ORBIT 60 SERIES System Overview

Datasheet

Bently Nevada Machinery Condition Monitoring

137M5182 Rev. M

Plant-wide • One System

The Orbit 60 Series Protection and Condition Monitoring System provides one continuous, online monitoring system for both critical and plant-wide applications.

Cyber Secure • Data Isolation

Orbit 60 Series data isolation creates a safe industrial data environment designed to meet IEC 62443-4-2 with world class network security features and segregation of protection and condition monitoring functions.

Modular • Flexible • Scalable

The Orbit 60 Series system is deployable in any combination of rackmounted and distributed hardware. This provides for better alignment of instrumentation to the machinery application.

High Speed Process Data Integration

Next generation architecture facilitates full bi-directional communications with plant control systems over a suite of standard protocols.

Extended Field Wiring Length

With the Orbit 60 Series distributed architecture, connection of multiple chassis through Bridge modules decreases overall electrical installation costs, reduces analog ground loops and noise issues, and moves key maintenance activities further from hazardous areas.

Industry Leading System Capabilities

The Orbit 60 Series supports monitoring of one or multiple machine trains in a single deployment. One System Interface Module (SIM) defines each system and can encompass up to 68 dynamic channels.

Overview

The Orbit 60 Series Protection and Condition Monitoring System provides a single platform for the continuous online monitoring of both critical and plant-wide applications. The Orbit 60 Series system is deployable in any combination of rack, bulkhead, or panel mounted hardwarecreating a seamless connection between chassis to make a single system.

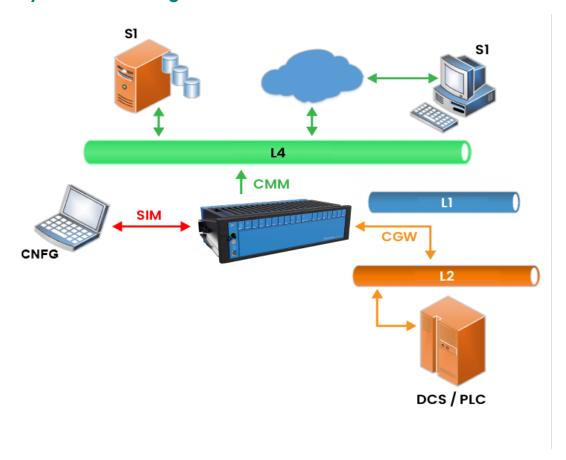

The next table gives a general overview of the components that make up the Orbit 60 platform.

Table 1: Component Modules

System Modules	User Guide (142M9080)	Chassis	3U Chassis - 19 general purpose slots 6U Chassis - 28 general purpose slots
		Power	Power Interface Module (PIM)
		Processors	System Interface Module (SIM) Protection Processing Module (PPM)
СММ	User Guide (148M9082)	S1 Interface	Condition Monitoring Module (CMM)
CGW	User Guide (148M9083)	Comms	Communication Gateway (CGW) - Modbus (Ethernet) - EGD (Ethernet)
Input User Guide (137M0804) (168M9885)	Dynamic 4-channel	Negative Dynamic Input (PAV, PAS, PAA, PAD, KPH) (provides power for negatively powered transducers) Positive Voltage Transducers Dynamic Input (PVT) (provides power for positively powered transducers)	
		Static 4-channel	Static Displacement Input (AC LVDT) AC and DC Linear Variable Differential Transducers
RTD/TC, Process, Discrete	User Guide (157M8568)	Static 6-channel	RTD/TC Temperature (RTD) Process Variable Isolated Discrete Input (PVD)
Output Modules	User Guide (146M5032)	Relays 8-channel	Electro Mechanical Relays (EMR). Solid State Relays (SSR)
Display and CPU	User Guide (137M0702)	Display	External Display (EXD)

Orbit 60 System Level Diagram

SIM - System Interface Module

CMM - Condition Monitoring Module

CGW - Comm Gateway Module

\$1 - System 1 Server or Client

CNFG - Orbit Studio Configuration Software

DCS/PLC - Distributed Control Systems/ Programmable Logic Controller

L1 - Unit Network L2 - Control Network

L4 - Business Network

Figure 1: System Diagram

One System Interface Module (SIM) defines a system of up to 68 dynamic channels, accommodating multiple machine trains and supporting unrestricted synchronous Keyphasors for any channel. The Condition Monitoring Module (CMM) interfaces to the business network through a cyber-secure access port. The Communications Gateway (CGW) sends (data, status, setpoints) and receives controls (inhibit, reset, trip multiply) with control systems and plant historians.

Orbit 60 Series Chassis

You can flexibly deploy each chassis option with a public facing side (for rack or panel mounts) and a utility side (for wiring connections and bulkhead mounts). Insert modules and make all wiring connections from the utility side. Provisions for the public side of the chassis include status LEDs, configuration port, Config/Run key, and reset button.

Chassis Types

3U, 19-Slot (Bulkhead, Rack, or Panel Mount)

6U, 28-Slot (Bulkhead, Rack, or Panel Mount)

The system is available in two chassis form factors. A 20 position (19 general purpose slots) single row chassis that fits a 3U 19" system format, and a 29 position (28 general purpose slots) double row version that complies with a 6U 19" system format.

Mounting Options

- **Panel Mount Chassis** Mounts to rectangular cutouts in panels and secures to the panel using clamps supplied with the chassis in 3U 19-inch standard, and 6U 19-inch standard.* configurations. The 6U 19-inch will fit in the space of a 3500 rack.*
- Rackmount Chassis Mounts the 3U or 6U chassis on 19-inch EIA rails. Two 3U units or a single 6U form factor have been designed to fit within the space of a single 19-inch rackmount 3500 unit, as a retrofit.
- **Bulkhead Chassis** Typically mounts into a protective enclosure fastened to a sub panel in 3U 19-inch standard, and 6U 19-inch standard configurations. NEMA 4 and 4X weatherproof housings are available when required for environmental protection or when purge air is used.
- * 6U chassis will be available in later release.

Front Panel Options

The system front panel features system status LEDs and controls. There are four variations of the front panel: a standard panel and a blank panel for each 3U and 6U form factor.

Standard Front Panel 3U

The Standard Front Panel Module is for Orbit 60 chassis that have a SIM module installed in slot two to ensure front panel functionality.

Blank Front Panel 3U

The Blank front panel is built for Orbit 60 chassis that do not have a SIM module installed, or are installed in a Bulkhead configuration.

Standard Front Panel 6U

The Standard Front Panel Module is for Orbit 60 chassis that have a SIM module installed in slot two to ensure front panel functionality.

Blank Front Panel 6U

The Blank front panel is for Orbit 60 chassis that do not have a SIM module installed are installed in a Bulkhead configuration.

Statuses

The Standard Front Panel Module shows the status of the power supplies and the presence and operation of the SIM Module.

Key Switch

This front panel places the system into the run or program mode of operation using the key switch. When the key is in the RUN position, the ring lights green and configuration changes cannot be made. When the key is in the PRG, or program mode, the ring lights amber and system configuration changes can be made through Ethernet connection to the SIM or front panel.

Reset

A RESET button is located on the Standard Front Panel. This is used to clear latched alarms, relays, and not OK statuses within the system.

Ethernet

An RJ45 jack provides Ethernet connection to the SIM for external display or configuration tasks from the public side of the system.

System Interface Module

Each Orbit 60 system requires a single System Interface Module (SIM) The SIM provides the user access to manage protection configuration, local display, system-level diagnostics, system LEDs, system contacts, and the system protection fault relay. The SIM occupies one slot and must be adjacent to the Power Input Module (PIM) in the chassis.

The SIM is the access point for configuring and maintaining the system. The module communicates to the Orbit Studio configuration software and transmits the configuration to other modules in the system. The SIM provides a physical access security feature through a key-lock switch on the public side and a contact on the utility side of the SIM. Either of these controls can be used to secure the system configuration, preventing unauthorized changes.

The SIM has three independently configurable Ethernet ports. Each port can be used for system configuration, system time synchronization, temporary troubleshooting, or an external display.

For additional details, see the System Interface Module Datasheet (142M9054).

Communication Gateway Module

The Communication Gateway Module (CGW) provides information to external hosts including measurements, alarms, statuses, and system controls using standard industrial protocols. The CGW is designed for integration with process control and other automation systems.

The Communication Gateway module occupies a single slot and has two RJ-45 Ethernet ports supporting Modbus and EGD protocols.

The Comm Gateway Module includes two Ethernet ports which provide TCP/IP communications capabilities. The supported industrial protocols are:

- Modbus TCP/IP: Modbus over Ethernet is available for connection to HMI's, unit control systems, or other plant automation equipment. The module can only be configured as a server and supports configurable Modbus addresses within the 40000 address range.
- Ethernet Global Data (EGD): EGD is a GE protocol used on Mark VI and Mark Vie controllers and by GE Programmable Automation Controllers and certain 3rd party automation equipment. Version 3.04 and backward compatibility with previous versions is supported.

For additional details, see the Communication Gateway Module Datasheet (137M0700).

Protection Processing Module

The Protection Processing Module (PPM) serves as the computational engine for the Orbit 60 monitoring system. It extracts all machinery measurements for the protection system and performs alarm determinations. The PPM analyzes signals from transducers, generates measurements and statuses and publishes them to other modules for data collection and external communication. Each PPM occupies a single slot within the system.

Each PPM provides computational capacity for a large number of sensors and can support typical monitored machine trains. The PPM capacity is a function of the type of processing required on each input. If the system requires more processing than a single PPM can provide, additional PPMs can be added to the system for complex monitoring deployments. For protection systems, redundant PPMs are recommended.

The Orbit Studio Configuration Software provides a System Utilization Calculator to evaluate the remaining capacity of the PPMs in your system. If a PPM processing capacity reaches 90%, a warning indicator is displayed in Orbit Studio software, and it is recommended to add another PPM or two PPMs if the system is redundant.

For additional details, see the Protection Processing Module Datasheet (142M8515).

Condition Monitoring Module

The Condition Monitoring Module (CMM) listens to all information within the system, including all measurements, waveforms, digital transducer signals, system controls, status information, system configuration information, process data from external systems, and alarm and events logs. It only listens, with no capability to write, allowing interface to System 1 over the business networks, with no risk to the protection system.

Each module occupies two slots within the system. Placing multiple CMM modules allows the connection of two independent System 1 clients to the Orbit 60 System. Data is transferred to System 1 continuously, but in the event the connection is lost, non-volatile storage buffers historical data until the information is off-loaded to the host software. System 1 can configure the CMM module to extract additional measurements and waveforms from system sensor data. Without System 1, the customer can use the CMM module to collect data to diagnose machinery issues when an alarm event occurs in the hardware.

For additional details, see the Condition Monitoring Module Datasheet (145M9028).

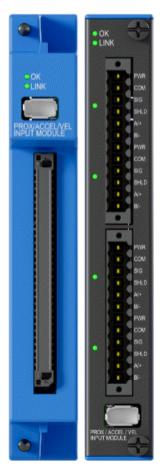
Power Input Module

The Power Input Modules (PIM) always reside in a special-purposed slot located in the first slot of the chassis. This slot accommodates two PIMs for redundancy. At least one PIM must power every chassis, and every chassis requires its own PIMs and power sources. Redundant PIMs and power sources are strongly recommended.

