IMPORTANT WARRANTY NOTE:
By registering online or returning your warranty card within 30 days from the date of purchase, your warranty will be extended to 3 years.
Statement of Compliance

Chauvin Arnoux®, Inc. d.b.a. AEMC® Instruments certifies that this instrument has been calibrated using standards and instruments traceable to international standards.

We guarantee that at the time of shipping your instrument has met its published specifications.

An NIST traceable certificate may be requested at the time of purchase, or obtained by returning the instrument to our repair and calibration facility, for a nominal charge.

The recommended calibration interval for this instrument is 12 months and begins on the date of receipt by the customer. For recalibration, please use our calibration services. Refer to our repair and calibration section at www.aemc.com.

Serial #: ______________________________________

Cat. #: 2130.74/2130.75/2130.76/2130.77/2130.78/2130.79

Model #: 3945-B

Please fill in the appropriate date as indicated:

Date Received: _________________________________

Date Calibration Due: _______________________

Chauvin Arnoux®, Inc. d.b.a AEMC® Instruments
www.aemc.com
Your instrument is equipped with a NiMH battery. This technology offers several advantages:

- Long battery charge life for a limited volume and weight.
- Possibility of quickly recharging your battery.
- Significantly reduced memory effect: you can recharge your battery even if it is not fully discharged.
- Respect for the environment: no pollutant materials such as lead or cadmium, in compliance with the applicable regulations.

After prolonged storage, the battery may be completely discharged. If so, it must be completely recharged.

Your instrument may not function during part of this recharging operation.

Full recharging of a completely discharged battery may take several hours.

In this case, at least 5 charge/discharge cycles will be necessary for your battery to recover 95% of its capacity.

To make the best possible use of your battery and extend its effective service life:

- Only use the charger supplied with your instrument. Use of another charger may be dangerous.
- Only charge your instrument at temperatures between 0° and 40°C.
- Comply with the conditions of use defined in the operating manual.
- Comply with the storage conditions specified in the operating manual.

NiMH technology allows a limited number of charge/discharge cycles depending significantly on:

- The conditions of use.
- The charging conditions.

Please refer to § 7 for correct replacement of the battery.

Do not dispose of the battery pack with other solid waste. Used batteries must be entrusted to a qualified recycling company or to a company specialized in processing hazardous materials.
Table of Contents

1. **INTRODUCTION** ... 7
 1.1 International Electrical Symbols ... 7
 1.2 Definition of Measurement Categories 8
 1.3 Receiving Your Shipment .. 8
 1.4 Ordering Information .. 8
 1.4.1 Accessories and Replacement Parts 9
 1.4.2 Third Party Accessories .. 10

2. **PRODUCT FEATURES** .. 11
 2.1 Description ... 11
 2.2 Control Functions ... 12
 2.3 Display ... 14
 2.4 Battery Charge Status ... 16

3. **SPECIFICATIONS** .. 17
 3.1 Reference Conditions ... 17
 3.2 Electrical Specifications ... 17
 3.2.1 Voltage Inputs ... 17
 3.2.2 Current Inputs ... 18
 3.2.3 Accuracy Specifications (excluding current probes) 18
 3.2.4 Nominal Range of Use .. 19
 3.2.5 Power Supply ... 19
 3.3 Mechanical Specifications ... 20
 3.4 Environmental Specifications .. 20
 3.5 Safety Specifications ... 20
 3.6 AC Current Probe Model SR193 .. 21
 3.7 AC Current Probe MN93 Probe .. 22
 3.8 AC Current Probe MN193 Probe 23
 3.9 AC Current Probe AmpFlex® Probe 24
 3.10 AC Current Probe MiniFlex® Sensor 25
 3.11 AC Current Probe MR193 Probe 26
 3.12 Three-phase 5A Adapter Box ... 28
 3.12.1 Connecting to Secondary Current Transformer (CT) 29
 3.12.2 Specifications ... 29
4. OPERATION .. 30

4.1 Instrument Configuration (Set-up mode) .. 30

4.1.1 Date / Time .. 31

4.1.2 Contrast / Brightness ... 31

4.1.3 Colors ... 32

4.1.4 Calculation Parameters ... 32

4.1.5 Electrical Hookup (electrical network) ... 33

4.1.6 Current Sensors .. 34

4.1.7 Baud Rate .. 35

4.1.8 Recording .. 36

4.1.9 Alarm ... 37

4.1.10 Clear Memory .. 39

4.1.11 Line Frequency ... 39

5. DISPLAY MODES .. 40

5.1 Waveform Mode ... 40

5.1.1 RMS Voltage Measurement on a Three-phase System 40

5.1.2 RMS Voltage Measurement on 3 Phases 41

5.1.3 RMS Current Measurement on the 3 Phases and Neutral Current on a Three Phase-4 Wire System 42

5.1.4 Total Harmonic Distortion Measurement on One Phase 42

5.1.5 Minimum and Maximum Current Value Measurements 43

5.1.6 Simultaneous Display of the Current Measurements 44

5.1.7 Phasor Diagram Display (Fresnal Diagram) 45

5.2 Harmonics Mode .. 46

5.2.1 Single Phase and Phase-to-Phase Voltage Analysis 46

5.2.2 Single Phase and Phase-to-Phase Current Analysis 47

5.2.3 Power and Direction Flow Analysis .. 48

5.2.4 Harmonic Analysis in Expert Mode .. 49

5.3 Power / Energy Mode ... 50

5.3.1 Starting and Stopping Energy Totalization 50

5.3.2 G Button .. 51

5.3.3 PF... Button ... 51

5.4 Transient Mode .. 52

5.4.1 Opening Previously Stored Transients 54

5.4.2 Storing the Trigger .. 54
5.5 Alarm Mode ...56
5.6 Recording Mode..57
 5.6.1 Saving the Selected Parameters57
 5.6.2 Selecting or Deleting a Record59
 5.6.3 Selecting a Graphic Display for Recorded Measurements...60
5.7 Saving a Display ..63
5.8 Opening a Previously Saved Snapshot64
5.9 Printing ...65
5.10 Help..65

6. DATAVIEW® SOFTWARE ..66
 6.1 Features...66
 6.2 Installing DataView® ..66
 6.3 Connecting the Model 3945-B to your Computer70
 6.4 Opening the Control Panel ...70
 6.5 Common Functions ..72
 6.6 Configuring the Instrument ..72
 6.6.1 Setup...73
 6.6.2 Instrument Display ..74
 6.6.3 Alarm Conditions Configuration75
 6.6.4 Recordings Configuration ...77
 6.6.5 Transients ...78
 6.6.6 Monitoring ...79
 6.6.7 Running the Test ...80
 6.7 Real-time Windows ...80
 6.7.1 Waveform, Harmonic Bar and Harmonic Text80
 6.7.2 Power/Energy ..81
 6.7.3 Trend ..82
 6.8 Downloading Data to Database82
 6.8.1 Recordings ...83
 6.8.2 Photographs ..84
 6.8.3 Alarms ...85
 6.8.4 Transients ...85
 6.8.5 Monitoring ...87
 6.8.6 Saving Real-time Measurements88
7. MAINTENANCE ... 90
 7.1 Recharging and Changing the Battery ... 90
 7.2 Cleaning .. 90

APPENDIX A: MATHEMATICAL FORMULAS ... 91
 Half-period Voltage and Current RMS Values 91
 MIN / MAX Values for Voltage and Current 92
 Peak Values for Voltage and Current ... 92
 Peak Factors for Current and Voltage ... 92
 1 sec RMS Values for Voltage and Current 93
 Voltage and Current Unbalance ... 93
 THD Calculation ... 93
 Calculation of Harmonic Bins ... 94
 Distortion Factor Calculation (DF) ... 94
 K Factor ... 95
 Different Power Levels 1 Sec ... 95
 Ratios ... 96
 Various Types of Energy ... 96
 Hysteresis ... 98

APPENDIX B: GLOSSARY OF TERMS .. 99
 Repair and Calibration ... 102
 Technical and Sales Assistance .. 102
 Limited Warranty ... 103
 Warranty Repairs ... 103
CHAPTER 1

INTRODUCTION

⚠️ Warning

- Never use on circuits with a voltage higher than 600V and an overvoltage category higher than CAT III or IV (probe dependant)
- Use in indoor environments only.
- Only use accessories that are compliant with the safety standards (IEC 664-1 Ed. 92) 600V min and overvoltage CAT III or IV.
- Only use factory specified replacement parts.
- Always disconnect the power cord, measurement leads and sensors before replacing the battery.

