0 to 120 °F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>–25 to 85 °C (−13 to 185 °F)</td>
<td></td>
<td>–40 to +80 °C (−40 to 175 °F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 to 85%, not condensing</td>
<td>5 to 95%, not condensing</td>
<td>10 to 95 %, non-condensating</td>
</tr>
<tr>
<td>Degree of protection</td>
<td>IP20 shock protection</td>
<td>IP66 front-panel, when installed correctly including seal for housing door</td>
<td>IP 66/67, impermeability and corrosion resistance in accordance with NEMA TYPE 4X</td>
</tr>
</tbody>
</table>
Liquiline CM44P

Climate class (cabinet device only)
As per IEC 60654-1: B2

Environmental tests
Vibration test based on DIN EN 60668-2, October 2008
Vibration test based on DIN EN 60654-3, August 1998

<table>
<thead>
<tr>
<th>Post or pipe mounting</th>
<th>Frequency range (sinusoidal)</th>
<th>Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 to 500 Hz</td>
<td>0.15 mm</td>
</tr>
<tr>
<td></td>
<td>57.5 to 500 Hz</td>
<td>2 g ¹)</td>
</tr>
<tr>
<td>Test duration</td>
<td>10 frequency cycles/spatial axis, in 3 spatial axes (1 oct./min)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wall mounting</th>
<th>Frequency range (sinusoidal)</th>
<th>Amplitude</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 to 150 Hz</td>
<td>0.75 mm</td>
</tr>
<tr>
<td></td>
<td>12.9 to 150 Hz</td>
<td>0.5 g ¹)</td>
</tr>
<tr>
<td>Test duration</td>
<td>10 frequency cycles/spatial axis, in 3 spatial axes (1 oct./min)</td>
<td></td>
</tr>
</tbody>
</table>

¹) g ... gravitational acceleration (1 g ≈ 9.81 m/s²)

Electromagnetic compatibility
Interference emission and interference immunity as per EN 61326-1:2013, Class A for Industry

Electrical safety

Cabinet device
- IEC 61010-1, Class I equipment
- Low voltage: overvoltage category II
- Environment < 2000 m (< 6562 ft) above MSL

Field device
- IEC 61010-1, Class I equipment
- Low voltage: overvoltage category II
- Environment < 3000 m (< 9840 ft) above MSL

Degree of contamination
Cabinet device
The product is suitable for pollution degree 2.

Optional display (for cabinet device)
The product is suitable for pollution degree 4.

Field device
The product is suitable for pollution degree 4.

Pressure compensation to environment (field device only)
Filter made of GORE-TEX used as pressure compensation element
Ensures pressure compensation to environment and guarantees IP protection.
Mechanical construction

Dimensions of field housing in mm (inch)

Dimensions

Field device
cabinet device

Dimensions in mm (inch)
Optional display (for cabinet device)

External power units (for cabinet device)
Depending on the version ordered, a power unit for connection to 230 V or 24 V is supplied. There are two delivery variants for each version (cannot be selected). The factory-preferred variant is shown on the left in each case.
Service display (accessories)

The service display comprises:
- Portable display (same dimensions as under 'Optional display')
- Cover to protect the display and to hook it onto the (open) cabinet door

![Dimensions of the service display cover in mm (inch)](image)

<table>
<thead>
<tr>
<th>Weight</th>
<th>Field device</th>
<th>Cabinet device</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete device</td>
<td>CM44P (fully configured)</td>
</tr>
<tr>
<td></td>
<td>Approx. 2.1 kg (4.63 lbs), depending on the version</td>
<td>Approx. 0.95 kg (2.1 lbs)</td>
</tr>
<tr>
<td>Individual module</td>
<td>Approx. 0.06 kg (0.13 lbs)</td>
<td>Individual module</td>
</tr>
<tr>
<td>SD card</td>
<td>Max. 5 g (0.17 oz)</td>
<td>External display (excluding cables)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Approx. 0.56 kg (1.2 lbs)</td>
</tr>
<tr>
<td>Service display cover</td>
<td></td>
<td>External power unit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.46 kg (1 lbs)</td>
</tr>
<tr>
<td>External power unit</td>
<td></td>
<td>0.27 to 0.42 kg (0.60 to 0.92 lbs), depending on the power unit variant</td>
</tr>
<tr>
<td>SD card</td>
<td></td>
<td>SD card</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Max. 5 g (0.17 oz)</td>
</tr>
</tbody>
</table>
Materials