The PIM is a half-height module that connects an external power source to the system. Each Orbit 60 Series chassis supports two stacked redundant power input modules. Failure of one power source does not affect the operation if the system uses both power inputs. The PIM employs out-of-range protection for miswiring, overvoltage, and overcurrent protection for the input power sources.

The PIMs support input voltages ranging from +21 Vdc to +32 Vdc. The most common power source comes from external DIN rail mounted AC/DC +24 Vdc output power supplies. The Instrument Common(IS) and Protective Earth \oplus connections for the system are made at the utility side of the PIM. External redundant power supplies are recommended for the system.

Removal and insertion of a single Power Input Module is supported without disrupting system operation, as long as the other PIM remains installed and connected to its input power source.


Note: The markings on the above image are for illustrative purposes only. The markings on your PIM may vary depending on its version.

For additional details, see the Power Input Module Datasheet (163M5233).

For detailed information on required Power Supply, see associated datasheet (142M8947).

Dynamic Input Modules

The primary purpose of the Dynamic Input module is to digitize the sensor signal at a rate that completely encompasses the signal content and provides transducer power for various sensors. The Orbit 60 Series Dynamic Input modules are a set of 4-channel input modules available in both negative and positive dynamic input options. The inputs are also used for speed or Keyphasor signals.

The PAV, PAS, PAA, PAD and PVT modules can be configured with up to TWO SPEED CHANNELS with a maximum speed of 12,000 rpm and maximum speed impulse rate of 12,000 cpm (200 Hz). For more than two speed channels on a single dynamic input card, speeds greater than 12,000 rpm or speed impulse frequencies greater than 12,000 cpm (200 Hz) a KPH Module is needed.

The Orbit 60 dynamic input modules are designed for use on a broad range of machine trains or individual casings where the sensor point count fits the monitor's channel count and where advanced signal processing is desired. The modules are optimized for intensive signal processing required on complex machinery such as gearboxes, planetary gearboxes, and roller element bearing (REB) machines as well as offering advanced measurement capabilities on conventional monitoring methods such as radial vibration, thrust position, and casing absolute vibration.

Negative Transducer Input Modules

The following cards work with negative-voltage external sensors offering four variants:

- PAV Negative Dynamic Sampler (Prox, Accel, Velom)
- PAS Negative Dynamic Sampler (Prox, Accel, Seismic)
- PAA Negative Dynamic Sampler (Prox, Accel, Aero)
- PAD Negative Dynamic Sampler (Prox, Accel, DC LVDT)
- KPH High Speed Keyphasor (Prox, Accel, Magnetic Pickup)

Positive Transducer Input Module

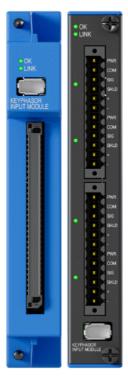
The Positive Voltage (PVT) input module interfaces with industry-standard third-party IEPE sensors, as well as sensors that use a 3-wire (power, common, signal) or a custom 2-wire (A/+ and B/-) positive-voltage interface.

The PVT is the preferred module to use for IEPE sensors, including the Bently Nevada Velomitor (3005xx) and IEPE accelerometers. Using the PVT modules for these sensors improves noise performance of the sensor.

PVT Positive Dynamic Sampler (Prox, Accel, Velom)

The PVT module is recommended for new Velomitor installations only. Projects using the 190501 Velomitor CT or retrofits that reuse other existing Velomitor sensors should use the PAV module unless the user can verify the sensor power limits are appropriate for existing Velomitors.

Connectors


The Dynamic Input module uses an ix Industrial connection to provide access to four buffered transducer output (BTO) connectors for each of the dynamic channels, with short circuit protection. The ix Industrial connection is available on the public and utility side of the module.

For additional details, see the Dynamic Input Modules Datasheet (137M0698).

Keyphasor Input Module

Unlike previous systems, the Orbit 60 Series system supports Keyphasor configurations for any dynamic input channel through the PAV, PAS, PAA, PAD, and PVT input modules. For high-phase accuracy applications (over 12,000 rpm) the Keyphasor Input Module must be used. The input speed limit is 120,000 rpm and can accept input speed signals up to 1,200,000 cpm (20 kHz). Each Keyphasor Input Module can accept up to four speed inputs. Input configurations to this module can also serve as Acceleration, Differential Expansion, Radial Vibration, and Thrust inputs. The Keyphasor input Module occupies a single slot.

Although the system allows the user to configure channels on the Keyphasor Input Module to serve as non-speed input types as described above, there will be a decrease in accuracy on these measurements when compared to PAV, PAS, PAA, PAD, and PVT modules. These non-speed inputs also cannot be utilized in SIL applications. The Keyphasor Input Module can only be utilized in SIL applications when configured for speed inputs.

Any channel on the module can be configured as a once-per-turn Keyphasor or a multiple-event-per-turn speed signal from a rotating shaft or gear used to provide a precision timing measurement. The Keyphasor Input Module works with the following transducers:

- Magnetic pickup
- 3-wire Prox
- · 3-wire Accel

The 2-wire input connection provides a galvanically isolated, hi-impedance input which primarily supports magnetic pick-up speed sensors. The isolated input eliminates potential ground loops that can occur when speed sensors are shared between the vibration system and other instrumentation.

The Keyphasor Input Module provides a buffered transducer output for each channel. Within Orbit Studio software, each output can be configured within Orbit Studio Software to be either a true analog signal representative of the input or a conditioned/processed digital TTL signal replicating machine speed and maintaining phase with the input signal.

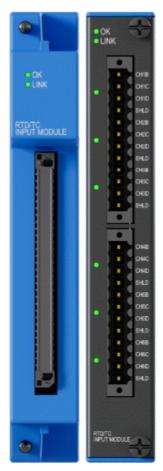
For additional details, see the Keyphasor Input Module Datasheet (157M8566).

AC LVDT Input Module

The Orbit 60 Series AC LVDT Input Module provides inputs to interface with four AC Linear Variable Differential Transformers for position measurements. The module's primary use is the measurement of case expansion and valve position. The AC LVDT input module occupies a single slot.

The four AC LVDT configured channels can connect to a:

- 5-wire AC LVDT
- 6-wire AC LVDT


Note: To configure the 6-wire, 3 and 4 pins are shorted together.

The module's OK LED indicates when the module is functioning properly, and the LINK LED indicate when the module is communicating to the rest of the system. Four channel status LEDs, located on the utility side of the module, indicate that each AC LVDT sensor is connected and functioning properly.

For additional details, see the AC LVDT Input Module Datasheet (173M3153).

Temperature Input Modules

TC/RTD Temperature Module

The primary purpose of temperature modules is to interface to the temperature transducers and convert the signal into a digital representation. These modules condition and digitize the inputs at a rate that completely encompasses the signal content and allows for removal of typical noise sources.

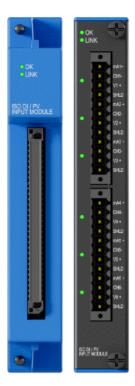
The Orbit 60 Series TC/RTD Temperature Input Modules provide six channels of either Thermocouple (TC) or Resistive Temperature Detector (RTD) temperature input sensors.

Each channel of the Orbit 60 Series TC/RTD input module is individually configurable for sensor type and range using Orbit Studio configuration software.

The RTD/TC inputs reference the internal system ground, and for this reason, should only connect to transducers isolated at the sensing end.

Sensor Types

TC sensors - The thermocouple configured channels provide cold junction compensation for any J, K, E, or T Type Thermocouple.


RTD sensors - The RTD configured channels can be connected to the following:

- 3-Wire 100 Ohm Platinum 0.00392 RTD
- 3-Wire 100 Ohm Platinum 0.00385 RTD
- 3-Wire 10 Ohm Copper RTD
- 3-Wire 120 Ohm Nickel RTD

For additional details, see the Temperature Module Datasheet (137M0706).

Isolated Process Variable / Discrete Input Module (PVD)

The Orbit 60 Series Isolated Process Variable and Discrete (PVD) Input module processes machine-critical parameters such as pressure, flow, temperature, and levels that merit continuous monitoring. The module conditions and digitizes the signals so the result can be compared with user-programmable alarm setpoints. The user can program the PVD module using the Orbit Configuration software to perform current, voltage or discrete input measurements. This module provides discrete inputs for essential operational commands, such as Trip Multiply for machine start-up and Alarm Inhibit.

The monitor accepts +4 to +20 mA current inputs or any proportional voltage inputs between -10 Vdc and +10 Vdc, in addition to monitoring "dry" or "wet" contacts which can be a sensor, switch, or relay.

Primary purposes of the PVD Module:

- Continuously process input from monitored parameters to be compared against configured alarm setpoints to drive alarms for machinery protection.
- Allow provision of essential machine information, such as Trip Multiply for machine startup and Alarm Inhibit for both operations and maintenance personnel.

These modules occupy a single slot. The module OK LEDs indicate proper functioning, and the LINK LEDs indicate good system communication. Six Channel Status LEDs on the utility side of the module indicate a connected sensor in OK condition.

For additional details, see the Process Variable and Discrete Input Module Datasheet (145M9027).

Relay Modules

Relay modules may be programed to actuate based on alarm conditions defined in other modules. Use standard logic elements (True AND, Normal AND, OR and NOT) to combine various alarms and statuses (e.g. OK statuses, Bypass, Protection State, Inhibit, Attention, Protection Fault, etc.) into relay activation conditions. Orbit Studio is used to program the voting logic.

Relays can operate as a system or group protection fault relay, if programmed to do so, especially when the protection fault relay on the SIM does not provide adequate granularity of system health - typically for multiple machines in one system.

Pairs of relays within the module function as a single Double-Pole, Double-Throw relay when appropriately configured. Both relay types are available for SIL system implementation. See Orbit 60 SIL User Guide (134M0398) for additional details and design considerations.

Electromechanical Relay (EMR)

This relay drives a load directly, or through, an interposing relay. This module takes two slots. It features **8 Epoxy Sealed, Single-Pole Double-Throw Electromechanical Relays.** This module supports an AC voltage range of 5-250 Vac for loads of 100 mA to 4 A. The module also supports DC voltages and loads of 5-30 Vdc at 4 A.

Solid State Relay (SSR)

This relay connects to an external system's discrete input for low current communication. It occupies a single slot and features **8 Solid-State Relays.** This module supports secondary voltages from 1 Vdc up to 125 Vdc and loads of 0.01 to 125 mA.

For additional details, see the Relay Modules Datasheet (137M0699).