1.1 International Electrical Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Double Insulation]</td>
<td>Signifies that the instrument is protected by double or reinforced insulation.</td>
</tr>
<tr>
<td>![CAUTION - DANGER!]</td>
<td>CAUTION - DANGER! Read the User Manual.</td>
</tr>
<tr>
<td>![Risk of Electric Shock]</td>
<td>Risk of electric shock. The voltage at the parts marked with this symbol may be dangerous.</td>
</tr>
<tr>
<td>![Type A Current Sensor]</td>
<td>Refers to a type A current sensor. This symbol signifies that application around and removal from HAZARDOUS LIVE conductors is permitted.</td>
</tr>
<tr>
<td>![Type B Current Sensor]</td>
<td>Refers to a type B current sensor. Do not apply around or remove from HAZARDOUS LIVE conductors without additional protective means (de-energizing the circuit or wearing protective clothing suitable for high voltage work).</td>
</tr>
<tr>
<td>![Important Instructions]</td>
<td>Important instructions to read and understand completely.</td>
</tr>
<tr>
<td>![Important Information]</td>
<td>Important information to acknowledge.</td>
</tr>
<tr>
<td>![USB Socket]</td>
<td>USB socket</td>
</tr>
<tr>
<td>![CE Marking]</td>
<td>The CE marking guarantees conformity with European directives and with regulations covering EMC.</td>
</tr>
<tr>
<td>![WEEE Symbol]</td>
<td>The trash can with a line through it means that in the European Union, the product must undergo selective disposal for the recycling of electric and electronic material, in compliance with Directive WEEE 2002/96/EC.</td>
</tr>
</tbody>
</table>
1.2 Definition of Measurement Categories

CAT I: For measurements on circuits not directly connected to the AC supply wall outlet such as protected secondaries, signal level, and limited energy circuits.

CAT II: For measurements performed on circuits directly connected to the electrical distribution system. Examples are measurements on household appliances or portable tools.

CAT III: For measurements performed in the building installation at the distribution level such as on hardwired equipment in fixed installation and circuit breakers.

CAT IV: For measurements performed at the primary electrical supply (<1000V) such as on primary overcurrent protection devices, ripple control units, or meters.

1.3 Receiving Your Shipment

Make sure that the contents shipped are consistent with the packing list. Notify your distributor of any missing items. If the equipment appears to be damaged, file a claim immediately with the carrier and notify your distributor at once, giving a detailed description of any damage. Save the damaged packing container to substantiate your claim. Do not use equipment which is damaged or appears to be damaged.

After receiving your PowerPad®, charge and discharge the instrument one or two cycles to ensure the proper level display of the battery indicator.

1.4 Ordering Information

PowerPad® Model 3945-B ..Cat. #2130.74
Includes four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMH battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.

PowerPad® Model 3945-B w/MN93 ..Cat. #2130.75
Includes the PowerPad® Model 3945-B, set of three MN93 (240A) probes, four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMH battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.

PowerPad® Model 3945-B w/SR193 ...Cat. #2130.76
Includes the PowerPad® Model 3945-B, set of three SR193 (1200A) probes, four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMH battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.
PowerPad® Model 3945-B w/24" AmpFlex® 193-24 Cat. #2130.77
Includes the PowerPad® Model 3945-B, set of three 24" AmpFlex® 193-24 (6500A) sensors, four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMH battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.

PowerPad® Model 3945-B w/36" AmpFlex® 193-36 Cat. #2130.78
Includes the PowerPad® Model 3945-B, set of three 36" AmpFlex® 193-36 (6500A) sensors, four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMH battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.

PowerPad® Model 3945-B w/MR193 ... Cat. #2130.79
Includes the PowerPad® Model 3945-B, set of three color-coded MR193 (1000Aac/1400Adc) probes, four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMh battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.

PowerPad® Model 3945-B w/MN193 ... Cat. #2130.80
Includes the PowerPad® Model 3945-B, set of three color-coded MN193 (6A/120A) probes, four 10 ft color-coded voltage leads, four color-coded alligator clips, RS-232 DB9F optically coupled serial cable, NiMh battery, US 120V power cord, DataView® software, carrying bag, soft carrying pouch and user manual.

Only the SR, Ampflex® and MiniFlex® sensors are rated 600V CAT IV
The MN, MR and SL probes are 300V CAT IV, 600V CAT III

1.4.1 Accessories and Replacement Parts

Large Classic Tool Bag .. Cat. #2133.73
Set of 3 Color-coded, MN93 Probes (240A) Cat. #2140.09
Set of 3 Color-coded, SR193 Probes (1200A) Cat. #2140.10
Set of 3 Color-coded, 24" AmpFlex® 193-24 Probes (6500A) Cat. #2140.11
Set of 3 Color-coded, 36" AmpFlex® 193-36 Probes (6500A) Cat. #2140.12
Set of 3 Color-coded, MR193 Probes (1000Aac/1400ADC) Cat. #2140.13
Set of 3 Color-coded, MN193 Probes (6A/120A) Cat. #2140.14
Pouch – Replacement, Soft Carrying Pouch Cat. #2140.15
5A Adapter Box (for 1 or 5A probes) Cat. #2140.17
10 ft Cable, PC RS-232, DB9 F/F ... Cat. #2140.18
Replacement Battery 9.6V NiMH .. Cat. #2140.19
DPU414-30B Seiko Serial Printer with Accessories
(power supply, rechargeable battery and 5 rolls of paper) Cat. #2140.21
Paper, set of 5 rolls, for use with Printer DPU414-30B Cat. #2140.22
Set of (3) Color-coded MN93 Probes, 30 ft Leads (200A) Cat. #2140.24
Set of (3) Color-coded SR193 Probes, 30 ft Leads (1200A) Cat. #2140.25
Set of (3) Color-coded 24", 30 ft Leads (6500A)
AmpFlex® Sensors Model 193-24-30 .. Cat. #2140.26
Set of (3) Color-coded 36", 30 ft Leads (6500A)
AmpFlex® Sensors Model 193-36-30 .. Cat. #2140.27
MR193 Probe (black connector) (1000AAC/1400ADC) Cat. #2140.28
Set of (3) Color-coded MN193, 30 ft Leads (5A/100A) Cat. #2140.29
Set of (3) Color-coded MR193, 30 ft Leads (1000AAC/1400ADC) Cat. #2140.30
AC Current Probe Model MN93-BK (200A) Cat. #2140.32
AC Current Probe Model SR193-BK (1200A) Cat. #2140.33
AmpFlex® Sensor 24" Model 193-24-BK (6500A) Cat. #2140.34
AmpFlex® Sensor 36" Model 193-36-BK (6500A) Cat. #2140.35
AC Current Probe Model MN193-BK (5A/100A) Cat. #2140.36
MiniFlex® Sensor 10" Model MA193-10-BK (1000A) Cat. #2140.48
Set of 4, Color-coded 30 ft (9m) voltage leads (600V CAT IV, 10A) .. Cat. #2140.61
Replacement Lead - Set of 4, Color-coded 10 ft (3m)
with Color-coded alligator clips (red, black, blue & white) Cat. #2140.64
115V Power Cord ... Cat. #5000.14

1.4.2 Third Party Accessories
Converter - USB to RS-232, DB9 M/M available online at www.startech.com
Converter - Ethernet to RS-232, Model ESP901...available online at www.bb-elec.com

Order Accessories and Replacement Parts Directly Online.
DataView® Software Updates Available for Download Online.
CHAPTER 2

PRODUCT FEATURES

2.1 Description

The PowerPad® Model 3945-B is a three-phase power quality analyzer that is easy-to-use, compact and shock-resistant. It is intended for technicians and engineers to measure and carry out diagnostic work and power quality work on one, two or three phase low voltage networks.

Users are able to obtain instant waveforms of an electrical network's principal characteristics, and also monitor their variation over a period of time. The multi-tasking measurement system simultaneously handles all the measurement functions and waveform display of the various magnitudes, detection, continuous recordings and their display without any constraints.