<table>
<thead>
<tr>
<th>Component</th>
<th>Material</th>
</tr>
</thead>
<tbody>
<tr>
<td>Housing base and DIN rail housing</td>
<td>PC-FR</td>
</tr>
<tr>
<td>Display cover</td>
<td>PC-FR</td>
</tr>
<tr>
<td>Display foil and soft keys (field device)</td>
<td>PE</td>
</tr>
<tr>
<td>Housing seal</td>
<td>EPDM</td>
</tr>
<tr>
<td>Display seal</td>
<td>EPDM</td>
</tr>
<tr>
<td>Soft keys (optional display)</td>
<td>EPDM</td>
</tr>
<tr>
<td>Module side panels</td>
<td>PC-FR</td>
</tr>
<tr>
<td>Module covers</td>
<td>PBT GF30 FR</td>
</tr>
<tr>
<td>Cable mounting rail (field device)</td>
<td>PBT GF30 FR, stainless steel 1.4301 (AISI304)</td>
</tr>
<tr>
<td>Terminal strip (cabinet device)</td>
<td>Stainless steel 1.4301 (AISI304)</td>
</tr>
<tr>
<td>Clamps</td>
<td>Stainless steel 1.4301 (AISI304)</td>
</tr>
<tr>
<td>Ground terminals</td>
<td>Stainless steel 1.4301 (AISI304)</td>
</tr>
<tr>
<td>Threaded fasteners</td>
<td>Stainless steel 1.4301 (AISI304)</td>
</tr>
<tr>
<td>Mounting plate (optional display)</td>
<td>Stainless steel 1.4301 (AISI304)</td>
</tr>
<tr>
<td>Securing screws (optional display)</td>
<td>Steel, galvanized</td>
</tr>
<tr>
<td>Cover for service display (accessories)</td>
<td>EPDM</td>
</tr>
<tr>
<td>Cable glands</td>
<td>Polyamide V0 as per UL94</td>
</tr>
</tbody>
</table>

Operability

Display
- Graphic display:
 - Resolution: 240 x 160 pixel
 - Back light with switch-off function
 - Red display background for alarms alerts users to errors
 - Transflective display technology for maximum contrast even in bright environments
 - User-definable measuring menus mean you can always keep track of the values that are important for your application.

Operating concept
- The simple and structured operating concept sets new standards:
 - Intuitive operation with the navigator and soft keys
 - Fast configuration of application-specific measurement options
 - Easy configuration and diagnosis thanks to plain-text display
 - All languages that can be ordered are available in every device
Local operation

1. Display (with red display background in alarm condition)
2. Navigator (jog/shuttle and press/hold function)
3. Soft keys (function depends on menu)

Remote operation

Via HART (e.g. using HART modem and FieldCare)

1. Device module Base L, H or E: current output 1 with HART
2. HART modem for connection to PC, e.g. Commubox FXA191 (RS232) or FXA195 (USB)
3. HART handheld terminal

1) Switch position "on" (substitutes the resistor)
Via PROFIBUS DP

45 PROFIBUS DP

T Terminating resistor

Via Modbus RS485

46 Modbus RS485

T Terminating resistor
Language packages

The language selected in the product structure is the operating language preset at the factory. All other languages can be selected using the menu.
- English (US)
- German
- Chinese (Simplified, PR China)
- Czech
- Dutch
- French
- Italian
- Japanese
- Polish
- Portuguese
- Russian
- Spanish
- Swedish
- Turkish
- Hungarian
- Croatian
- Vietnamese

The availability of other languages can be checked via the product structure at www.endress.com/cm44p.