Input Module Sensors and Channels

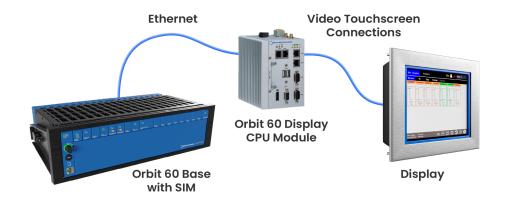
Sensor Type Supported	Channel Type			Dynami	ic Input Mo (4 channe	odule Ty ls)	pe		Static Module (6 chai	
		PAV	PAS	PAA	PAD	PVT	КРН	AC LVDT	Temp	PVD
Proximitor (3-wire)	Differential Expansion, Radial Vibration, Speed, Thrust	Х	Х	X	X	Х	Х			
Magnetic Pickups	Speed						Х			
Accelerometer (3-wire)	Acceleration ¹	Х	Х	Х	Х	X ²	Х			
Charge Amplifier (3-wire)	Acceleration ¹	Х	Х	Х	X ²	χ2	Х			
Interface Modules (4-wire)	Acceleration ¹			Х						
High-Temp Accel (4-wire)	Acceleration ¹			Х						
High-Temp Accel (3-wire)	Acceleration ¹	Х	Х	Х	Х	χ2	Х			
Negative Biased Constant Current (2- wire)	Acceleration ¹	Х								
IEPE Positive Constant Current (2- wire)	Acceleration ¹					Х				
High-Temp Velocity	Velocity ¹	Х	Х	х		χ2				
Negative Biased Constant Current (2- wire)	Velocity ¹	Х								
Velomitor® (2-wire)	Velocity ¹	X3				χ2, 3				
Velomitor CT	Velocity ¹	Х								
Seismoprobe (2- wire)	Velocity ¹		Х							
IEPE Positive Constant Current (2- wire)	Velocity ¹	X ³				Х				
Amplifier/Interface Modules	Dynamic Pressure			Х						
Pressure Transducers	Dynamic Pressure					Х				

Sensor Type Supported	Channel Type			Dynam	nic Input Mod (4 channels	dule Ty s)	pe		Static Module (6 char	Input Type nnels)
		PAV	PAS	PAA	PAD	PVT	КРН	AC LVDT	Temp	PVD
DC LVDT	Valve Position & Case Expansion				Х					
AC LVDT	Valve Position & Case Expansion							Х		
3-wire RTD	Temperature								Х	
TC - Type J, K, E, T	Temperature								Х	
4-20 mA Transmitter, ±10 V Sensor	Process Variable									Х
Dry or Wet Contact, TTL Logic	Discrete Channel									Х

 $^{^{}m 1}$ Designates the ability to integrate these measurements to provide additional measurement types.

³ PVT modules are recommended for new installations only. Projects using the Velomitor CT or retrofits that reuse existing sensors should use PAV or verify sensor power limits.

The PVT is only for positively biased sensors.


The Velomitors® and IEPE sensors can be configured on the PAV as a custom transducer.

 $^{^{\}rm 2}$ These sensors can be configured using a Custom transducer configuration.

External Display

The external display utilizes an industrial computer connected to the SIM via Ethernet. The computer and display placement varies based on application needs. The 10.4", 15", and 21.5" VGA touchscreen displays provide excellent viewing quality for industrial applications. The 10.4" display is suitable for use in hazardous area locations across the world. The 15" display is certified for hazardous areas for North America only. The 21.5" display is intended for non-hazardous (safe) area applications only.

Display Mounting Options

You can mount the displays in a remote enclosure, panel, or rack.

- 10.4" Display Can be mounted in a rack, panel, and enclosure.
- 15" Display Can be mounted in a rack, panel, and enclosure.
- 21.5" Display Can be mounted in a rack or panel.

Bently Nevada Industrial Computer

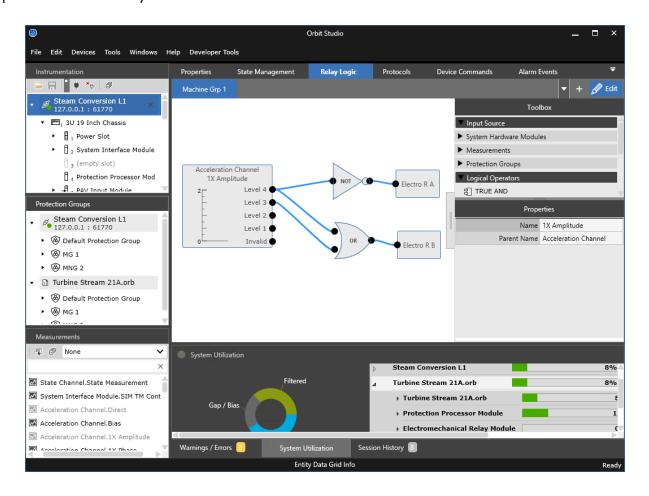
The Orbit 60 Series Industrial Computer is certified for hazardous environments when installed in a NEMA3 or NEMA4 enclosure. The industrial computer communicates with an Orbit 60 Base SIM module to gather and output data to supported displays. The small form factor of 5.2 x 4.8 x 3.4 (132 x 122 x 87 mm) enables DIN-rail mounting.

Orbit Display Software

By default, a bar-graph screen shows all measurements. The Orbit Display software can show bar graphs, alarm lists, event lists, and statuses. Up to 12 Orbit 60 systems can be viewed on one display.

- · System-event list
- Alarm-event list
- All module and channel data
- Alarm and OK status

Orbit Studio Configuration Software

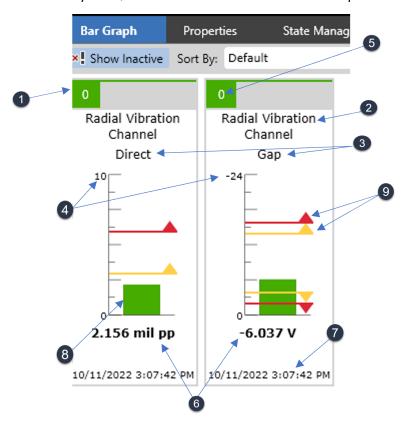

The Orbit Studio software configures Orbit 60 chassis, modules, channels, measurements, setpoints, relays, and many other aspects to protect plant assets. It is also the primary method used to verify systems. For more information, see Orbit Studio online help or Orbit Studio Configuration Software User Guide (137M0696).

Multiple Systems Configuration

You can connect multiple systems from a single Orbit Studio client session. This opens multiple offline configuration files alongside actively connected systems allowing for easy cross-referencing across systems, while enabling security through user-based permissions. You can copy and paste modules and channels across systems and configuration files, as well as send and retrieve configurations for multiple systems at once.

Graphical System and Relay Configuration

Create and manage multiple pages of relay logic by graphically configuring using drag and drop elements and connectors. You can also graphically assemble your system by dragging and dropping components from a library of modules. The resulting assembly produces a hierarchical representation of the system for access to individual channels.



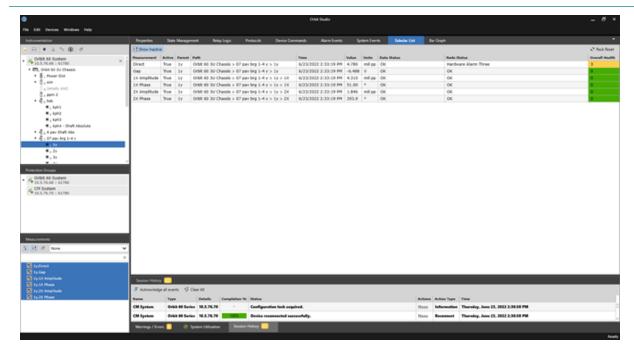
Current Values and Loop Check

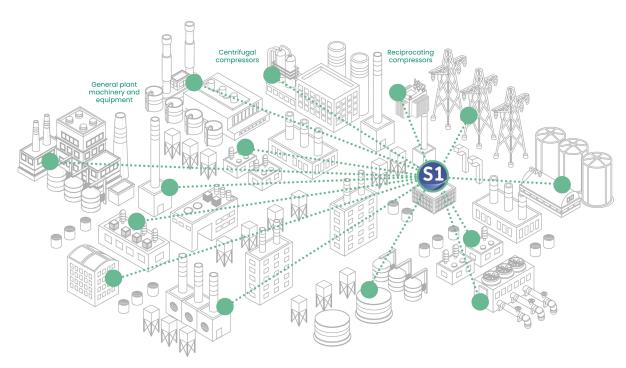
View current value data across all channels within a system. You can use the bar graphs and tabular lists to complete loop checks from channels throughout the system.

To configure the Orbit 60 system, refer to the Orbit Studio online help.

- 1. Overall Health
- 2. Channel Name
- 3. Measurement
- 4. Full Scale Range
- 5. Alert Level
- 6. Measurement Value
- 7. System Time
- 8. Measurement Health
- 9. Alarm Levels

Figure 1: Bar graph Verification Screen for 1 RV Channel




Figure 2: Tabular List Verification Screen for 1 RV Channel

System 1 Integration

Offering plant-wide condition monitoring insights to reduce risk, increase productivity, and minimize unplanned downtime, System 1 streamlines decision-making processes by bringing machine data into a single platform, providing clarity and context to your operations and enterprise. Harnessing the power of Bently Nevada's decades of machinery research and advanced diagnostics expertise, this powerful tool is a key component of successful digital transformation in any industrial facility. By combining its Connectivity, Analytics, and Visualization capabilities, System 1 is the premier Edge historian and condition monitoring platform among industrial operators.

Take full advantage of System 1 Condition Monitoring Software in conjunction with Orbit 60 Series for complete monitoring and advanced diagnostics for all machine types, including roller-element bearings. Use the Orbit 60 Series Condition Monitoring Module (CMM) for a read-only access point to provide a cyber-secure approach for obtaining data through the business network or other systems.

Bently Nevada has a rich heritage in helping customers solve industrial maintenance challenges that is over 60 years strong. Through user research in 25 countries with more than 500 end users, we have studied our customers' team dynamics, site processes, and technology suites to determine how System 1 can best support plant-wide machinery management. The resulting platform is the most comprehensive and user- intuitive condition monitoring solution ever developed.

System 1 Support for Orbit Channels and Measurements

The Orbit 60 Condition Monitoring Module (CMM) interfaces with System 1. Data is transferred from Orbit 60 to System 1 continuously.

- You can view Orbit 60 alarms and system health events in System 1.
- When a measurement triggers an alarm in Orbit 60, the alarm and system events are visible in System 1.

- Alarm and transient data configured in System 1 Data Collection States and Points are also applied to Orbit measurements.
- Orbit measurements can be used to configure triggers for state events (Start up/Shutdown, Running, Slow Roll, or Machine Off) in System 1.
- You can use replication, OPC/DA (data access), and OPC/UA (unified architecture) to export Orbit channels and measurements from System 1.
- System 1 Audit files contain Orbit channels and measurements.

Specifications Orbit 60 System

Full-Load Chassis		
Power Consumption		
3U 19" full load	Typical: 120 Watts Maximum: 180 Watts	
6U 19" full load	Typical: 160 Watts Maximum: 300 Watts	

The Orbit 60 Series system was qualified with the power supplies listed in Accessory section of this datasheet. Use of a reduced wattage power supply may result in changed behavior under fault conditions.

Max Current	Max Current				
3U Current Draw:	8.6 Amps Max				
6U Current Draw:	14.3 Amps Max				
Characteristics	3				
Voltage Input	+21 to +32 Vdc				
Current Draw	8.6 Amps max				
Maximum	8.6 Amps				
Out of Range Protection	An undervoltage does not harm the PIM. An overvoltage causes the fuse to open.				
Chassis Loading	No minimum chassis loading is required.				
Outputs					
OK LED	Indicates the module is functioning properly.				