Features:

- Measurement of TRMS voltages up to 480V (phase-to-neutral) or 830V (phase-to-phase) for two, three or four-wire systems
- Measurement of TRMS currents up to 6500Arms
- Measurement of DC voltage up to 850V
- Measurement of DC current up to 1400ADC (with MR193 probe)
- Frequency measurement (41 to 70Hz systems)
- Calculation of neutral current for WYE configurations
- Calculation of Crest Factors for current and voltage
- Calculation of the K Factor for transformers
- Calculation of short-term flicker for voltage
- Calculation of the phase unbalance for voltage and current (3 phase only)
- Measurement of harmonic angles and rates (referenced to the fundamental or RMS value) for voltage, current or power, up to 50th harmonic
- Calculation of overall harmonic distortion factors
- Monitoring of the average value of any parameter, calculated over a period running from 1 sec to 2 hrs
- Measurement of active, reactive and apparent power per phase and their respective sum total
- Calculation of power factor, displacement power factor and tangent factor
- Total power from a point in time, chosen by the operator
- Recording, time stamping and characterization of disturbance (swells, sags and interruptions, exceedence of power and harmonic thresholds)
- Detection of transients and recording of associated waveforms
2.2 Control Functions

Figure 2-1

1. Over molded protective case.

2. Color LCD display with graphic representation of system parameters and measurements

3. Six (6) function buttons used to modify the display mode.

4. Four (4) function buttons which allow the user to:
 - Access the instrument setup parameters (see § 4.1).
 - Take a snapshot of the current screen or access screens already stored in the memory. Record associated waveform and power measurement data.
 - Print the measurement results on an external printer.
 - Get help on the current display functions, in the language chosen by the user.
ON / OFF button.

Three (3) current inputs on the top of the instrument to enable the use of current sensors (MN, SR, AmpFlex®, and MR probes).

Four (4) voltage inputs.

RS-232 bidirectional optically isolated output for transferring data to a PC (bidirectional) or printing to a dedicated printer (DPU 414 - SEIKO).

AC Line power input.

Enter button.

Four (4) buttons that enable movement of the cursor, browsing or the selection of data.

Buttons for directly accessing the 6 display modes at any time:

Transients (set recording or view recorded transient):
- displays waveforms associated with rapid changes in input

Harmonics View:
- display of the harmonics in percent and value ratios for of voltage, current and power, for each harmonic through the 50th
- determination of harmonic current produced by non-linear loads
- analysis of the problems caused by harmonics according to their order (heating of neutrals, conductors, motors, etc.)

Waveforms View:
- displays voltage and current waveforms or vector representation (Phasor diagram)
- identification of signal distortion signatures
- display of amplitude and phase unbalance for voltage and current
- checking connections for correct phase order

Power / Energy (view or start energy monitoring):
- display of power levels and the associated parameters (power factor, displacement and tangent)
- energy monitoring
- four quadrant measurement to discern produced/consumed active energies and inductive/capacitive reactive energies

Recording (set recording or view recorded data):
- time-related representation as bar charts or line graphs, of average power levels or of the average value of any parameter
- Line graphs of each selected parameter (up to 22) vs time
- line voltage stability check
- management of power consumed and generated
- monitoring of harmonic variations
Alarm Events:
• provides a list of the alarms recorded according to the thresholds programmed during configuration
• logging of interruption with half-cycle resolution
• determination of energy consumption exceedences
• stores value, duration, date, time and set point for up to 4096 events

2.3 Display

1. Top display bar indicates:
 • Symbol of the tested mode (e.g. \(\mathcal{W} \), \(\mathcal{I} \), \(\mathcal{V} \), etc)
 • Frequency of measured signal
 • Memory capacity status bar (only available in certain modes)
 • Current date and time
 • Battery charge status

2. Measured RMS values associated with waveforms.

3. Values of signals at an instant “t”, at the intersection of cursor and the waveforms. The cursor can be moved along the time scale by pressing the \(\text{cursor buttons} \).
Measurement selection:

- **RMS**: True RMS Measurement
- **THD**: Total Harmonic Distortion
- **CF**: Crest Factor
- **max/min**: Maximum and Minimum values
- ![Simultaneous display](image)
 Simultaneous display of the various measurements in alphanumeric form
- ![Phasor diagram](image)
 Phasor diagram

The calculation of the DPF, Tan, KF, Φ, UNB, Min, Max, VAR, Harmonics, PST, and DF parameters and the frequency measurement can only be performed if voltage with a frequency of 41 to 70 Hz is applied to the Ch1 voltage input.

Selection of waveforms to be displayed (use the buttons to select):

- **3U**: displays the 3 phase-to-phase voltages U1-2, U2-3, U3-1
- **3V**: displays the 3 phase-to-neutral voltages V1N, V2N, V3N
- **3A**: displays the 3 phase currents
- **4A**: displays the 3 phase currents and the neutral current
- **L1, L2** or **L3**: displays the voltage and current, on phase 1, 2 or 3, when selected

Protocol:

- **U**: Signifies phase-to-phase voltage
- **V**: Signifies phase-to-neutral voltage
- **L1, L2, L3**: Refer to the phases (A,B,C or other)
2.4 Battery Charge Status

Battery Charging

- Battery capacity level relative to full charge
- % of total capacity already charged (between 0 and 99%)
- Battery sign and % are blinking

<table>
<thead>
<tr>
<th>Status</th>
<th>Capacity Level</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Battery Charging</td>
<td>25%</td>
<td>NOTE: Line cord is plugged in</td>
</tr>
<tr>
<td>Battery Full</td>
<td>100%</td>
<td>NOTE: Line cord may or may not be plugged in</td>
</tr>
<tr>
<td>Battery Discharging</td>
<td>25%</td>
<td>NOTE: Line cord is not plugged in</td>
</tr>
<tr>
<td>Battery Empty Discharging</td>
<td>0%</td>
<td>NOTE: Line cord is not plugged in</td>
</tr>
<tr>
<td>New Battery Charging</td>
<td>?</td>
<td>NOTE: Line cord is plugged in</td>
</tr>
<tr>
<td>New Battery Discharging</td>
<td>?</td>
<td>NOTE: Line cord is not plugged in</td>
</tr>
</tbody>
</table>

NOTE: When the 3945-B is stopped using the button, a confirmation is requested if the equipment is in the process of recording.

WARNING: The battery may fully discharge when recording for long periods of time while not connected to a power supply. The PowerPad® will continue to record for some time, even if below the minimum battery charge value. However, the display may not come back on, and will eventually stop saving data when the battery is too low. All data recorded will be saved. If in the Record Mode, and the display does not come ON, supply power to the PowerPad® with the line cord and the display will come back ON when any button (other than ON/OFF) is pressed.
CHAPTER 3

SPECIFICATIONS

3.1 Reference Conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Reference Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>73°F ± 5°F (23°C ± 3°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>45%</td>
</tr>
<tr>
<td>Atmospheric pressure</td>
<td>25.4” Hg to 31.3” Hg (860 to 1060 hPa)</td>
</tr>
<tr>
<td>Phase voltage</td>
<td>230Vrms and 110Vrms ±2% without DC</td>
</tr>
<tr>
<td>Clamp current circuit input voltage</td>
<td>0.03V to 1Vrms without DC (<0.5%)</td>
</tr>
<tr>
<td>AmpFlex® current circuit input voltage</td>
<td>11.8mV to 118mVrms without DC (<0.5%)</td>
</tr>
<tr>
<td>Frequency of electricity network</td>
<td>50 and 60Hz ± 0.1Hz</td>
</tr>
<tr>
<td>V/I phase shift</td>
<td>0° active power / 90° reactive power</td>
</tr>
<tr>
<td>Harmonics</td>
<td><0.1%</td>
</tr>
</tbody>
</table>

The uncertainties given for power and energy measurements are maximum for \(\cos \varphi = 1 \) or \(\sin \varphi = 1 \) and are typical for the other phase shifts.

NOTE: The symbol “U” will be used throughout this manual and in the instrument to refer to phase-to-phase voltage measurement.

The symbol “V” will be used for phase-to-neutral voltage measurement.

*All specifications are subject to change without notice.

3.2 Electrical Specifications

Sampling Frequency (256 samples per cycle):
- 12.8kHz samples/sec per channel @ 50Hz
- 15.36kHz samples/sec per channel @ 60Hz

Memory Size: 4MB

Memory Partition:
- Data Logging - 2MB; Waveform capture - XXMB;
- Transient capture - XXB; Alarms - XXB

3.2.1 Voltage Inputs

Operating Range: Phase-Phase - 960Vrms AC/DC
- Phase-Neutral - 480Vrms AC/DC

Input Impedance: 340kΩ between phase and neutral

Overload: 1.2Vn permanently; 2Vn for 1 sec (Vn = nominal voltage)
3.2.2 Current Inputs

Operating Range: 0 to 1V
Input Impedance: 100kΩ for current probe circuit and 12.4kΩ for AmpFlex® circuit
Overload: 1.7V