Certificates and approvals

The product meets the requirements of the harmonized European standards. As such, it complies with the legal specifications of the EU directives. The manufacturer confirms successful testing of the product by affixing to it the CEE mark.
Ordering information

Product page

www.endress.com/cm44p

Product Configurator

On the product page there is a **Configure** button to the right of the product image.

1. Click this button.
 - The Configurator opens in a separate window.

2. Select all the options to configure the device in line with your requirements.
 - In this way, you receive a valid and complete order code for the device.

3. Export the order code as a PDF or Excel file. To do so, click the appropriate button on the right above the selection window.

For many products you also have the option of downloading CAD or 2D drawings of the selected product version. Click the **CAD** tab for this and select the desired file type using picklists.

Scope of delivery

The scope of delivery comprises:

- 1 multichannel controller in the version ordered
- 1 mounting plate
- 1 wiring label (attached at the factory to the inside of the display cover)
- 1 external display (if selected as an option)¹
- 1 DIN rail power unit incl. Cable (cabinet device only)
- 1 printed copy of the Operating Instructions for DIN rail power unit (cabinet device only)
- 1 printed copy of the Brief Operating Instructions in the language ordered

Accessories

The following are the most important accessories available at the time this documentation was issued.

- For accessories not listed here, please contact your Service or Sales Center.

Measuring cable

CUK80 cable set
- Pre-terminated and labeled cables for connecting analog photometer sensors
- Product Configurator on the product page: www.endress.com/cuk80

Memosens data cable CYK10
- For digital sensors with Memosens technology
- Product Configurator on the product page: www.endress.com/cyk10

Technical Information TI00118C

Memosens data cable CYK11
- Extension cable for digital sensors with Memosens protocol
- Product Configurator on the product page: www.endress.com/cyk11

Technical Information TI00118C

Sensors

Photometer sensors

OUSAF11
- Optical sensor for VIS/NIR absorption
- Stainless steel housing and sensor head made from dirt-repellent FEP
- Product Configurator on the product page: www.endress.com/ousaf11

Technical Information TI00474C

1) The external display can be selected as an option in the order structure or ordered as an accessory at a later stage.
OUSAF12
- Optical sensor for the measurement of absorbance
- Variety of materials and process connections available
- Product Configurator on the product page: www.endress.com/ousaf12
 Technical Information TI00497C

OUSAF22
- Optical sensor for measuring color concentrations
- Variety of materials and process connections available
- Product Configurator on the product page: www.endress.com/ousaf22
 Technical Information TI00472C

OUSAF44
- Optical sensor for measuring UV absorption
- Variety of materials and process connections available
- Hygienic design
- Product Configurator on the product page: www.endress.com/ousaf44
 Technical Information TI00416C

OUSTF10
- Optical sensor for measuring turbidity and undissolved solids
- Variety of materials and process connections available
- Product Configurator on the product page: www.endress.com/oustf10
 Technical Information TI00500C

OUSBT66
- NIR absorption sensor for measuring cell growth and biomass
- Sensor version suitable for pharmaceutical industry
- Product Configurator on the product page: www.endress.com/ousbt66
 Technical Information TI00469C

Glass electrodes

Orbisint CPS11D
- pH sensor for process technology
- Optional SIL version for connecting to SIL transmitter
- With dirt-repellent PTFE diaphragm
- Product Configurator on the product page: www.endress.com/cps11d
 Technical Information TI00028C

Memosens CPS31D
- pH electrode with gel-filled reference system with ceramic diaphragm
- Product Configurator on the product page: www.endress.com/cps31d
 Technical Information TI00030C

Ceraliquid CPS41D
- pH electrode with ceramic junction and KCl liquid electrolyte
- Product Configurator on the product page: www.endress.com/cps41d
 Technical Information TI00079C

Ceragel CPS71D
- pH electrode with reference system including ion trap
- Product Configurator on the product page: www.endress.com/cps71d
 Technical Information TI00245C

Memosens CPS171D
- pH electrode for bio-fermenters with digital Memosens technology
- Product Configurator on the product page: www.endress.com/cps171d
 Technical Information TI01254C
Liquiline CM44P