Full-Load Chassis			
LINK LED	Indicates the module is successfully communicating on the internal network.		
Weight			
3U 19" Chassis	32 lbs (14.5 kg)		
6U 19" Chassis	64 lbs (29.03 kg)		

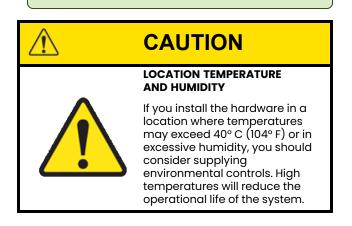
System Physical Dimensions				
3U Standard Chassis (19")				
Width	19" (48.26 cm) - with bezel 18.87" (47.93 cm) - panel mount without bezel 17.53" (44.53 cm) - rackmount without bezel			
Height	5.2" (13.21 cm) - with bezel			
Depth	9.67" (24.56 cm)			
6U Standar	rd Chassis (19")			
Width	19" (48.26 cm) - with bezel 18.87" (47.93 cm) - panel mount without bezel 17.53" (44.53 cm) - rackmount without bezel			
Height	10.47" (26.6 cm) - with bezel			
Depth	9.67" (24.56 cm)			
Single Wid	e Module			
Width	0.8" (2.03 cm)			
Height	5.2" (13.21 cm)			
Depth	9.67" (24.56 cm)			
Double Wide Module				
Width	1.64" (4.17 cm)			
Height	5.2" (13.21 cm)			
Depth	9.67" (24.56 cm)			

Environmental Limits (All Modules)

Env	vironmental Limits	
Chassis Operating Temperature Range (indoor use only)	3U Chassis: -30°C to +70°C (-22°F to 158°F) 6U Chassis: -30°C to +65°C (-22°F to 149°F)	
Module Temperature Rating - Certification	-30°C to +70°C (-22°F to 158°F) You must still meet the Chassis Operating Temperature Range defined above.	
Storage Temperature Range	-40°C to +85°C (-40°F to 185°F)	
Relative Humidity	0% to 95% rH non-condensing operating and storage	
Vibration	Without Isolators: 0 g to 0.35 g @ 57-500 Hz With Isolators: 0 g to 5 g @ 57-500 Hz	
Shock	2" Incline Drop	

Environmental Limits

Altitude < 2000 m (6,562 ft)


Higher altitu

Pollution Degree 2
Degree
Installation Category

Verify that temperature ratings on the wiring cables match the operating temperature range.

System Interface Module

System Interface Module (SIM)				
Power Consumption				
Typical	7.6 Watts			
Maximum	10.9 Watts			
System Conta	cts			
4 contacts on	Trip Multiply			
utility or rear side	Alarm Inhibit			
	System Reset			
	Configuration Lock			
Voltage In	24 V max			
Current rating	<1 mA to 125 mA			
Protection Fau	lt Relay			
Relay Type	Solid State, Single-Pole, Double Throw			
Voltage	1 Vdc to 125 Vdc			
Current	0.01 to 125 mA			
Communicatio	ns			
1 Ethernet port - public side	Independent Ethernet ports 1000/100/10 Base-T Auto-			
2 Ethernet ports - utility side	negotiation			
Connector	RJ-45			
Supported	NTP time sources			
Connections	Orbit Config - System configuration			
	Orbit Display - Local system display			
Cable Length	100 meters (328 feet) max			

System Interface Module (SIM)

Cyber Security

- Aligned to the IEC 62443-4-2 standard.
- Encrypted communications using latest TLS standards.
- PKI implemented signed firmware images to facilitate secure boot and trusted firmware updates.
- Device identity management uses certificates for trusted connections.
- Configure user, roles and rights account management.
- Uses physical Run/Program control

System Interface Module (SIM) **Controls and Contacts RST** Used to clear all latched alarms and NOT OK statuses **Reset Contact** across the system. LED or Button indicates reset contact closed.1 SAI Used to inhibit all alarms within the system. LED System Alarm indicates the state of the Inhibit Contact alarming functions within the system. TM Used to place the system in **Trip Multiply** Trip Multiply. LED indicates

that the system is in Trip

Multiply mode.

Contact

System Interface Module (SIM)

LOCK

Configuration Lock Contact or Key **PRG** - Allows configuration changes to be made to the system. Amber LED indicates the system is in Program mode.

RUN - Locks the system, blocking configuration changes. Green LED indicates the system is in Run mode. 2

NO, ARM, NC Protection Fault Relay

NO, ARM, and NC contacts are all used to wire the output to an external receiver. A green LED indicates that all the protection functions within the system are operational. Red indicates the protection path is faulted and the Protection Fault Relay is in a tripped state (not energized).

¹ Performed by either closing the contact on the module or pressing the button on the front panel.

2 Performed by either closing the contact on the module or setting the key on the front to the RUN setting on the front panel.

Communications Gateway

Communications Gateway (CGW)			
_			
Power Consumption			
Maximum	10.2 Watts		
Typical	6.8 Watts		
Data Communica	tions		
2 Ethernet ports - utility or rear side	Independent Ethernet ports 1000/100/10 Base-T Auto-negotiation		
Connector	RJ-45		
Cable Length	100 meters (328 feet) max		
Updated Rate			
Modbus	50 ms		
EDG	20 ms		
LEDs			
Module OK LED	Indicates when the module is functioning properly		
System Communication LED	Indicates when the module is communicating to the rest of the system		
Physical Characteristics			
Required Rack Space	1 Slot		

Protection Processor Module

Protection Processor Module (PPM)		
Power Consumption		
Typical	6.1 Watts	
Maximum	9.7 Watts	

Protection Processor Module (PPM)

Channel Types

- Acceleration
- Case Expansion
- Differential Expansion
- Process Variable
- Dynamic Pressure
- Radial Vibration
- Speed
- Temperature
- Thrust
- Valve Position
- Velocity

Measurements and Signal Processing				
1X/2X/nX Amplitude and Phase	In a complex vibration signal, notations for signal components having frequencies equal to fractions of rotative speed. Also called subharmonic and subsynchronous.			
Amplitude Extraction	Amplitude Extraction measurements can be based on synchronous or asynchronous sampling.			
Bandpass	Adjustable lowpass and highpass corners based on the frequency range of the transducer.			
Bias	Applicable to Acceleration and Velocity sensor inputs. The DC voltage used by the system as a bias for the transducer. Can be used as a diagnostic tool for evaluating system integrity. Note: The bias voltage measurement contains no information about the condition of the machinery being monitored. It is provided only for monitoring system diagnostics.			

Case Expansion

A measurement of the axial position of the machine casing relative to a fixed reference, usually the foundation. The measurement is typically made with a Linear Variable Differential Transformer installed on the foundation at the opposite end of the machine from the point where the casing is attached to the foundation. Changes in casing axial position are the result of thermal expansion and contraction of the casing during startup and shutdown.

Protection Processor Module (PPM)

Complimentary Input DE (Composite of Differential Expansion Channel measurements) Complementary Input Differential Expansion (CIDE) is a method of measuring Differential Expansion. Two proximity probes are mounted and gapped so that the measurement range is twice the range of a single proximity probe. One probe is in its linear range during the first half of the measurement range and the second probe is in range during the second half of the measurement range. The monitor is configured so that it will switch from one probe to the other probe when the gap voltages are at the switch point. The switch point is termed the Cross Over Voltage. The monitor uses the Direct static value from each probe to determine the overall expansion value. The overall expansion value is termed the Composite static value and it is the value used for machine protection and machinery management information.

Differential Expansion

The measurement of the axial position of the rotor with respect to the machine casing at some distance from the thrust bearing. Changes in axial position relative to the casing affect axial clearances and are usually the result of thermal expansion during startup and shutdown. The measurement is typically made with a proximity probe transducer mounted to the machine casing and observing an axial surface (e.g., collar) of the rotor.

Direct

Data or a signal which represents the original transducer signal without significant filtering. Sometimes called unfiltered, raw, all pass, or overall data or signal. Bently Nevada signal processing does some filtering to create "direct" data, but it still contains broadband frequency information.

Protection Processor Module (PPM)

Dual Ramp (Composite)

Dual Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. Two proximity probes observe different ramps. The two ramp sections must be mirror images with the same ramp angle. The two probes mount on the same side of the rotor and in the same axial plane. The monitor uses the direct static values from both channels to measure axial position and compensate for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.

Eccentricity

The radial displacement of the rotor journal centerline from the geometric center of a fluid lubricated bearing.
Eccentricity is measured while the turbine is on slow roll (1 to 240 RPM below the speed at which the rotor becomes dynamic and rises in the bearing on the oil wedge) and requires special circuitry to detect the peak- to-peak motion of the shaft.

Protection Processor Module (PPM)			Protection Pr	ocessor Module (PPM)	
Gap	The physical distance between the face of a proximity probe tip and the observed surface. The distance can be expressed in terms of displacement (mils, micrometres), or in terms of voltage (millivolts). Standard polarity convention dictates that a decreasing gap results in an increasing (less negative) output signal.		Number of Reverse Rotation	Valid when the machine is spinning backwards and has exceeded the reverse speed setpoint, counting revolutions.	
			Position	Position has a variety of applications. For the Thrust and Differential Expansion it is the change in axial direction with respect to a fixed reference. Also used in Case Expansion to	
Integration/RMS	/RMS Available for Velocity and Acceleration channels to be applied to Direct, Bandpass, 1X, 2X, nX an		Acceleration channels to be applied to Direct,		measure case growth and Valve Position to measure how open or closed a valve is.
Non-Standard Single Ramp DE (Composite) Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. Two proximity probes observe the same ramp. The two probes are mounted on opposite sides of the rotor (180 degrees apart). The monitor uses the direct static values from both channels to measure axial position and compensate		Process Variable	The Process Variable Channel accepts current and voltage proportional inputs from a transmitter for the purpose of monitoring process variables (temperature, pressure, flow, etc.).		
		Reverse Peak Speed	Valid when the machine is spinning backwards and has exceeded the reverse speed setpoint, storing the highest achieved reverse speed.		
		Reverse Speed	Valid when the machine is spinning backwards. This measurement behaves like a typical speed measurement.		
for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.			Rotor Acceleration	Rotor acceleration is a ramp rate of a rotor (in rpm / min) as its speed increases from zero rpm to the machine's running speed value.	

Shaft Absolute	Shaft Absolute vibration is the measurement of the shaft motion referenced to free space. It is measured using a vector summation of shaft relative motion and bearing seismic motion. A proximity sensor and an integrated velocity sensor must be mounted at the same location. Shaft Absolute Direct and IX measurements are available on Radial Vibration channels.
SMAX	Measurement of the maximum excursion from an axial position.
Speed	Measurement of the rate of rotational motion.

Protection Processor Module (PPM)

Standard Single
Ramp DE
(Composite)

Standard Single Ramp Differential Expansion is a method of measuring Differential Expansion and is a subset of a number of measurement methods, generally termed Ramp Differential Expansion, which make use of ramps to measure axial position. One proximity probe, termed the ramp transducer, observes a ramp and the other probe, termed the flat transducer, observes the shaft. The two probes are mounted on the same side of the rotor and in the same axial plane. The ramp transducer measures axial position and the flat transducer measures radial position. The monitor uses the flat channel Direct static value to compensate the ramp channel Direct static value for the effect of radial movement. The compensated result is termed the Composite static value and is the primary value used for machine protection and machinery management information.

Valve Position

Measurement of the percentage open or closed of a valve.

7oro	Speed
Zero	Speed

A channel whose transducer is used to monitor the shaft rotational speed of a large rotor machine in revolutions per minute (under 100 rpm) below which the turning gear engagement can safely occur. Continuous shaft rotation during machine shutdown is imperative to prevent shaft bow that could lead to possible machine damage during startup. The channel receives a signal from a transducer whose output frequency is proportional to the speed of a rotor.