3.2.3 Accuracy Specifications (excluding current probes)

<table>
<thead>
<tr>
<th>Function</th>
<th>Range</th>
<th>Display Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>40 to 69Hz</td>
<td>0.01Hz</td>
<td>±0.01Hz</td>
</tr>
<tr>
<td>Single phase RMS voltages (Vrms, Vdem)</td>
<td>15V to 480V</td>
<td>0.1V</td>
<td>±0.5% ± 2cts</td>
</tr>
<tr>
<td>Phase-to-phase RMS voltages (Urms, Udem)</td>
<td>15V to 960V</td>
<td>0.1V</td>
<td>±0.5% ± 2cts</td>
</tr>
<tr>
<td>DC voltage component</td>
<td>15V to 680V</td>
<td>0.1V</td>
<td>±1% ± 5cts</td>
</tr>
<tr>
<td>Single phase peak voltages (Vpp, Vpm)</td>
<td>15V to 680V</td>
<td>0.1V</td>
<td>±1% ± 5cts</td>
</tr>
<tr>
<td>Phase-to-phase peak voltages (Upp, Upm)</td>
<td>15V to 1360V</td>
<td>0.1 V if I < 1000 V 1 V if I ≥ 1000 V</td>
<td>±1% ± 5cts</td>
</tr>
<tr>
<td>Current probe (Arms, Adem)</td>
<td>Inom/1000 to 1.2 Inom</td>
<td>0.1 A if I < 1000 A 1 A if I ≥ 1000 A</td>
<td>±0.5% ± 2cts</td>
</tr>
<tr>
<td>AmpFlex® & MiniFlex® (Arms, Adem)</td>
<td>10A to 6500A</td>
<td>0.1 A if I < 1000 A 1 A if I ≥ 1000 A</td>
<td>±0.5% ± 1A</td>
</tr>
<tr>
<td>DC current (MR193)</td>
<td>1A to 1400A</td>
<td>0.1 A if I < 1000 A 1 A if I ≥ 1000 A</td>
<td>±(1% + 1A)</td>
</tr>
<tr>
<td>Peak Current (App, Apm)</td>
<td>0 to 1.7 x Inom</td>
<td>0.1 A if I < 1000 A 1 A if I ≥ 1000 A</td>
<td>±(1% + 1A)</td>
</tr>
<tr>
<td>Peak Current (AmpFlex® & MiniFlex®)</td>
<td>10 to 9190A</td>
<td>0.1 A if I < 1000 A 1 A if I ≥ 1000 A</td>
<td>±(1% + 1A)</td>
</tr>
<tr>
<td>Crest Factor (Vcf, Ucf, Acf)</td>
<td>1.00 to 9.99</td>
<td>0.01</td>
<td>±1% ± 2cts</td>
</tr>
</tbody>
</table>
| Real Power (W) | 0W to 9999kW | 4 digits (10000cts) | ±1% ± 1ct
| Clamp-on and AmpFlex® | | | ±1.5% ± 10cts |
| AmpFlex® & MiniFlex® | | | ±1.5% ± 10cts |
| Reactive Power (VAR) | 0W to 9999kW | 4 digits (10000cts) | ±1% ± 1ct
| Clamp-on and AmpFlex® | | | ±1.5% ± 10cts |
| AmpFlex® & MiniFlex® | | | ±1.5% ± 10cts |
| Apparent Power (VA) | 0VA to 9999kVA | 4 digits | ±1% ± 1ct |
| Power Factor (PF, DPF) | -1.000 to 1.000 | 0.001 | ±1.5% ± 1ct |
| Tangent (Tan) for VA ≥ 50VA | -32.76 to 32.76 | 0.001 Tan φ < 10 0.01 Tan φ < 10 | 1° on φ
| Active Energy (Wh) | 0Wh to 9999MWh | 4 digits (10000cts) | ±1% ± 1ct
| Clamp-on and AmpFlex® | | | ±1.5% ± 1ct |
| AmpFlex® & MiniFlex® | | | ±1.5% ± 1ct |
| Reactive Energy (VARh) | 0VARh to 9999MVARh | 4 digits | ±1.5% ± 1ct |
| Clamp-on | | | ±2.5% ± 1ct |
| AmpFlex® & MiniFlex® | | | ±2.5% ± 1ct |
| Reactive Energy (VARh) | 0VARh to 9999MVARh | 4 digits | ±1.5% ± 1ct |
| AmpFlex® & MiniFlex® | | | ±2.5% ± 1ct |

18 Power Quality Analyzer Model 3945-B
<table>
<thead>
<tr>
<th>Function</th>
<th>Range</th>
<th>Display Resolution</th>
<th>Accuracy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apparent Energy (Vah)</td>
<td>0VAh to 9999MVAh</td>
<td>4 digits</td>
<td>±1% ± 1ct</td>
</tr>
<tr>
<td>Unbalance (Vunb, Aunb)</td>
<td>0% to 100%</td>
<td>0.1%</td>
<td>±1% ± 1ct</td>
</tr>
<tr>
<td>Phase angle (V/I; I/I; V/V)</td>
<td>-179° to +180°</td>
<td>1°</td>
<td>±2°</td>
</tr>
<tr>
<td>Harmonics ratios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = 40 to 69Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Vrms > 50V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(rms > Inom/100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = 40 to 69Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Vrms > 50V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(rms > Imax/100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harmonics angles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F = 40 to 69Hz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Vrms > 50V)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(rms > Imax/100)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total harmonics distortion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Vthd, Athd, Uthd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Current K factor (Akf)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage flicker (Vflk)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: MiniFlex® specified up to 1000A only

Vdem, Adem and Udem = Values measured on half cycle (allow to get a measurement with positive and negative values)

Vpm, Upm and Apm = Peak values min.

3.2.4 Nominal Range of Use

Frequency: 40 to 69Hz
Harmonics: THD (I) : 0 to 40%; THD (U) : 0 to 20%
Magnetic field: <40.0A/m (Earth’s magnetic field)
Electrical field: <3V/m
Relative Humidity: 10 to 90% without condensation

3.2.5 Power Supply

AC Power (internal power supply)
Operating Range: 230VAC ± 20% and 110VAC ± 20% (88 to 276VAC)
Max Power: 30VA

Battery Power (allows use in the event of an interruption)
Type: NiMH 3800 mAh
Output: 4-wire (2 for temperature probe)
Rated Voltage: 9.6V
Charge Time: 3 hrs 30 min approx
Battery Life: >8 hrs with display on
≥35 hrs with display off (recording mode)
Operating Temperature: 32° to 122°F (0° to 50°C)
Recharging Temperature: 50° to 104°F (10° to 40°C)
Storage Temperature: -4 to +122°F (-20 to +50°C) for ≤ 30 days

NOTE: The battery starts to charge when the power cord is connected. When the battery is charged, the instrument uses the current supplied by the power supply, without drawing from the battery.
3.3 Mechanical Specifications
Dimensions: 9.5 x 7.0 x 2.0" (240 x 180 x 55mm)
Weight: 4.6 lb (2.1kg)
Shock and Vibration: per EN 61010-1
Tightness: IP 50 per EN 60529 (*electrical IP2X for the terminals*)

3.4 Environmental Specifications
Altitude: Operating: 0 to 2000 meters (6560 ft)
Non-Operating: 0 to 10,000 meters (32800 ft)
Temperature and % RH:

3.5 Safety Specifications

Electrical Safety

600V CAT IV (probe dependent)
Pollution Degree 2
EN 61010-31: 2002
EN 61010-1: 2001
EN 61010-2-032: 1995

Electromagnetic Compatibility
3.6 AC Current Probe Model SR193 (3945-B accuracy included)

- When installing probes, face the arrow on the probe in the direction of the load.

Nominal Range: 1000AAC for \(f \leq 1\text{kHz} \)

Measurement Range: 3A to 1200AAC max (I > 1000A not continuously)

- Currents <0.5A will be displayed as zero with this probe.

