The above specifications are subject to change and some models may be discontinued without notice.
Functions

Settles alarm operation and alarm output by connecting both alarm operations. Each alarm operation individually has an alarm output. When the current temperature is out of the alarm range, an alarm lamp lights up and an alarm alarm output turns ON. As the result of input correction, if current temperature value (PV) is over each temperature range of input, alarm alarm output turns OFF. If alarm option is alarm latch or alarm latch option, alarm alarm output turns OFF when measured value is lower than input range. When measured value is higher than input range, alarm alarm output turns OFF. When measured value is lower than input range, alarm alarm output turns ON. When input is within the alarm range, alarm alarm output turns OFF. As the result of input correction, if current temperature value (PV) is over each temperature range of input, alarm alarm output turns OFF. If alarm option is alarm latch or alarm latch option, alarm alarm output turns OFF when measured value is lower than input range.

Alarm operation

Settles alarm operation and alarm output by connecting both alarm operations. Each alarm operation individually has an alarm output. When the current temperature is out of the alarm range, an alarm lamp lights up and an alarm alarm output turns ON. As the result of input correction, if current temperature value (PV) is over each temperature range of input, alarm alarm output turns OFF. If alarm option is alarm latch or alarm latch option, alarm alarm output turns OFF when measured value is lower than input range. When measured value is higher than input range, alarm alarm output turns OFF. When measured value is lower than input range, alarm alarm output turns ON. When input is within the alarm range, alarm alarm output turns OFF. As the result of input correction, if current temperature value (PV) is over each temperature range of input, alarm alarm output turns OFF. If alarm option is alarm latch or alarm latch option, alarm alarm output turns OFF when measured value is lower than input range.

Temperature controller

Temperature deviation is controlled by the following formula:

\[\text{Deviation} = |\text{PV} - \text{SV}| \]

The control output (MV) is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.

The control output is adjusted to maintain the deviation between the set point (SV) and the measured value (PV) within the specified limits. The control output is adjusted using the following formula:

\[\text{Control Output (MV)} = \frac{\text{PID Output}}{\text{Gain}} \]

where

- **PID Output** is the output of the proportional, integral, and derivative (PID) controller.
- **Gain** is the gain factor that adjusts the sensitivity of the controller.