Alarming	
Alarm Time Delays	100 ms to 60 sec for vibration and position measurements. 1 sec to 60 sec for speed measurements.
Setpoints	Four setpoint levels available at a each measurement.
Protection States	Up to 32 Protection States that be controlled by Discrete contacts or configurable measurement ranges. Alarm setpoints are adjustable for different Protection States.

Acceleration Channel		
Direct/Bandpass		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Integration	Option allowed	
Units	g pk	
	g rms	
	m/s^2 pk	
	m/s^2 rms	
Integrated Units	in/s pk	
	in/s rms	
	mm/s pk	
	mm/s rms	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner	0.0626 - 40,000 Hz	
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner Frequency	User can set values below the low pass frequency.	
	Range of 0.0625 to 39,999	

Frequency response of the transducer needs to be considered.

Bias	
Units	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01 - 5.00 Hz

Acceleration Channel		
1X and 2X (Default Variables)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Integration	Option allowed	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX (Additional Va	uriable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40kHz	
Integration	Option allowed	
Order	0.1 to 100 X; with precision of 0.1 x	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	

Acceleration Channel		
Maximum Speed	Keyphasor source:	
	<u>High Speed Keyphasor =</u>	
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x	
	60,000 rpm, when 12.5x < n orders ≤ 25x	
	30,000 rpm, when 25x < n orders ≤ 50x	
	15,000 rpm, when 50x < n orders ≤ 100x	
	<u>Dynamic Input Module =</u>	
	12,000 rpm	
Amplitude Extract	tion (Additional Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Integration	Option allowed	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Spectral Lines	100, 200, 400, 800, 1600, 3200	
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz	
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	
Number Of Revs (Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024	
Number of Averages	Up to 128	
Minimum Speed	50 rpm	

Acceleration Channel		
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling)	
	Bandwidth ≥ 0	

Case Expansion Channel		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum	
Position		
Units	V	
Direct	in	
	mm	
Composite (Additional Variable)		
Units	in	
	mm	

Differential Expansion Channel

General Tab Properties

Probe Configuration

- 1. Single Channel Differential Expansion
- 2. Standard Single Ramp Differential Expansion Flat Section
- 3. Standard Single Ramp Differential Expansion Ramp Section
- 4. Dual Ramp
- Non-Standard Single Ramp Differential Expansion
- 6. Complementary Input Differential Expansion

The desired Probe Configuration can be set for the Differential Expansion Channel.

Options 2-6 require the channel to also have a Composite Trended Variable added per Channel pair.

Position and Composite (Additional Variable)

Accuracy	Within ±0.33% of full-scale typical
	±2% maximum
Units	in
	mm
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01 - 5 Hz
Gap	
Units	V

Differential Expansion Channel		
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5 Hz	
Bandpass (Add	itional Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	in	
	mm	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass	0.0626 - 40,000 Hz	
Corner Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Poles	1, 2, 4, 6, 8	
High Pass	0.0626 to 40,000	
Corner Frequency	(must be < LPF)	
nX (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Integration	Option allowed	
Order	0.1 to 100 X; with precision of 0.1 x	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	

Differential Expansion Channel	
Minimum Speed	50 rpm
Maximum	Keyphasor source:
Speed	<u>High Speed Keyphasor =</u>
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm

Dynamic Pressure Channel	
Dynamic	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz
	±2% maximum up to 40 kHz
Units	psi pp
	psi dpp
	psi rms
	mbar pp
	mbar dpp
	mbar rms
Low Pass Poles	1, 2, 4, 6, 8

Dynamic Pressure Channel		
Low Pass Corner	0.0626 - 40,000 Hz	
Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner Frequency	User can set values below the low pass frequency.	
	Range of .0625 to 39,999	

Frequency response of the transducer needs to be considered.

Bias	
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01 - 5.00 Hz
Bandpass	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz
	±2% maximum up to 40 kHz"
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.0626 - 40,000 Hz
	Must be greater than high pass frequency and below Upper Transducer Frequency Response.
High Pass Poles	1, 2, 4, 6, 8
High Pass Corner Frequency	User can set values below the low pass frequency.
	Range of 0.0625 to 39,999

Dynamic Pressure Channel

Frequency response of the transducer needs to be considered.

1X and 2X (Default Variables)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz	
	±2% maximum up to 40kHz	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz	
	±2% maximum up to 40 kHz	
Order	0.1 to 100 X; with precision of 0.1 x	
Minimum Speed	50 rpm	

Dynamic Pressure Channel		
Maximum Speed	Keyphasor source:	
	High Speed Keyphasor =	
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x	
	60,000 rpm, when 12.5x < n orders ≤ 25x	
	30,000 rpm, when 25x < n orders ≤ 50x	
	15,000 rpm, when 50x < n orders ≤ 100x	
	<u>Dynamic Input Module =</u>	
	12,000 rpm	
Amplitude Extrac	tion (Additional Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Spectral Lines	100, 200, 400, 800, 1600, 3200	
Frequency Span (Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz	
Samples Per Rev (Synchronous)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096	
Number Of Revs (Synchronous)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024	
Number of Averages	Up to 128	
Minimum Speed	50 rpm	

Dynamic Pressure Channel		
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling) Bandwidth ≥ 0	

Process Variable	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum
Input Options	4 - 20 mA 1 - 5 V 0 - 10 V -10 - 10 V
Output Options	Custom units accepted. Upper and Lower Limits must be within 100,000 units of each other.
Ra	dial Vibration Channel
Ra Direct/Band	dial Vibration Channel
	dial Vibration Channel
Direct/Band	dial Vibration Channel pass Within ±0.33% of full-scale
Direct/Band	dial Vibration Channel pass Within ±0.33% of full-scale typical ±1% maximum up to 20 kHz

Radial Vibration Channel		
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.1 - 40,000 Hz; increments of 0.1 Hz (should be greater than 10 times High Pass Frequency)	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner Frequency	0.1 - 40,000 Hz; increments of 0.1 Hz (should be less than 1/10 of Low Pass Frequency)	
Gap		
Units	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5.00 Hz	
1X, 2X, SMAX		
1X/2X Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz"	
SMAX Accuracy	Within ±5% of full-scale	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minmum Speed	50 rpm	

Radial Vibration Channel	
Maximum	Keyphasor Source:
Speed	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
nX	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz"
Order	0.1 to 100x; increments of 0.1x
Speed Ratio	0.000000001 – 20,000
	(up to 10 digits of resolution)
Minmum Speed	50 rpm
Maximum	Keyphasor source:
Speed	High Speed Keyphasor =
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm

Radial Vibration Channel	
Amplitude Ex	traction
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Samples Per Rev (Sync.)	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
Number Of Revs (Sync.)	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Frequency Span (Async.)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz
Spectral Lines	100, 200, 400, 800, 1600, 3200
Number of Averages	Up to 128
Minmum Speed	50 rpm
Maximum	Keyphasor Source:
Speed	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
Center Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling)
	Bandwidth ≥ 0

Radial Vibration Channel		
Shaft Absolute - Direct		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner	0.0626 - 40,000 Hz; increments of 0.1 Hz	
Frequency	(should be greater than 10 times High Pass Frequency)	
High Pass Poles	1, 2, 4, 6, 8	
High Pass Corner	User can set values below the low pass frequency.	
Frequency	Range of .0625 to 39,999	
Shaft Absolute	e - 1X	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz"	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minmum Speed	50 rpm	
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
Eccentricity Pe	eak to Peak / Direct	
Low Pass Poles	1	

Datasneet 13/M5182 Rev. N				
Ra	Radial Vibration Channel		Spe	ed Channel
Low Pass Corner Frequency	0.41 Hz		Top Scale	KPH modules: Must be between 50 and 120,000 rpm, inclusive
Eccentricity Poles	1			PAV/PAA/PAS/PAD/PVT modules:
Eccentricity Corner	15.6 Hz			Must be between 50 and 12,000 rpm, inclusive
rrequency	equency		Units	rpm
	Spe	ed Channel		cpm
Speed				Hz
Speed/Frequ		KPH modules:	Gap	
Signal Accurd	асу	0.017 to 100 rpm: ±0.1 rpm 101 to 10,000 rpm: ±100	Low Pass Corner Frequency	0.01 - 5Hz
		rpm	Low Pass Poles	1, 2, 4, 6, 8
		10,001 to 120,000 rpm: ±0.01% of actual	Reverse Speed	
		rotational speed PAV/PAA/PAS/PAD/PVT modules:	Accuracy	Refer to Speed/Frequency Signal Accuracy
			Top Scale	KPH modules:
		1 to 100 ppm: ±0.1 rpm 101 to 5000 ppm: ±1 rpm	·	Must be between 50 and 120,000 rpm, inclusive
		(within 3 seconds) 5001 to 12,000 ppm: ±15 rpm (within 3 seconds) Definitions		PAV/PAA/PAS/PAD/PVT modules:
				Must be between 50 and 12,000 rpm, inclusive
			 Units	rpm
		ppm = Pulses Per Minute	Office	cpm
		ppm = EPR * RPM		Hz
		EPR = Events Per Revolution	Speed Ratio	0.00005 - 20,000
		"Within 3 seconds" = At higher ppms, the system		(up to 10 digits of resolution)
		requires time to settle to the designated	Speed Hysteresis	0 to 10

1 to 10%

% Difference

accuracy specifications

Speed Channel Reverse Peak Speed Measurement requires 2 transducers.		
Measurement requires 2		
Accuracy Refer to Speed/Frequency Signal Accuracy		
Top Scale KPH modules:		
Must be between 50 and 120,000 rpm, inclusive		
PAV/PAA/PAS/PAD/PVT modules:		
Must be between 50 and 12, rpm, inclusive	,000	
Units rpm		
cpm		
Hz		
Speed Ratio 0.00005 – 20,000		
(up to 10 digits of resolution)	
Speed 0 to 10 Hysteresis		
% Difference 1 to 10%		
Number of Reverse Rotations		
Top Scale Bottom Scale < Top Scale < 20,000	=	
Speed Ratio 0.00005 to 20,000		
(must support up to 10 digit precision)	s of	
Speed 0 to 10 Hysteresis		
% Difference 1 to 10%		
Rotor Acceleration		

±20 rpm/min

100 to 9,999 (rpm/min)

Accuracy

Top Scale

	13/M5182 Rev. I	
Speed Channel		
Bottom Scale	-9,999 to -100 (rpm/min)	
Unit	rpm/min	
	cpm/min	
	Hz/min (rpm/min)	
Speed Ratio	0.00005 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	1 to 120,000	
Peak Speed		
Accuracy	Refer to Speed/Frequency Signal Accuracy	
Top Scale	KPH modules:	
	Must be between 50 and 120,000 rpm, inclusive	
	PAV/PAA/PAS/PAD/PVT modules:	
	Must be between 50 and 12,000 rpm, inclusive	
Units	rpm	
	cpm	
	Hz	
Speed Ratio	0.00005 - 20,000	
·	(up to 10 digits of resolution)	
Clamp Signal Below 1 rpm	Option allowed	
Minimum Speed	1 to 120,000	
Zero Speed		
	surement requires 2 sducers.	