Probe Output Signal: 1mVAC/AAC

Maximum Clamping Diameter: 2" (52mm)

Safety: EN 61010-2-032, Pollution Degree 2, 300V CAT IV, 600V CAT III

Reference Conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>73°F (23°C) ± 5°F (3°C)</td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 75% of RH</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>48 to 65Hz</td>
<td></td>
</tr>
<tr>
<td>Distortion factor</td>
<td><1% no DC current</td>
<td></td>
</tr>
<tr>
<td>Magnetic field of external origin</td>
<td><40 A/m (earth’s magnetic field)</td>
<td></td>
</tr>
</tbody>
</table>

Accuracy

<table>
<thead>
<tr>
<th>Condition</th>
<th>Range 1</th>
<th>Range 2</th>
<th>Range 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary current (AAC)</td>
<td>3 to 10A</td>
<td>10 to 100A</td>
<td>100 to 1200A</td>
</tr>
<tr>
<td>Accuracy (% of the output signal)</td>
<td>≤0.8% ± 1ct</td>
<td>≤0.3% ± 1ct</td>
<td>≤0.2% ± 1ct</td>
</tr>
<tr>
<td>Phase shift (°)</td>
<td>≤1°</td>
<td>≤0.5°</td>
<td>≤0.3°</td>
</tr>
</tbody>
</table>

*Logarithmic interpolation between each specified value

Factors affecting accuracy (% of the output signal)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>14°F to 122°F (-10°F to 50°C)</td>
<td>≤200 ppm/°C or 0.2% per 10°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10 to 90%</td>
<td><0.1%</td>
</tr>
<tr>
<td>Frequency</td>
<td>30 to 48Hz, 65 to 1000Hz, 1 to 5kHz</td>
<td><0.5%, <1%, <2%</td>
</tr>
<tr>
<td>Position of the cable in the jaws</td>
<td>–</td>
<td><0.1% @ ≤ 400Hz</td>
</tr>
<tr>
<td>Adjacent conductor carrying a 60Hz AC current</td>
<td>Conductor in contact with the sensor</td>
<td>≤0.5mA/A</td>
</tr>
<tr>
<td>Crest factor distortion</td>
<td>≤6 and current ≤3000A peak</td>
<td><1%</td>
</tr>
<tr>
<td>DC current distortion</td>
<td>≤15ADC on the nominal AC current</td>
<td><1%</td>
</tr>
</tbody>
</table>

Overload: Frequency derating beyond 1kHz: \(\frac{1000\text{A}}{F \text{ (in kHz)}} \times 1 \)
3.7 AC Current Probe MN93 Probe (3945-B accuracy included)

When installing probes, face the arrow on the probe in the direction of the load.

Nominal Range: 200A
c for f ≤ 1kHz

Measurement Range: 2A to 240A
c max (I > 200A not permanent)

Currents <0.5A will be displayed as zero with this probe.

Probe Output Signal: 5mV
c/A

Maximum Clamping Diameter: 0.8” (20mm)

Safety: EN 61010-2-032, Pollution Degree 2, 300V CAT IV, 600V CAT III,

Reference Conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Range</th>
<th>Accuracy (%) of the output signal</th>
<th>Phase shift (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>73°F (23°C) ± 5°F (3°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 75% of RH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>48 to 65Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distortion factor</td>
<td><1% no DC current</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetic field of external origin</td>
<td><40 A/m (earth’s magnetic field)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Accuracy

<table>
<thead>
<tr>
<th>Primary current (AAC)</th>
<th>2 to 10A</th>
<th>10 to 100A</th>
<th>100 to 240A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (%) of the output signal</td>
<td>≤3% ± 1ct</td>
<td>≤2.5% ± 1ct</td>
<td>≤1% ± 1ct</td>
</tr>
<tr>
<td>Phase shift (°)</td>
<td>≤6°</td>
<td>≤3°</td>
<td>≤2°</td>
</tr>
</tbody>
</table>

Factors affecting accuracy (% of the output signal)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>14° to 122°F (-10° to 50°C)</td>
<td>≤150 ppm/K or 0.15% per 10K</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10 to 90%</td>
<td>< 0.2%</td>
</tr>
<tr>
<td>Frequency response</td>
<td>40Hz to 10kHz</td>
<td>40Hz to 1kHz: <3% 1 to 10kHz: <12%</td>
</tr>
<tr>
<td>Position of the cable in the jaws</td>
<td>–</td>
<td><0.5% to 50/60Hz</td>
</tr>
<tr>
<td>Adjacent conductor carrying a 60Hz AC current</td>
<td>Conductor in contact with the sensor</td>
<td>≤15mA/A</td>
</tr>
<tr>
<td>DC current distortion</td>
<td><20A on the nominal AC current</td>
<td><5%</td>
</tr>
<tr>
<td>Crest factor distortion</td>
<td>≤3 and peak current = 200A</td>
<td>≤3%</td>
</tr>
</tbody>
</table>

Overload: Frequency derating beyond 1kHz: \(\frac{1000A \times 1}{F \text{ (in kHz)}} \)
3.8 AC Current Probe MN193 Probe (3945-B accuracy included)

When installing probes, face the arrow on the probe in the direction of the load.

The 5A range of the MN193 is designed to work with secondary current transformers. Best accuracy is available when entering the transformer ratio (e.g. 1000/5A). When used to measure 5A direct, the resolution will be limited to 0.1A max.

Nominal Range: 5A and 100AAC

Measurement Range:
- 5A: 0.005A to 6AAC max (1A to 1200A with ratio 1000/5 selected)
- 100A: 0.1A to 120AAC max

Currents < (Primary x 5) ÷ (Secondary x 1000) or <250mA on the 5A range and <0.2A on the 100A range will be displayed as zero with this probe. Power calculations will also be zeroed when the current is zeroed.

Probe Output Signal: 5A: 200mV/AAC; 100A: 10mV/AAC

Maximum Clamping Diameter: 0.8" (20mm)

Safety: NF EN 61010-2-032, Pollution Degree 2, 300V CAT IV, 600V CAT III

Reference Conditions:

<table>
<thead>
<tr>
<th>Metric</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>73°F (23°C) ± 5°F (3°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 75% of RH</td>
</tr>
<tr>
<td>Frequency</td>
<td>48 to 65Hz</td>
</tr>
<tr>
<td>Distortion factor</td>
<td><1% without superimposed DC current</td>
</tr>
<tr>
<td>Magnetic field of external origin</td>
<td><40 A/m (earth’s magnetic field)</td>
</tr>
</tbody>
</table>

Accuracy Specifications:

Range: 10mV/A (1V @ 100Arms)

<table>
<thead>
<tr>
<th>Primary current (in AAC)</th>
<th>Accuracy (% of the output signal)</th>
<th>Phase shift (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1A to 1A</td>
<td>≤1% ± 2cts</td>
<td>≤1.5°</td>
</tr>
<tr>
<td>1A to 120A</td>
<td></td>
<td>≤1°</td>
</tr>
</tbody>
</table>

Overload: 120A continuous

Range: 200mV/A (1V @ 5Arms) with ratio 1000/5 selected

<table>
<thead>
<tr>
<th>Primary current (in AAC)</th>
<th>Accuracy (% of the output signal)</th>
<th>Phase shift (°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 10A 5 to 50mA</td>
<td>≤1.5% ± 1ct</td>
<td>≤1.7°</td>
</tr>
<tr>
<td>10 to 100A 0.05 to 0.5A</td>
<td>≤1.5% ± 1ct</td>
<td>≤1°</td>
</tr>
<tr>
<td>100 to 1200A 0.5 to 6A</td>
<td>≤1% ± 1ct</td>
<td>≤1°</td>
</tr>
</tbody>
</table>

Overload: 12A continuous
Factors affecting accuracy (% of the output signal)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>14° to 131°F (-10° to 55°C)</td>
<td>≤200 ppm/K or 0.2% per 10K</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10° to 35°C 85%</td>
<td>< 0.2%</td>
</tr>
<tr>
<td>Frequency response</td>
<td>40Hz to 3kHz</td>
<td>40Hz to 1kHz: <0.7%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 to 3kHz: <2%</td>
</tr>
<tr>
<td>Positions of the cable in the jaws</td>
<td>–</td>
<td><0.5% to 50/60Hz</td>
</tr>
<tr>
<td>Adjacent conductor carrying a 60Hz AC current</td>
<td>Conductor in contact with the sensor</td>
<td>≤15mA/A</td>
</tr>
</tbody>
</table>

AC Current Probe AmpFlex® Probe (3945-B accuracy included)

When installing probes, face the arrow on the probe in the direction of the load.

Nominal Range: 3000A\text{AC}

Measurement Range: 10A to 6500A\text{AC} \text{max}

Probe Output Signal: 140mV\text{AC}/3000A\text{AC} at 50Hz

NOTE: Output is proportional to the amplitude and frequency of the measured current.