Orbipore CPS91D
- pH electrode with open aperture for media with high dirt load
- Product Configurator on the product page: www.endress.com/cps91d
 Technical Information TI00375C

Orbipac CPF81D
- Compact pH sensor for installation or immersion operation
- In industrial water and wastewater
- Product Configurator on the product page: www.endress.com/cpf81d
 Technical Information TI00191C

Enamel pH electrodes
Ceramax CPS341D
- pH electrode with pH-sensitive enamel
- Meets highest demands of measuring accuracy, pressure, temperature, sterility and durability
- Product Configurator on the product page: www.endress.com/cps341d
 Technical Information TI00468C

ORP sensors
Orbisint CPS12D
- ORP sensor for process technology
- Product Configurator on the product page: www.endress.com/cps12d
 Technical Information TI00367C

Ceraliquid CPS42D
- ORP electrode with ceramic junction and KCl liquid electrolyte
- Product Configurator on the product page: www.endress.com/cps42d
 Technical Information TI00373C

CerageL CPS72D
- ORP electrode with reference system including ion trap
- Product Configurator on the product page: www.endress.com/cps72d
 Technical Information TI00374C

Orbipac CPF82D
- Compact ORP sensor for installation or immersion operation in process water and wastewater
- Product Configurator on the product page: www.endress.com/cpf82d
 Technical Information TI00191C

Orbipore CPS92D
- ORP electrode with open aperture for media with high dirt load
- Product Configurator on the product page: www.endress.com/cps92d
 Technical Information TI00435C

pH ISFET sensors
Tophit CPS441D
- Sterilizable ISFET sensor for low-conductivity media
- Liquid KCl electrolyte
- Product Configurator on the product page: www.endress.com/cps441d
 Technical Information TI00352C

Tophit CPS471D
- Sterilizable and autoclavable ISFET sensor for food and pharmaceutics, process engineering
- Water treatment and biotechnology
- Product Configurator on the product page: www.endress.com/cps471d
 Technical Information TI00283C
Liquiline CM44P

Tophit CPS491D
- ISFET sensor with open aperture for media with high dirt load
- Product Configurator on the product page: www.endress.com/cps491d
 Technical Information TI00377C

pH and ORP combined sensors
Memosens CPS16D
- Combined pH/ORP sensor for process technology
- With dirt-repellent PTFE diaphragm
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cps16D
 Technical Information TI00503C

Memosens CPS76D
- Combined pH/ORP sensor for process technology
- Hygienic and sterile applications
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cps76d
 Technical Information TI00506C

Memosens CPS96D
- Combined pH/ORP sensor for chemical processes
- With poison-resistant reference with ion trap
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cps96d
 Technical Information TI00507C

Conductivity sensors with inductive measurement of conductivity
Indumax CLS50D
- High-durability inductive conductivity sensor
- For standard and hazardous area applications
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cls50d
 Technical Information TI00182C

Indumax H CLS54D
- Inductive conductivity sensor
- With certified, hygienic design for foodstuffs, beverages, pharmaceuticals and biotechnology
- Product Configurator on the product page: www.endress.com/cls54d
 Technical Information TI00508C

Conductivity sensors with conductive measurement of conductivity
Condumax CLS15D
- Conductive conductivity sensor
- For pure water, ultrapure water and hazardous area applications
- Product Configurator on the product page: www.endress.com/CLS15d
 Technical Information TI00109C

Condumax CLS16D
- Hygienic, conductive conductivity sensor
- For pure water, ultrapure water and Ex applications
- With EHEDG and 3A approval
- Product Configurator on the product page: www.endress.com/CLS16d
 Technical Information TI00227C
Condumax CLS21D
- Two-electrode sensor in plug-in head version
- Product Configurator on the product page: www.endress.com/CLS21d
- Technical Information TI00085C

Memosens CLS82D
- Four-electrode sensor
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cls82d
- Technical Information TI01188C

Oxygen sensors

Oxymax COS22D
- Sterilizable sensor for dissolved oxygen
- With Memosens technology or as an analog sensor
- Product Configurator on the product page: www.endress.com/cos22d
- Technical Information TI00446C