	Speed Channel
Accuracy	Refer to Speed/Frequency Signal Accuracy
Top Scale	10.0 to 99.9 rpm
Units	rpm
	cpm
	Hz
Second Transducer Source	Lists all available speed channels configured in system
Speed Ratio	0.00005 - 20,000
	(up to 10 digits of resolution)
Clamp Signal Below 1 rpm	Option allowed
% Difference	1 to 10%

Temperature Channel		
Direct		
Accuracy	Within ±1 degree typical	
	±3 degrees maximum	
Units	°F	
	°C	
Temperature Range	-200C - 1370C depending on TC/RTD selection	

Thrust Channel	
Position	
Accuracy	Within ±0.33% of full-scale typical
	±1% maximum
Unit	mil, mm

Thrust Channel		
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5Hz	
Gap		
Unit	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01-5Hz	
Bandpass (A	Additional Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	mil pp	
	μm pp	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass	0.0626 - 40,000 Hz	
Corner Frequency	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Poles	1, 2, 4, 6, 8	
High Pass	0.0626 to 40,000	
Corner Frequency	(must be < LPF)	

Thrust Channel		
Amplitude Extraction (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	mil pp	
	μm pp	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum	Keyphasor Source:	
Speed	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module	
	= 12,000 rpm	
nX (Addition	nal Variable)	
Accuracy	Within ±0.33% of full-scale typical	
	±1% maximum up to 20 kHz ±2% maximum up to 40 kHz	
Unit	mil pp	
	μm pp	
Speed Ratio	0.000000001 – 20,000	
	(up to 10 digits of resolution)	
Order	0.1 to 100 X; with precision of 0.1x	
Minimum Speed	50 rpm	

	Thrust Channel
Maximum	Keyphasor source:
Speed	High Speed Keyphasor =
	120,000 rpm when 0.1x ≤ n orders ≤ 12.5x
	60,000 rpm, when 12.5x < n orders ≤ 25x
	30,000 rpm, when 25x < n orders ≤ 50x
	15,000 rpm, when 50x < n orders ≤ 100x
	<u>Dynamic Input Module =</u>
	12,000 rpm
Spectral Ban	nd (Additional Variable)
Unit	mil pp
	μm pp
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm
Maximum	Keyphasor Source:
Speed	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
	= 120,000 rpm Dynamic Sampled Input Mod

Valve Position Channel		
Valve Position - Position		
Accuracy	Within ±0.33% of full-scale typical ±1% maximum	
Units	% Open % Closed	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5.00 Hz	
Valva Position - Direct (Default)		

Valve Position - Direct (Default)		
Accuracy	Within ±0.33% of full-scale typical ±1% maximum	
Units	V	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.01 - 5.00 Hz	

Velocity Channel	
Direct/Bandpass	
Accuracy	Within ±0.33% of full-scale typical ±2% maximum
	-270 MAXIMAM
Integration	Option allowed
Units	in/s pk
	in/s rms
	mm/s pk
	mm/s rms

Velocity Channel		
Integrated Units	mil pp	
	μm pp	
Low Pass Poles	1, 2, 4, 6, 8	
Low Pass Corner Frequency	0.0626 - 40,000 Hz	
	Must be greater than high pass frequency and below Upper Transducer Frequency Response.	
High Pass Corner Frequency	User can set values below the low pass frequency.	
	Range of .0625 to 39,999	

Frequency response of the transducer needs to be considered.

Bias	
Units	V
Low Pass Poles	1, 2, 4, 6, 8
Low Pass Corner Frequency	0.01 - 5.00 Hz
1X and 2X	
Accuracy	Within ±0.33% of full-scale typical
	±2% maximum
Integration	Option allowed
Speed Ratio	0.000000001 - 20,000
	(up to 10 digits of resolution)
Minimum Speed	50 rpm

Velocity Channel		
Maximum Speed	Keyphasor Source:	
	High Speed keyphasor = 120,000 rpm	
	Dynamic Sampled Input Module = 12,000 rpm	
nX (Additional Variable)		
Accuracy	Within ±0.33% of full-scale typical	
	±2% maximum	
Integration	Option allowed	
Order	0.1 to 100 X; with precision of 0.1 x	
Speed Ratio	0.000000001 - 20,000	
	(up to 10 digits of resolution)	
Minimum Speed	50 rpm	
Maximum Speed	Keyphasor source:	
Maximum Speed	Keyphasor source: High Speed Keyphasor =	
Maximum Speed		
Maximum Speed	High Speed Keyphasor = 120,000 rpm	
Maximum Speed	High Speed Keyphasor = 120,000 rpm when 0.1x ≤ n orders ≤ 12.5x 60,000 rpm,	
Maximum Speed	High Speed Keyphasor = 120,000 rpm when 0.1x ≤ n orders ≤ 12.5x 60,000 rpm, when 12.5x < n orders ≤ 25x 30,000 rpm,	
Maximum Speed	High Speed Keyphasor = 120,000 rpm when 0.1x ≤ n orders ≤ 12.5x 60,000 rpm, when 12.5x < n orders ≤ 25x 30,000 rpm, when 25x < n orders ≤ 50x 15,000 rpm,	
Maximum Speed	High Speed Keyphasor = 120,000 rpm when 0.1x ≤ n orders ≤ 12.5x 60,000 rpm, when 12.5x < n orders ≤ 25x 30,000 rpm, when 25x < n orders ≤ 50x 15,000 rpm, when 50x < n orders ≤ 100x	
	High Speed Keyphasor = 120,000 rpm when 0.1x ≤ n orders ≤ 12.5x 60,000 rpm, when 12.5x < n orders ≤ 25x 30,000 rpm, when 25x < n orders ≤ 50x 15,000 rpm, when 50x < n orders ≤ 100x Dynamic Input Module =	
	High Speed Keyphasor = 120,000 rpm when 0.1x ≤ n orders ≤ 12.5x 60,000 rpm, when 12.5x < n orders ≤ 25x 30,000 rpm, when 25x < n orders ≤ 50x 15,000 rpm, when 50x < n orders ≤ 100x Dynamic Input Module = 12,000 rpm	

Speed Ratio	Option allowed 0.000000001 - 20,000
opeda Katio	
	(up to 10 digits of
Chaotrallings	(up to 10 digits of resolution)
•	100, 200, 400, 800, 1600, 3200
(Asynchronous)	10, 20, 50, 100, 200, 500, 1000, 2000, 5000, 10000, 20000, 40000 Hz
	8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096
	1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
Number of Averages	Up to 128
Minimum Speed	50 rpm
Maximum Speed	Keyphasor Source:
	High Speed keyphasor = 120,000 rpm
	Dynamic Sampled Input Module = 12,000 rpm
Frequency and Bandwidth	Configurable over the supported spectral range (up to 40 kHz for Asychronous or up to 1600X for Synchronous sampling)
	Bandwidth ≥ 0

Condition Monitoring Module

Condition Monitoring Module (CMM)		
Power Consumption		
Maximum	14.2 W	
Typical	10.5 W	
Data Commun	ications	
2 Ethernet ports - utility or rear side	Independent Ethernet ports 1000/100/10 Base-T Auto- negotiation	
Connector	RJ-45	
Cable Length	100 meters (328 feet) max	
LEDs		
Module OK LED	Indicates when the module is functioning properly	
LINK LED	indicates when the module is communicating to the rest of the system	
Physical		
Required Rack Space	2 Slots	

Power Input Module

Power Input Module (PIM)			
Electrical			
Voltage Input	+21 to +32 Vdc		
Current Draw			
	10.5 Amps @ 24 Vdc		
	7.1 Amps @ 24 Vdc		
Out of Range Protection	An undervoltage does not harm the PIM. An overvoltage causes the fuse to open.		
Physical			
Width	0.8" (2.03 cm)		
Height	5.2" (13.21 cm)		
Depth	9.67" (24.56 cm)		

Dynamic Input Modules

Dynamic Input Modules		
PAV	(-) (Prox, Accel, Velom)	
PAS	(-) (Prox, Accel, Seismic)	
PAA	(-) (Prox, Accel, Aero)	
PAD	(-) (Prox, Accel, DC LVDT)	
PVT	(+) (Prox, Accel, Velom)	
Speed and Keyphasor		
Speed Range	1 - 12,000 rpm	
Power Consumption		
Maximum	11 W	
Typical (All Modules)	7.5 W	

Dynan	nic Input Modules	Dynam	ic Input Modules
Accuracy and Fr	equency Response	Dynamic Inputs	
PAV	Prox/Accel (3-wire) 0-40 kHz 1% of Full Scale	Analog Input	See Input Module Sensors and Channels on page 17.
	Velom (2-wire)	Channels Supported	4 Dynamic Inputs
	5 Hz - 20 kHz 1% of Full Scale	Sampling Rate	102.4 kHz
	20-40 kHz 2% of Full Scale	Input Interface In	npedance (Typical)
PAS	Prox/Accel (3-wire)	PAV	Prox/Accel (3-wire)
	0-40 kHz 1% of Full Scale		10 kΩ
	Seismic (2-wire)	PAS	Prox/Accel (3-wire)
	5 Hz - 20 kHz 1% of Full		10 kΩ
	Scale		Seismic (2-wire)
	20-40 kHz 2% of Full Scale		10 kΩ
PAA	Prox/Accel (3-wire)	PAA	Prox/Accel (3-wire)
	0-40 kHz 1% of Full Scale		10 kΩ
	Aero (4-wire)		Aero (4-wire)
	5 Hz - 20 kHz 1% of Full Scale		100 kΩ
	20-40 kHz 2% of Full Scale	PAD	Prox/Accel (3-wire)
PAD	Prox/Accel (3-wire)		10 kΩ
	0-40 kHz 1% of Full Scale		DC LVDT (4-wire)
	DC LVDT (4-wire)		1 ΜΩ
	5 Hz - 20 kHz 1% of Full Scale	PVT	Prox/Accel (3-wire) 10 kΩ
	20-40 kHz 2% of Full Scale		
PVT	Prox/Accel (3-wire)	Input Interface Si	Prox/Accel (3-wire)
1 1 1	0-40 kHz 1% of Full Scale	PAV	Min22, Max. 0
	Velom (2-wire)		Velom (2-wire)
	5 Hz - 20 kHz 1% of Full Scale		Min24, Max2
	20-40 kHz 2% of Full Scale		

Dynam	nic Input Modules
PAS	Prox/Accel (3-wire)
	Min22, Max. 0
	Seismic (2-wire)
	Min14, Max. 0
PAA	Prox/Accel (3-wire)
	Min22, Max. 0
	Aero (4-wire)
	Min22, Max. 0
PAD	Prox/Accel (3-wire)
	Min22, Max. 0
	DC LVDT (4-wire)
	Min10, Max. 10
PVT	Prox/Accel (3-wire)
	Min. 0, Max. 24
	Velom (2-wire)
	Min. 2, Max. 24
Outputs	
BTO Accuracy	AC
	> 0 to < 10 kHz, ±1% of input signal
	10 kHz to < 20 kHz, ±2% of input signal
	20 kHz to < 30 kHz, ±4% of input signal
	30 kHz to ≤ 40 kHz, ±6% of input signal
	<u>DC</u>
	±100 mV over voltage range of Input Module
BTO Output Impedance	500 Ω

Dynamic Input Modules

BTO Connector

This is a true analog signal from the input, not digital to analog reconstitution of the input signal.Some Transducers have an offset BTO bias.