Sensor: Length = 24” (610mm); Ø = 7.64” (190mm)

Length = 36” (910mm); Ø = 11.46” (290mm)

Safety: EN 61010-1 and 2, Pollution Degree 2, 600V CAT IV, 1000V CAT III

Reference Conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>64 to 82°F (18 to 28°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 75% of RH</td>
</tr>
<tr>
<td>Position of conductor in the sensor</td>
<td>Centered</td>
</tr>
<tr>
<td>Continuous magnetic field</td>
<td><40A/m (earth’s magnetic field)</td>
</tr>
<tr>
<td>External alternative magnetic field</td>
<td>None present</td>
</tr>
<tr>
<td>External electric field</td>
<td>None present</td>
</tr>
<tr>
<td>Frequency</td>
<td>10 to 100Hz</td>
</tr>
<tr>
<td>Type of signal measured</td>
<td>Sinusoidal</td>
</tr>
</tbody>
</table>
Accuracy

<table>
<thead>
<tr>
<th>Primary current (AAC)</th>
<th>10 to 100A</th>
<th>100 to 6500A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (% of the output signal)</td>
<td>≤3% ± 1ct</td>
<td>≤2%</td>
</tr>
<tr>
<td>Phase shift (°)</td>
<td>≤0.5°</td>
<td>≤0.5°</td>
</tr>
</tbody>
</table>

Factors affecting accuracy (% of the output signal)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-4 to 140°F (-20 to 60°C)</td>
<td>0.2% per 10°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10 to 90% RH</td>
<td>0.5%</td>
</tr>
<tr>
<td>Frequency response</td>
<td>10Hz to 20kHz</td>
<td>0.5%</td>
</tr>
<tr>
<td>Position of conductor in clamp</td>
<td>Any position</td>
<td>2% (4% near latching system)</td>
</tr>
<tr>
<td>Adjacent conductor carrying an AC current</td>
<td>Conductor in contact with the sensor</td>
<td>1% (2% near latching system)</td>
</tr>
</tbody>
</table>

3.10 AC Current Probe MiniFlex® Sensor (3945-B accuracy included)

When installing probes, face the arrow on the probe in the direction of the load.

Nominal Range: 1000AAC

Measurement Range: 10A to 1000AAC max

Currents below 10A will be displayed as zero with this probe.

Probe Output Signal: 47μVAC/1000AAC at 60Hz

NOTE: Output is proportional to the amplitude and frequency of the measured current.

Sensor: Length = 10” (250mm); Ø = 2.75” (70mm)

Safety: EN 61010-1 and 2, Pollution Degree 2, 600V CAT IV, 1000V CAT III

Reference Conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>64 to 82°F (18 to 28°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 75% of RH</td>
</tr>
<tr>
<td>Position of conductor in the sensor</td>
<td>Centered</td>
</tr>
<tr>
<td>Continuous magnetic field</td>
<td><40A/m (earth’s magnetic field)</td>
</tr>
<tr>
<td>External alternative magnetic field</td>
<td>None present</td>
</tr>
<tr>
<td>External electric field</td>
<td>None present</td>
</tr>
<tr>
<td>Frequency</td>
<td>10 to 100Hz</td>
</tr>
<tr>
<td>Type of signal measured</td>
<td>Sinusoidal</td>
</tr>
</tbody>
</table>
Accuracy

<table>
<thead>
<tr>
<th>Primary current (AAC)</th>
<th>20 to 100A</th>
<th>100 to 1000A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy (% of the output signal)</td>
<td>≤3%</td>
<td>≤2%</td>
</tr>
<tr>
<td>Phase shift (°)</td>
<td>-90° ±0.5°</td>
<td></td>
</tr>
</tbody>
</table>

Factors affecting accuracy (% of the output signal)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>-4 to 140°F (-20 to 60°C)</td>
<td>0.2% per 10°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10 to 90% RH</td>
<td>0.5%</td>
</tr>
<tr>
<td>Frequency response</td>
<td>10Hz to 20kHz</td>
<td>0.5%</td>
</tr>
<tr>
<td>Position of conductor in clamp</td>
<td>Any position</td>
<td>< 2%</td>
</tr>
<tr>
<td>Adjacent conductor carrying AC</td>
<td>Conductor in contact with the sensor</td>
<td><0.7%</td>
</tr>
</tbody>
</table>

3.11 AC Current Probe MR193 Probe (3945-B accuracy included)

- When installing probes, face the arrow on the probe in the direction of the load.

Nominal Range: 1000AAC, 1400ADC max

Measurement Range: 10A to 1000AAC, 10A to 1300APEAK AC+DC

- Currents <1AAC/ADC will be displayed as zero with this probe.

Probe Output Signal: 1mV/A

Maximum Cable Diameter: One 1.6" (42mm) or two 0.98" (25.4mm) or two bus bars 1.96 x 0.19" (50 x 5mm)

Safety: EN 61010-2-032, Pollution Degree 2, 300V CAT IV, 600V CAT III

Reference Conditions:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>64 to 82°F (18 to 28°C)</td>
</tr>
<tr>
<td>Humidity</td>
<td>20 to 75% of RH</td>
</tr>
<tr>
<td>Battery voltage</td>
<td>9V ±0.1V</td>
</tr>
<tr>
<td>Position of conductor in sensor</td>
<td>Centered</td>
</tr>
<tr>
<td>Magnetic field</td>
<td>DC magnetic field</td>
</tr>
<tr>
<td>AC External magnetic field</td>
<td>None</td>
</tr>
<tr>
<td>External electric field</td>
<td>None</td>
</tr>
<tr>
<td>Frequency</td>
<td>≤65Hz</td>
</tr>
<tr>
<td>Type of signal measured</td>
<td>Sinusoidal</td>
</tr>
</tbody>
</table>

Accuracy

<table>
<thead>
<tr>
<th>Primary current</th>
<th>10 to 100A</th>
<th>100 to 800A</th>
<th>800 to 1000A</th>
<th>800 to 1300A peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accuracy</td>
<td>≤1.5% + 1ct</td>
<td>≤3% + 1ct</td>
<td>≤5% + 1ct</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Primary current</th>
<th>10 to 100A</th>
<th>100 to 1000A</th>
<th>–</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase angle</td>
<td>≤2.0°</td>
<td>≤15°</td>
<td>–</td>
</tr>
</tbody>
</table>

Factors affecting accuracy (% of the output signal)

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Range</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>64 to 82°F (18 to 28°C)</td>
<td>Zero: ≤2 A/°C Scale: ≤300ppm/°C or 0.3%/10°C</td>
</tr>
<tr>
<td>Relative humidity</td>
<td>10 to 90% RH</td>
<td>0.5% of Reading</td>
</tr>
<tr>
<td>Battery voltage</td>
<td>6.5 to 10V</td>
<td>≤1 A/V</td>
</tr>
<tr>
<td>Position of a 20mm Ø 20 conductor</td>
<td>DC at 440Hz</td>
<td><0.5% of Reading</td>
</tr>
<tr>
<td></td>
<td>DC at 1Hz</td>
<td><1% of Reading</td>
</tr>
<tr>
<td></td>
<td>DC at 2Hz</td>
<td><3% of Reading</td>
</tr>
<tr>
<td></td>
<td>DC at 5Hz</td>
<td><10% of Reading</td>
</tr>
<tr>
<td>Live adjacent conductor</td>
<td>50 and 60Hz</td>
<td><10mA/AAC (1" from clamp)</td>
</tr>
<tr>
<td>External field</td>
<td>400 A/m</td>
<td><1.3A</td>
</tr>
<tr>
<td>Rejection in common mode (AC)</td>
<td>50 to 400Hz</td>
<td>>65dB</td>
</tr>
<tr>
<td>Residual DC</td>
<td>+1300ADC at -1300ADC</td>
<td><4mA/A</td>
</tr>
<tr>
<td>Frequency of the measurement signal</td>
<td>65Hz to 440Hz</td>
<td>-2%</td>
</tr>
<tr>
<td></td>
<td>440Hz to 1kHz</td>
<td>-5%</td>
</tr>
<tr>
<td></td>
<td>1kHz to 10kHz</td>
<td>-4dB</td>
</tr>
</tbody>
</table>

Power Source: 9V alkaline (NCDA 1604A, 6LR61)

Battery Life: Approx 120 hrs with alkaline
3.12 Three-phase 5A Adapter Box

This adapter is a three-phase adapter with three 5A AC inputs L1, L2, L3 and three AC voltage outputs. All circuits are independent and isolated between input and output. The outputs are equipped with connectors to mate with the PowerPad® Model 3945-B current channel inputs.

It facilitates automatic sensor recognition and probe ratio programming for both 1A and 5A output probes. Additionally, the adapter box can be used directly in series in a 5 Amp circuit.

The input connections accept either Ø 4mm male plugs or rigid leads between 1mm and 2.5mm² inserted in the side hole after pressing the spring loaded connector down to expose the hole.

⚠️ **WARNING:** This adapter is rated EN 61010, **300V, CAT III** and permits the use of standard current probes with either a 1A or 5A output.
3.12.1 Connecting to Secondary Current Transformer (CT)

WARNING: Use caution when connecting to a secondary current transformer.

1. Short the two leads of each secondary current measurement transformer.
2. Never open a secondary circuit of a CT if its primary circuit is connected to a supply voltage. In any case, disconnect the primary measurement transformer circuit from the supply network.
3. Connect each CT secondary to the input of the 5A adapter in the correct order (ground on P2) and the right phase order L1, L2, L3.