Oxymax COS51D
- Amperometric sensor for dissolved oxygen
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cos51d
- Technical Information TI00413C

Oxymax COS61D
- Optical oxygen sensor for drinking water and industrial water measurement
- Measuring principle: quenching
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cos61d
- Technical Information TI00387C

Memosens COS81D
- Sterilizable, optical sensor for dissolved oxygen
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cos81d
- Technical Information TI01201C

Disinfection sensors

CCS142D
- Membrane-covered amperometric sensor for free chlorine
- Measuring range 0.01 to 20 mg/l
- With Memosens technology
- Product Configurator on the product page: www.endress.com/ccs142d
- Technical Information TI00419C

Ion-selective sensors

ISEmax CAS40D
- Ion selective sensors
- Product Configurator on the product page: www.endress.com/cas40d
- Technical Information TI00491C
Turbidity sensors

Turbimax CUS51D
- For nephelometric measurements of turbidity and solids in wastewater
- 4-beam scattered light method
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cus51d

Turbimax CUS52D
- Hygienic Memosens sensor for turbidity measurement in drinking water, process water and in utilities
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cus52d

SAC and nitrate sensors

Viomax CAS51D
- SAC and nitrate measurement in drinking water and wastewater
- With Memosens technology
- Product Configurator on the product page: www.endress.com/cas51d

Interface measurement

Turbimax CUS71D
- Immersion sensor for interface measurement
- Ultrasonic interface sensor
- Product Configurator on the product page: www.endress.com/cus71d

Additional functionality

Hardware extension modules

Kit, extension module AOR
- 2 x relay, 2 x 0/4 to 20 mA analog output
- Order No. 71111053

Kit, extension module 2R
- 2 x relay
- Order No. 71125375

Kit, extension module 4R
- 4 x relay
- Order No. 71125376

Kit, extension module 2AO
- 2 x 0/4 to 20 mA analog output
- Order No. 71135632

Kit, extension module 4AO
- 4 x analog output 0/4 to 20 mA
- Order No. 71135633

Kit, extension module 2DS
- 2 x digital sensor, Memosens
- Order No. 71135631

Kit, extension module 2AI
- 2 x 0/4 to 20 mA analog input
- Order No. 71135639

Kit, extension module DIO
- 2 x digital input
- 2 x digital output
- Auxiliary voltage supply for digital output
- Order No. 71135638
Kit, extension module 485
- Ethernet configuration
- Can be extended to PROFIBUS DP or Modbus RS485 or Modbus TCP or EtherNet/IP. This requires an additional activation code which can be ordered separately.
- Order No. 7135634

Kit, extension module ETH
- Ethernet configuration
- Can be extended to Modbus TCP or EtherNet/IP. This requires an additional activation code which can be ordered separately.
- Order No. 71279810

Upgrade kit, extension module 485 with PROFIBUS DP
- Extension module 485
- PROFIBUS DP (+ Ethernet configuration)
- Order No. 71140888

Upgrade kit, extension module 485 with Modbus RS485
- Extension module 485
- Modbus RS485 (+ Ethernet configuration)
- Order No. 71140889

Upgrade kit, extension module 485 with Modbus TCP
- Extension module 485
- Modbus TCP (+ Ethernet configuration)
- Order No. 71140890

Upgrade kit, extension module 485 with EtherNet/IP
- Extension module 485
- EtherNet/IP (+ Ethernet configuration)
- Order No. 71219868

Upgrade kit, extension module ETH with Modbus TCP
- Extension module ETH
- Modbus TCP (+ Ethernet configuration)
- Order No. 71279809

Upgrade kit, extension module ETH with EtherNet/IP
- Extension module ETH
- EtherNet/IP (+ Ethernet configuration)
- Order No. 71279812

Firmware and activation codes

SD card with Liquiline firmware
- Industrial Flash Drive, 1 GB
- Order No. 71127100

You must quote the serial number of the device when ordering the activation code.