Transducer Power		
PAV	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
	Velom (2-wire)	
	3.3 mA (Constant current)	
PAS	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
PAA	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
	Aero (4-wire)	
	-24 VDC, Max. 40 mA	
PAD	Prox/Accel (3-wire)	
	-24 VDC, Max. 40 mA	
	DC LVDT (4-wire)	
	-10 to 10 VDC, max. 40 mA	
PVT	Prox/Accel (3-wire)	
	24 VDC, Max. 33 mA	
	Velom (2-wire)	
	9.5 mA (Typical)	

Dynamic Input Modules		
LEDs		
Channel Status LED (Rear Utility side only)	I per input channel indicates when the connected sensor is in an OK condition	
Module OK LED	Indicates when the module is functioning properly	
System Communication LED	indicates when the module is communicating to the rest of the system	
Physical		
Required Rack Space	1 Slot	

Keyphasor Input Module

Keyphasor Module Inputs (KPH)		
Inputs		
Analog Input	 Proximitor (3-wire) Accelerometer (3-wire) Proximitor Keyphasor (3-wire) Magnetic Speed Pickups 	
Signal Conditioning		
Speed / Frequency Signal Ranges	Input range of 1 to 120,000 cpm (0.017 to 2 kHz).	
Non-Speed Dynamic Input Specifications		
Analog Input	See Input Module Sensors and Channels on page 17.	
Channels Supported	4 Dynamic Inputs	

102.4 kHz

Sampling Rate

Keyphasor Module Inputs (KPH)		
Accuracy and Frequency Response		
KPH	Prox/Accel (3-wire)	
	0-40 kHz 2% of Full Scale	
Outputs		
Analog Buffered Transducer (BTO)	Short circuit protected output signal available through BTO connector on public and utility side.	
BTO Accuracy	AC	
	> 0 to < 10 kHz, ±1% of input signal	
	10 kHz to < 20 kHz, ±2% of input signal	
	20 kHz to < 30 kHz, ±4% of input signal	
	30 kHz to ≤ 40 kHz, ±6% of input signal	
	<u>DC</u>	
	±100 mV over voltage range of Input Module	
BTO Output Impedance	500 Ω	
BTO Connector	CONTROL OF THE PARTY OF THE PAR	

When configured as an analog output, this is a true analog signal from the input and not a digital to analog reconstitution of the input signal. When configured as a processed output, this is a 5 V or 3.3 V compatible TTL signal with the same machine speed and phase as the input signal. Some Transducers have an offset BTO bias.

Keyphasor Module Inputs (KPH)		
Keyphasor Transducer Power Supply	-24 Vdc, 40 mA maximum per channel.	
LEDs		
Channel Status LED (Rear Utility side only)	1 per input channel indicates when the connector sensor is in an OK condition	
Module OK LED	Indicates when the module is functioning properly	
LINK LED	indicates when the module is communicating to the rest of the system	
Physical		
Required Rack Space	1 Slot	

AC LVDT

Module Inputs	
Channels	4 differential AC signals from AC LVDT
Power Consumption	5.7 W typical, 10 W maximum

TC/RTD Temperature

Temperature		
Thermocouple (TC) Temperature		
Thermocouple	Type J, K, E, T	
Channel Supported	6	
RTD Temperature		
RTD Type	Pt100 (385), Pt100 (392), Ni120, Cu10	

Temperature

Platinum RTD's with 0.00385 alphas are the worldwide industrial standard and are recommended for all applications.

Power Consumption	
Maximum	6 W
Typical	3 W
LEDs	
Channel Status LED (Rear Utility Side)	1 per unit channel indicates when the connected sensor is in an OK condition
Module OK LED	Indicates when the module is functioning properly
System Communication LED	Indicates when the module is communicating to the rest of the system
Physical Characteristics	
Required Rack Space	1 Slot

Isolated Process Variable / Discrete Input (PVD)

Isolated PV / Discrete Input (PVD)		
Power Consumption		
Typical	4.5 W	
Maximum	6.5 W	
Characteristics		
Channels	6	
Isolation	500 V Channel to System and 250 V Channel to Channel isolation	

Isolated PV / Discrete Input (PVD)		
Process Var	Process Variable 4-20 mA Input	
Process Variable Input (Current)	4 to 20 mA	
Process Variable Input (Voltage)	-10 to 10 Vdc 0 to 10 Vdc 2 to 10 Vdc 0 to 5 Vdc 1 to 5 Vdc -10 to 0 Vdc	

Discrete Input	
Discrete Input	Dry Contact, Internally Wetted
	Wetted Contact, 0 to 10 Vdc

Electromagnetic Relay (EMR)

Electromagnetic Relay (EMR)		
Power Consumption		
Typical	6 watts	
Maximum	11 watts	
Characteristics		
Туре		echanical Single- ble-Throw
Number of Relay Outputs	8	
Environmental	Epoxy Sealed	
Operation	for Norm	y is configurable ally De-Energized Illy Energized
Contact Rating for Standard Systems		
Minimum Switched Current		100 mA

	13/M3182 Rev. IV
Electromagnetic I	Relay (EMR)
DC Maximum Switched Current	4 A @ 30 Vdc
DC Minimum Switched Voltage	5 Vdc
DC Maximum Switched Voltage	30 Vdc
AC Maximum Switched Voltage	250 Vrms
AC Maximum Switched Current	4 A
Maximum Switched Power	180 W or 1800 VA
Contact Rating for Hazar	dous Area Systems
Maximum Switched Current	4 A
DC Maximum Switched	30 Vdc

Solid State Relay (SSR)

AC Maximum Switched

Voltage

Voltage

Solid State Relay (SSR)		
Power Consumption		
Typical	5 watts	
Maximum	9 watts	
Characteristics		
Туре	Solid State Single-Pole, Double-Throw	
Number of Relay Outputs	8	
Environmental	Plastic Encapsulated	

160 Vrms

Solid State Relay (SSR)		
Arc Suppressor	150 Vdc, i	nstalled standard
Maximum Cycling Rate	1 Hz	
Operation	for Norm	y is configurable ally De-Energized Illy Energized
Switching Properties	Limited to	o non-inductive
Contact Rating	for Stando	ırd Systems
Current Range		0.0 1-125 mA
DC Maximum Switched Current		125 mA @ 125 Vdc
Voltage Range		1-125 Vdc
Maximum Switched Power		650 mW
Contact Rating	for Hazard	lous Area Systems
Current Range		0.0 1-125 mA
Voltage Range		1-50 Vdc

10.4" Hazardous Area Display

10.4" Hazardous Area Display	
Part Number	120M8155-01
Warranty	1 Year
Features	
Video Interface	VGA
Touch Screen Type	Resistive Touch Screen
Cable Interface	Serial
Control Settings	Front panel button

	13/10/10/2 10/2 10	
10.4" Hazardous Area Display		
Mounting Styles	Panel Mount, 19" EIA Rack Mount, and Independent Mount	
Power		
Voltage	24 Vdc nominal voltage range 10 to 28 Vdc	
Operating Current	Less than 500 mA	
Physical Characteristics		
Dimensions	15.25 x 9.8 x 1.93 in (387.4 x 248.9 x 49 mm)	
Environmental	Limits - Indoor Use Only	
IP Rating	Designed for IP54 ingress protection against dust and water spray to the front only.	
Operating Temperature	-20 to 65°C (-4 to 149°F)	
Standards and Certifications		
Refer to Externa (154M8401)	l Display Datasheet	

15" Hazardous Area Display

15" Hazardous Location Display		
Part Number	102М8950	
Warranty	1 Year	
Features		
Video Interface	VGA and DVI-D	
Touch Screen Type	5-Wire Resistive Touch Screen	
Touch Screen Interface	Serial and USB-B	
Control Settings	Front panel button	
Mounting Styles	Panel Mount and 19" EIA Rack Mount	
Power		
Voltage	24 Vdc nominal voltage range 12 to 24 Vdc	
Operating Current	~100 mA	
Physical Chard	ıcteristics	
Dimensions	16.61 x 13.31 x 2.68 in (422 x 338 x 68 mm)	
Environmental	Limits - Indoor Use Only	
IP Rating	IP65 ingress protection against dust and water spray compliant to the front only.	
Operating Temperature	-20 to 60°C (-4 to 140°F)	
Standards and	Certifications	
Refer to Externa (154M8401)	l Display Datasheet	

21.5" Industrial Display

21.5" Industrial Display		
Part Number	150M1466	
Warranty	1 Year	
Features		
Video Interface	VGA and DVI-D	
Touch Screen Type	Projected Capacitive Touch Screen	
Touch Screen Interface	USB-B and Serial	
Control Settings	Control buttons on rear panel	
Mounting Styles	Panel Mount and 19" EIA Rack Mount	
Power		
Voltage	24 Vdc nominal voltage range 22 to 26 Vdc	
Operating Current	≈ 200 mA	
Physical Chard	ıcteristics	
Dimensions	21.98 x 13.77 x 1.88 in (558.4 x 349.8 x 47.7 mm)	
Environmental	Limits - Indoor Use Only	
IP Rating	IP66 ingress protection against dust and water spray compliant to the front only.	
Operating Temperature	-30 to 70°C (-22 to 158°F)	
Storage Temperature	-40 to 75°C (-40 to 167°F)	
Ambient Relative Humidity	10 to 90% non-condensing	

21.5" Industrial Display

Standards and Certifications

Refer to External Display Datasheet (154M8401)

Industrial Computer for Display

CPU Module		
CPU	Intel Atom processor E3845 (quad-core, 1M cache, 1.91 GHz)	
System Memory	4 GB	
Storage	SD 3.0 (SDHC/SDXC) 128 GB	
Display	Intel HD Graphics 4000	
Peripherals		
USB	2 - USB-A 2.0	
VGA	Resolution up to 1920 x 1200 pixels at 75 Hz HDDB-15F port	
DisplayPort	Resolution up to 2560 x 1600 pixels at 60 Hz receptacle	
Ethernet	4 – Auto-sensing 10/100/1000 Mbps RJ45 ports Magnetic Isolation Protection 1.5 kV	
Serial	2 - RS-232/422/485 DB9M ports	
Power		
Voltage	12/24 Vdc (11.4 to 36 Vdc)	
Power	Less than 30 W (nominal)	
Physical Characteristics		
Weight	1.75 kg (3.86 lbs.)	
Dimensions	132 x 122 x 87 mm (5.20 x 4.81 x 3.43 in.)	

	CPU Module
Environmental Limits - Indoor Use Only	
Operating Temperature	-40 to 70°C (-40 to 158°F)

Standards and Certifications

Refer to External Display Datasheet (154M8401)

Compliance and Certifications FCC

This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions:

- This device may not cause harmful interference.
- This device must accept any interference received, including interference that may cause undesired operation.

EMC

European Community Directive:

EMC Directive 2014/30/EU

Standards:

EN 61000-6-2; Immunity for Industrial Environments EN 61000-6-4; Emissions for Industrial Environments

Electrical Safety

European Community Directive:

LV Directive 2014/35/EU

Standards:

EN 61010-1; EN 61010-2-201;

RoHS

European Community Directive:

RoHS Directive 2011/65/EU

Cyber Security

Designed to meet IEC 62443-4-2

*Maritime

ABS Rules for Condition of Classification,
Part 1

- Steel Vessels Rules
- · Offshore Units and Structures

* Approvals pending

Functional Safety

SIL 2

See the SIL User Guide (134M0398) for details regarding SIL implementation.

Hazardous Area Approvals

For the detailed listing of country and product-specific approvals, refer to the Approvals Quick Reference Guide (108M1756).