3.12.2 Specifications *(add PowerPad® accuracy ±0.5% ± 1ct)*

- **Currents < (Primary x 5) ÷ (Secondary x 1000) will be displayed as zero on the PowerPad® with this probe.**

<table>
<thead>
<tr>
<th>Range</th>
<th>5A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output / Input Ratio:</td>
<td>0.2mV/mAAC</td>
</tr>
<tr>
<td>Dimensions:</td>
<td>6.00 x 3.74 x 3.38" (153 x 95 x 86mm)</td>
</tr>
<tr>
<td>Weight:</td>
<td>1.98 lbs (900g)</td>
</tr>
<tr>
<td>Impermeability:</td>
<td>IP50 per EN 60529 (electrical IP2X for the terminals)</td>
</tr>
<tr>
<td>Electrical safety:</td>
<td>Double Insulation, 300V CAT III</td>
</tr>
<tr>
<td>Operating Temperature:</td>
<td>5° to 131°F (-15° to 55°C), 0 to 90% RH</td>
</tr>
<tr>
<td>Storage Temperature:</td>
<td>-40° to 185°F (-40° to 85°C), 0 to 90% RH</td>
</tr>
<tr>
<td>Reference Conditions:</td>
<td>73°F (23°C) ±3K, 50 to 85% RH, 50/60Hz ±2Hz</td>
</tr>
</tbody>
</table>

Current measurement according to IEC 44-1 Class 0.5

<table>
<thead>
<tr>
<th>Range</th>
<th>5mA to 50mA</th>
<th>50mA to 1A</th>
<th>1A to 6A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error %</td>
<td>0.35% + 1.5mA</td>
<td>0.25% + 1mA</td>
<td>0.25% + 0.5mA</td>
</tr>
<tr>
<td>Phase Error</td>
<td>0.5°</td>
<td>0.4°</td>
<td>0.33°</td>
</tr>
</tbody>
</table>

Primary Voltage Loss: < 0.3V

Permanent Overload: 10A

Temperature Influence: < 0.1% par 25K

<table>
<thead>
<tr>
<th>Frequency Influence</th>
<th>65Hz to 500Hz</th>
<th>500Hz to 1kHz</th>
<th>1kHz to 5kHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Error</td>
<td>0.1%</td>
<td>0.3%</td>
<td>0.5%</td>
</tr>
<tr>
<td>Phase error</td>
<td>0.1°</td>
<td>0.2°</td>
<td>1°</td>
</tr>
</tbody>
</table>
NOTE: Charge the instrument fully before use.

The instrument is turned ON by pressing the green button. The startup screen appears and indicates the instrument’s software version and serial number.

If there is no AC power supply, the instrument operates on batteries. The instrument’s batteries are charged when it is connected to a 120/240; 60/50Hz line.

The instrument is turned OFF by pressing the green button. Confirmation will be asked, if the instrument is recording or detecting transients.

The current probes connected are identified at power ON only. Use the same probe type for each phase. When changing type of probe, restart the 3945-B or select the correct probe type using the set up mode. When installing probes, face the arrow on the probe in the direction of the load.

4.1 Instrument Configuration (Set-up mode)

NOTE: All configurations are available through the DataView® software.

The instrument must be configured the first time it is used and then whenever necessary, should your needs change. The configuration is saved in the non-volatile memory when the instrument is turned OFF.

When the button is pressed, the following setup choices appear:

![Setup Choices]

DATE / TIME
CONTRAST / BRIGHTNESS
COLORS
CALCULATION METHOD
ELECTRICAL HOOKUP
CURRENT SENSORS
BAUD RATE
RECORDING
ALARM
CLEAR MEMORY
LINE FREQUENCY

Figure 4-1
WARNING: When “CLEAR MEMORY” is selected, all configurations are deleted.

- Choose the language by pressing the function button below the desired language. Your choice will remain highlighted in yellow.
- Select the configuration settings you wish to modify, with the buttons. As you scroll through the choices, they will be highlighted.
- Press the enter button to modify the highlighted selection.

4.1.1 Date / Time

- Highlight DATE/TIME using the buttons, then press the button.
- Select the number to be modified with the buttons (it will appear in bold type).
- Modify the value of the number selected with the buttons.
- Press the button to apply the new settings.

The date and time format is indicated at the bottom of the screen.

This format can also be modified:

- The Date format can be set to MM/DD/YYYY or DD/MM/YYYY.
- The Time format can be set to a 12 hour clock (AM/PM) or a 24 hour clock (military - 12/24)

4.1.2 Contrast / Brightness

- Highlight CONTRAST/BRIGHTNESS with the buttons, then press the button.
- The setting is adjusted with the buttons and the contrast level will be indicated on the bargraph.
- Press the button to apply the new settings.
4.1.3 Colors

- Highlight COLORS with the buttons, then press the button.

The following screen will appear:

![Screen Display](image_url)

Phase voltage 1 < >
Phase current 1 < >
Phase voltage 2 < >
Phase current 2 < >
Phase voltage 3 < >
Phase current 3 < >
Neutral current < >

Figure 4-2

- Choose the phase with the buttons and the color for that phase with the buttons.
- Press the button to apply the new settings.

4.1.4 Calculation Parameters

- Highlight CALCULATION METHOD with the buttons, then press the button.
- Select either With Harmonics or Without Harmonics with the buttons. This affects the VAR calculation.
- Press the button to apply the new settings.
4.1.5 Electrical Hookup (electrical network)

- Highlight ELECTRICAL HOOKUP with the \(\text{ } \) buttons, then press the \(\text{ } \) button.

The following screen will appear:

![Figure 4-3](image)

- Choose the hookup type with the \(\text{ } \) and \(\text{ } \) buttons.
- Press the \(\text{ } \) button to apply the new hookup selection.

Hookup Types:

Single or two-phase: The neutral current is not measured or calculated.

3 phase-3 wire connection (3V, 3A):

- On DELTA network: *Only power totals are measured.*
 Powers per phase are displayed, but not valid.

- On WYE network: The neutral current is not calculated. It is necessary to connect neutral (V) to obtain the power per phase.

3 phase-4 wire connection (4V, 3A): The neutral current is available and its value and waveform are displayed.

- On WYE network: Powers per phase are available.

NOTE: Neutral current is calculated, not measured, in the 4 wire hookup.

V1 must be connected in all hookups, since the display is synchronized from V1 and the network frequency measured by V1.

Neutral current is calculated by adding, for each datapoint, each of the 3 measured phases of current. This assumes that all current flows through neutral. This results in a 256 datapoint waveform. If the 3 phases of current were balanced, the calculated neutral current would be 0 for every datapoint.
Synchronization of the Display in “Waveform” mode:

<table>
<thead>
<tr>
<th>Display selection (vertical right menu)</th>
<th>Reference channel for synchronization</th>
</tr>
</thead>
<tbody>
<tr>
<td>3U</td>
<td>U1</td>
</tr>
<tr>
<td>3V</td>
<td>V1</td>
</tr>
<tr>
<td>4A / 3A</td>
<td>A1</td>
</tr>
<tr>
<td>L1</td>
<td>V1</td>
</tr>
<tr>
<td>L2</td>
<td>V2</td>
</tr>
<tr>
<td>L3</td>
<td>V3</td>
</tr>
</tbody>
</table>

4.1.6 Current Sensors

- Highlight CURRENT SENSORS with the buttons, then press the button.

The following screen will appear:

![Current Sensors Screen](image)

- Current transducer ratio.
 - moves the cursor left or right to select which digit will be edited.
 - increases or decreases the value at the highlighted position.
- Secondary current value.
- Nominal value of primary current from 5 to 2999A.

Choose the sensor type with the buttons.
- The MN Clamp also requires a range selection to match your probe. The range choices are 200, 100 and 5 Amps. The 200 Amp Range is used for the MN93 Probe and the 100 or 5 Amp Range is used for the MN193 Probe.
- To select the proper range first ensure that the MN Probe choice is highlighted using the buttons.
- Next press the button to highlight the range, then press either of the
buttons to select the desired measurement range of 200, 100 or 5 Amps. If the 5 Amp range is selected, a choice for programming the ratio is offered.

- To change the ratio, press the button to highlight the secondary value. Pressing either of the buttons will toggle this value to either 1 or 5.

- After making this selection, press the button to adjust the primary value. Each press of the buttons will move the highlight one digit to the left or right, accordingly. Use the buttons to change each digit position as desired. The primary range can be set between 1 and 2999.

- Press the button to apply the current sensor selection. The Configuration menu will once again be displayed on the screen.

In addition to the 4 current probe choices, there is an adapter selection. This selection allows the operator to use current probes that have a current output with PowerPad®. The ratio for these probes can be programmed with this selection. The primary current can be programmed from 5 to 2999 Amps. The secondary current can be set to 1 or 5 Amps. Adjustment for the ratio is performed in the same way as described on the previous page for the MN probe.