Activation code for digital HART communication
Order No. 71128428

Activation code for PROFIBUS DP
Order No. 71135635

Activation code for Modbus RS485
Order No. 71135636

Activation code for Modbus TCP for module 485
Order No. 71135637

Activation code for EtherNet/IP for module 485
Order No. 71219871

Activation code for Modbus TCP for module ETH
Order No. 71279813

Activation code for EtherNet/IP for module ETH
Order No. 71279830

Kit CM442: activation code for 2nd digital sensor input
Order No. 71114663

Kit CM444/CM448: upgrade code for 2 x 0/4 to 20 mA for BASE-E
Order No. 71140891
Activation code for feedforward control
- Requires current input or fieldbus communication
- Order No. 71211288

Activation code for measuring range switch
- Requires digital inputs or fieldbus communication
- Order No. 71211289

Activation code for ChemocleanPlus
- Requires relays or digital outputs or fieldbus communication and optional digital inputs
- Order No. 71239104

Activation code for Heartbeat Verification and Monitoring
Order No. 71367524

Activation code for ion exchanger operating time
- Mathematical function
- Order No. 71367531

Activation code for mathematics
- Formula editor
- Order No. 71367541

Activation code for remote calibration interface
Order No. 71367542

Software

Memobase Plus CYZ71D
- PC software to support laboratory calibration
- Visualization and documentation of sensor management
- Sensor calibrations stored in database
- Product Configurator on the product page: www.endress.com/cyz71d

Field Data Manager Software MS20
- PC software for central data management
- Visualization of series of measurements and logbook events
- SQL database for secure data storage

Other accessories

External display
- Graphic display
 - For installation in the control cabinet door or panel
 - Order No. 71185295

Service display
- Portable, for commissioning
- Order No. 71185296

SD card
- Industrial Flash Drive, 1 GB
- Weight: 2 g
- Order No. 71110815

M12 built-in socket and cable junction with Velcro strip

Kit CM42/CM442/CM444/CM448: external CDI socket
- Socket with terminated connecting cables and counter nut
- Order No. 51517507

Kit CM442/CM444/CM448/CSF48: M12 built-in socket for digital sensors
- Pre-terminated
- Order No. 71107456

Kit CM442/CM444/CM448/CSF48: M12 built-in socket for PROFIBUS DP/Modbus RS485
- B-coded, pre-terminated
- Order No. 71140892

3) The external display can be selected as an option in the product structure or ordered subsequently as an accessory.
Kit CM442/CM444/CM448/CSF48: M12 built-in socket for Ethernet
- D-coded, pre-terminated
- Order No. 71140893

Kit: external CDI socket, complete
- Retrofit kit for CDI interface, with terminated connecting cables
- Order No. 51517507

Cable junction with Velcro strip
- 4 pieces, for sensor cable
- Order No. 71092051

Communication-specific accessories
Commubox FXA191
- Intrinsically safe HART communication with FieldCare via the RS232C interface
- Transforms HART signals on RS 232C interface
 Technical Information TI00237F

Commubox FXA195
Intrinsically safe HART communication with FieldCare via the USB port
 Technical Information TI00404F

Commubox FXA291
Connects the CDI interface of measuring devices with the USB port of the computer or laptop
 Technical Information TI00405C

Wireless HART adapter SWA70
- Wireless device connection
- Easily integrated, offers data protection and transmission safety, can be operated in parallel with other wireless networks, minimum cabling complexity
 Technical Information TI00061S

Fieldgate FXA320
Gateway for the remote interrogation of 4-20 mA measuring devices via a Web browser
 Technical Information TI00025S

FieldXpert SFX100
Compact, flexible and robust industrial handheld terminal for remote configuration and for obtaining measured values via the HART current output
 Operating Instructions BA00060S

System components
RIA14, RIA16
- Field display unit for integration into 4-20 mA circuits
- RIA14 in flameproof metal enclosure
 Technical Information TI00143R and TI00144R

RIA15
- Process display unit, Digital display unit for integration into 4-20 mA circuits
- Panel mounting
- With optional HART communication
 Technical Information TI01043K