For additional technical documentation, please log in to bntechsupport.com and access the Bently Nevada Media Library.

cNRTLus

Class I, Zone 2: AEx/Ex ec nC IIC T4 Gc; Class I, Zone 2: AEx/Ex nA nC IIC T4 Gc; Class I, Division 2, Groups A, B, C, D T4; Class I, Division 2, Groups A, B, C, D T4 (N.I.);

T4 @ Ta = -30° C to $+70^{\circ}$ C (-22° F to $+158^{\circ}$ F)

ATEX/IECEX

Ex II 3 G Ex ec nC IIC T4 Gc Ex nA nC IIC T4 Gc

T4 @ Ta = -30° C to $+70^{\circ}$ C (-22° F to $+158^{\circ}$ F)

Ordering Information 60R_SYSTEM - Packaged Chassis

To begin your order, contact your sales representative.

Ordering Option	Description	
A - Chassis	Туре	
01	Rackmount Chassis	
02	Panel Mount Chassis	
03	Bulkhead Mount Chassis	
B - Power In	put	
02	Dual DC Power Input Modules	
C - Display		
00	No Display	
D - Agency Approvals		
00	None	
01	CSA/NRTL/C (CLASS 1 DIV 2)	
02	Multi (CSA, ATEX, IECEX)	
XXX	Country Specific Approvals	
E – Functional Safety System		
NO	Standard System	
YES	Functional Safety System	
All chassis ord modules:	ders will include the following	

• PPM

• CMM

• PIM

• SIM

System Interface Module

Ordering Option	Description
60R/SIM01-AAA-B • Sy Module	rstem Interface

AAA – Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL

For an Orbit 60 safety system, SIL certification for the SIM is not required.

Communications Gateway Module

Ordering Option	Description
60R/CGW01-AAA-B • F Gateway	RJ-45 Ethernet Comm
AAA – Hazardous Area	Certifications

00 No Hazardous Area 01 CSA/NRTL/C (Class I, Div 2) 02 Multi (CSA, ATEX, IECEx) XXX Country Specific Approvals B - SIL Level 0 No SIL

Protection Processor Module

Ordering Option	Description
60R/PPM01-AAA-B • Protection Processor Module	

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

B - SIL Level

0	No SIL
2	SIL 2

Condition Monitoring Module

Ordering Option	Description
60R/CMM01-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL

Two PIM modules are included with the Orbit 60 Chassis.

Specific PIM modules are exclusively used with either the 3U or 6U chassis. The 3U and 6U PIMs are not interchangeable.

3U Power Input Module

Ordering Option	Description
60R/PIM01-AAA-B • Power Input Module	

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL

6U Power Input Module

Ordering Option	Description	
60R/PIM02-AAA-B • Power Input Module		
AAA – Hazardous Area Certifications		

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
	Approvals

0	No SIL

B - SIL Level

PAV (Prox/Accel/Vel) Module

Ordering Option	Description
60R/INP01-AA	A-B

AAA – Hazardous Area Certifications

00	No Hazardous Area
00	NO HOZOTOOUS AFEO

Ordering Option	Description
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

PAA (Prox/Accel/Aero) Module

Ordering Option	Description
60R/INP02-	AAA-B
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

PAS (Prox/Accel/Seismic) Module

Ordering Option	Description
60R/INP03-AA	4-В

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)

Ordering Option	Description
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

PAD (Prox/Accel/DCLVDT) Module

Ordering Option	Description
60R/INP04-AAA-B	

AAA - Hazardous Area Certifications

AAA HULUHUUU AIVU VOI UIIVUU		
00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B - SIL Level		
0	No SIL	
2	SIL 2	

PVT (Prox/Accel/Velom)

Ordering Option	Description
60R/INP05-A	AA-B

AAA - Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

B - SIL Level

0	No SIL
2	SIL 2

Keyphasor Input Module

Ordering Option	Description
60R/INP06-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B – SIL Level	
0	No SIL
2	SIL 2

AC LVDT Input Module

Ordering Option	Description
60R/INP10-A	AA-B

AAA – Hazardous Area Certifications

00	No Hazardous Area
----	-------------------

Ordering Option	Description
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

RTD / TC Temperature Module

Ordering Option	Description
60R/INP07	

AA – Hazardous Area Certifications

No Hazardous Area
CSA/NRTL/C (Class I, Div 2)
Multi (CSA, ATEX, IECEx)
Country Specific Approvals
No SIL
SIL 2

Isolated Process Variable / Discrete Input Module (PVD)

Ordering Option	Description
60R/INP09	

AAA – Hazardous Area Certifications

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)

Ordering Option	Description
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
2	SIL 2

Electromechanical Relay Module

Ordering Option	Description	
60R/RLY01-AAA-B		
AAA – Hazardous Area Certifications		
00	No Hazardous Area	
01	CSA/NRTL/C (Class I, Div 2)	
02	Multi (CSA, ATEX, IECEx)	
XXX	Country Specific Approvals	
B – SIL Level		
0	No SIL	
1	SIL 1	

Solid State Relay Module

Ordering Option	Description
60R/RLY02-AAA-B	
AAA – Hazardous Area Certifications	
00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals
B - SIL Level	
0	No SIL
1	SIL 1

External Display

Bently Nevada offers three display systems with different resolution, capabilities, mounting options, accessories, and certifications. Not all options are available for all displays.

60X/EXDAA-BB-CC		
AA – Display		
01	10.4" Hazardous Area Display	
02	15" Hazardous Area Display	
04	21.5" Display	
BB – Age	ency Approvals	
00	No Approval Certifications	
01	CSA/NRTL/C (Class 1 DIV 2) (only available for the 60X/EXD01 10.4 in display and 60X/EXD02 15 in display)	
02	Multi (CSA, ATEX, IECEX) (only available for the 60X/EXD01 10.4 in display)	
CC - Mounting Options		
01	19" Rack Mount Panel	
02	Panel Mount Kit	
03	Remote Stainless-Steel Enclosure (Select a pole or wall mount option separately as an accessory as needed.)	
04	Independent Mount (only available for the 60X/EXD01 10.4 in display)	

Industrial Computer for Display

60X/CMP01-AA	
AA – Agency Approvals	
00	No Approval Certifications
01	CSA/NRTL/C (Class 1 DIV 2)

60X/CMP01-AA	
02	Multi (CSA, ATEX, IECEX)

Includes DIN Mounting Kit, 24 Vdc 90-Watt DIN Mountable Power Supply, USB Mouse, 24 Vdc Power Cable, 10' (3 m) Ethernet Cable. A 20' Ethernet cable accessory is available.

Accessories

Part Number	Description
Dongles and Cables	
60X/BTC01	Buffered Transducer Breakout Kit

External Barriers

Part Number	Description
175502	3-pin Transducer Barrier
177241	2-pin Velomitor Barrier
175990 or 170M3559	Thermocouple Barrier
170M3559	RTD Barrier

External Galvanic Isolators

Part Number	Description
103M7134	3-pin Transducer Isolator
103M7134	2-pin Transducer Isolator
154M1361	Thermocouple Isolator
103M7138	RTD Isolator

Configuration Software

Part Number	Description
60X/CFG	Orbit Studio Configuration Software

AC/DC Industrial Power Supply

Ordering Option	Description
60X/XPS01-AAA • 240 Watt AC/DC Industrial Power Supply	

AAA - Agency Approvals

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

60X/XPS02-AAA • 480 Watt AC/DC Industrial Power Supply

AAA - Agency Approvals

00	No Hazardous Area
01	CSA/NRTL/C (Class I, Div 2)
02	Multi (CSA, ATEX, IECEx)
XXX	Country Specific Approvals

Miscellaneous

Part Number	Description
144M5033-01	System Key
60R/BLK01	Blank: Module slot blank cover

Glossary of Terms

010330	ary or retirio
Accel	Acceleration
Aero	Aeroderivative
API	American Petroleum Institute
BRG	Bridge
вто	Buffered Transducer Output
CE	Case Expansion
CGW	Communication Gateway Module
CIDE	Complementary Input Differential Expansion
СММ	Condition Monitoring Module
СОМ	Common
DCM	Distributed Condition Monitoring
DCS	Distributed Control Systems
DR(DE)	Dual Ramp (Differential Expansion)
EGD	Ethernet Global Data
ESD	Emergency Shutdown Device
EIA	Energy Information Administration
EMR	electromechanical Relay
HAZLOC	Hazardous Location
HTVAS	High Temperature Velocity/Accel Sensor
ı/o	Input/Output
IEPE	Integrated Electronics Piezo-Electric
ITC	Isolated Thermocouple
KPH	High Speed Keyphasor
LVDT	Linear Variable Differential Transformer
NC	Normally Closed
NEMA	National Electrical Manufacturers Association
NO	Normally Opened
NSSRDE	Non-Standard Single Ramp Differential Expansion
NTP	Network Time Protocol
OEM	Orginal Equipment Manufacturer
PAA	Prox, Accel, Aero
PAD	Prox, Accel, Displacement Module

Prox, Accel, Seismic

PAS

PAV Prox, Accel, Velom **PIM Power Input Module** PLC Programmable Logic Controller PPM **Protection Processing Module Prox** Proximitor **PVD** Isolated Process Variable, Discrete Input **PVT** Positive Voltage Transducer **REB** Roller Element Bearing **REC Recorder Outputs RMC** Remote Monitoring Center RST Reset **RTD** Resistance Temperature Detector SAI System Alarm Inhibit **SCDE** Single Channel Differential Expansion **SHLD** Shield SIL Safety Integrity Level SIM System Interface Module SSR Solid State Relay SSRDE Standard Single Ramp Differential Expansion SW Software TC Thermocouple TLS Transport Layer Security RTD/TC Resistance Temp Detector / Thermocouple TCP/IP Transmission Control Protocol Internet Protocol TM **Trip Multiply OEM** Orginal Equipment Manufacturer Velom Velomitor

Copyright 2023 Baker Hughes Company. All rights reserved.

Bently Nevada, Keyphasor, M2, Proximitor, Seismoprobe, System 1, Velomitor and Orbit Logo are registered trademarks of Bently Nevada, a Baker Hughes business, in the United States and other countries. The Baker Hughes logo is a trademark of Baker Hughes Company. All other product and company names are trademarks of their respective holders. Use of the trademarks does not imply any affiliation with or endorsement by the respective holders.

Baker Hughes provides this information on an "as is" basis for general information purposes. Baker Hughes does not make any representation as to the accuracy or completeness of the information and makes no warranties of any kind, specific, implied or oral, to the fullest extent permissible by law, including those of merchantability and fitness for a particular purpose or use. Baker Hughes hereby disclaims any and all liability for any direct, indirect, consequential or special damages, claims for lost profits, or third party claims arising from the use of the information, whether a claim is asserted in contract, tort, or otherwise. Baker Hughes reserves the right to make changes in specifications and features shown herein, or discontinue the product described at any time without notice or obligation. Contact your Baker Hughes representative for the most current information.

The information contained in this document is the property of Baker Hughes and its affiliates; and is subject to change without prior notice. It is being supplied as a service to our customers and may not be altered or its content repackaged without the express written consent of Baker Hughes. This product or associated products may be covered by one or more patents. See Bently.com/legal.

1631 Bently Parkway South, Minden, Nevada USA 89423 Phone: 1.775.782.3611 (US) or Bently.com/support Bently.com