4.1.7 Baud Rate

- Highlight BAUD RATE with the buttons, then press the button.

- Choose from the baud rate values: 2400, 4800, 7200, 9600, 19200, 38400, 57600 or 115200 with the buttons.

- Press the button to apply the current sensor selection. The Configuration menu will once again be displayed on the screen.

For transfer of data between the PowerPad® and PC, the communication speeds must be identical on both sides.
4.1.8 Recording

- Highlight RECORDING with the buttons, then press the button.

The following screen will appear:

![Screen Shot](image)

SET-UP

- Hz
- Urms
- Uthd
- Ucf
- Vrms
- Vthd
- Vcf
- Vunb
- PST
- Arms
- Athd
- Acf
- Aunb
- Af
- W
- VAR
- VA
- PF
- DPF
- Tan
- Vh
- Ah

![Figure 4-5](image)

- Four recording set-ups are available.
- Choose recording configuration 1, 2, 3, or 4 with the buttons.
- Next, move through the choices with the buttons and select the desired parameters with the buttons.

As you move through the parameters, each choice, in turn, will be highlighted.
- To activate the selected parameter for recording, use the buttons.

The selected parameters will have a filled in and those not selected will have an unfilled.
- There are two user-defined parameters at the bottom of the window. At first, they will be listed as a question mark “?”. These parameters allow you to monitor specific, or a range, of voltage, current or power harmonics.

To activate these parameters:

- Use the buttons to select the parameter.
- Next use the buttons to scroll through the available choices. These are: Uh, Vh, Ah, and VAh.
- Once the desired parameter is selected, use the to move to the first modifiable field for this parameter. A value from 00 to 50 may be selected for this field using the buttons.
- After selecting the desired harmonic order for the beginning value, press the button to move to the upper value. Use the same process to select the upper limit.

If these options are not selected, all the harmonics (odd and even) will be recorded.
- Press the button again to move to the right to modify the last value needed to complete the definition. Here you will choose whether to include all harmonics or only the odd harmonics.

- Use the buttons to make this selection. The diamond preceding the **Odd Only** choice will appear filled in ◆ for selected and unfilled ◉ for not selected.

Example of a user defined choice: Vh 02 → 15 ◆ Odd Only.
In this user defined condition, all odd voltage harmonics between the 2nd and the 15th will be recorded.

- Press the button when you have finished selecting all the parameters to be recorded to apply the new setup.

Important Note:

The battery may fully discharge when recording for long periods of time while not connected to a power supply. The PowerPad® will continue to record for some time, even if below the minimum battery charge value. However, the display may not come back on, and will eventually stop saving data when the battery is too low. All data recorded will be saved.

If in the Record Mode, and the display does not come ON, do not turn the instrument OFF. Supply power to the PowerPad® with the line cord and the display will come back ON when any button (other than ON/OFF) is pressed.

4.1.9 Alarm

- Highlight ALARM with the buttons, then press the button.

The following screen will appear:

![Figure 4-6](image-url)
A programmed alarm must be set to “ON” to function properly (general activation or deactivation of alarms is generated in the alarm mode). Modifying one or several characteristics of an alarm set to “ON”, automatically switches it to “OFF”.

1. Hysteresis Percentage (1, 2, 5 or 10%). A hysteresis value is set to prevent multiple recordings of an event that goes above the threshold and a certain percentage below it at times. Example: Alarm threshold is 100 Volts or higher, hysteresis is 1%. When voltage goes up to 100V, the alarm condition starts, when it next goes back down to 99V, the alarm condition stops.

2. Alarm activation (ON or OFF)

3. Alarm number (1 to 10)

4. There are 24 parameters to choose from for alarm triggering. They are: Vrms, Urms, Arms, Vpst, Vcf, Ucf, Acf, Vumb, Aumb, Hz, Akf, Vthd, Uthd, Athd, W, VAR, VA, DPF, PF, Tan, VH, Uh, Ah and VAh.

5. Threshold value for triggering an alarm

6. Minimum duration from beginning threshold detection to store the alarm (from 0.01 seconds to 99 minutes)

7. Less than “<” or greater than “>”

8. Capture - 3L: capture all phases (1, 2, or 3 depending on hookup selection) - N: neutral capture - Σ: total power capture - Σ/3: average value of 3-phase capture (Σ/2 for 2-phase) - 0-50 harmonic order available for harmonic event capture

Alarm Programming
Choose the parameters associated with an alarm from the available parameters (phases survey, threshold value and minimum duration filtering can be programmed).

The programmed hysteresis is common to all alarms.

- Highlight Alarm with the buttons, then press the button.
- Select the modifiable field using the buttons.
- Activate or adjust the threshold values using the buttons. (The field to be modified is shown in bold.)
- Press the button when you have finished setting all the alarm parameters.

When the alarm is “OFF”, the parameters previously used are stored in memory and reappear if the alarm is selected again.
4.1.10 Clear Memory

When CLEAR MEMORY is selected, the following question is displayed:

<table>
<thead>
<tr>
<th>Are you sure you want to delete all the data?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
</tr>
<tr>
<td>No</td>
</tr>
</tbody>
</table>

- Choose the answer with the buttons.
- Press the button to apply your choice. The Configuration menu will once again be displayed on the screen.

When data is deleted, all detected alarms, screen snapshots, captured transient states and all recordings are deleted.

The configuration will return to the default setting and the instrument will automatically turn OFF once the data has been deleted.

4.1.11 Line Frequency

Rated frequency of network: 50 or 60Hz

- Highlight Line Frequency with the buttons, then press the button.
- Choose the line frequency using the buttons.
- Press the button to apply your selection. The Configuration menu will once again be displayed on the screen.

This parameter determines the correction coefficients used for calculating power and energy.
CHAPTER 5

DISPLAY MODES

The screen presentations in this section depict three-phase setups for the purpose of explaining the various choices. Your actual screens will appear differently based upon your particular set up.

5.1 Waveform Mode

Press the waveform display mode button -

5.1.1 RMS Voltage Measurement on a Three-phase System

Values measured for each waveform, updated every second, according to the measurement type chosen with the variable function buttons. Value will be color matched to its waveform.

Instantaneous values of signals at time “t”, at the intersection of the cursor and the waveforms. The cursor is moved along the time axis with the buttons.

Figure 5-1
The measurement type is selected using one of the six variable function buttons. All of these measurements are valid in 3U, 3V, 3A, L1, L2 and L3.

The waveforms are selected by pressing the buttons:
- **3U** displays the three phase-phase voltages of a three-phase system
- **3V** displays the three voltages of a three-phase system
- **3A** displays the three phase currents of a three phase-3 wire system

The neutral current is not a direct measurement, but the resulting total of the 3 currents measured.

- **L1, L2 or L3** displays the current and voltage, on phase one, two or three, respectively.

IMPORTANT NOTE: The choice of waveforms to be displayed, in any display mode, depends on the type of connection (see § 4.1.5).

- Single-phase: No choice (L1)
- Three phase-3 wire: 3U, 3V, 3A, L1, L2, L3
- Two-phase: 2V, 2A, L1, L2
- Three phase-4 wire: 3U, 3V, 4A, L1, L2, L3

5.1.2 RMS Voltage Measurement on 3 Phases

[Diagram showing waveforms and voltage measurements]

- **1 207.6 v**
- **2 204.4 v**
- **3 204.9 v**

Figure 5-2
5.1.3 RMS Current Measurement on the 3 Phases and Neutral Current on a Three Phase-4 Wire System

![Graph showing RMS current measurement on three phases and neutral current](image1)

Figure 5-3

5.1.4 Total Harmonic Distortion Measurement on One Phase

![Graph showing THD measurement on one phase](image2)

Figure 5-4
5.1.5 Minimum and Maximum Current Value Measurements

<table>
<thead>
<tr>
<th>MAX</th>
<th>21.7</th>
<th>18.8</th>
<th>17.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVG</td>
<td>6.3</td>
<td>18.5</td>
<td>17.1</td>
</tr>
<tr>
<td>MIN</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PEAK+</td>
<td>+11.4</td>
<td>+25.8</td>
<td>+24.0</td>
</tr>
<tr>
<td>PEAK-</td>
<td>−11.0</td>
<td>−25.8</td>
<td>−24.8</td>
</tr>
</tbody>
</table>

Figure 5-5

1. Crest Factor - refreshed every 250ms (but calculated every second).
2. Select 3V or 4A with to obtain the MIN, AVG, MAX, or PEAK values for current or voltage. Select L1, L2 or L3 to obtain these values for an individual phase.

MIN, AVG and MAX values are measured as soon as the power is turned ON. Pressing the enter button will reset these values and begin a new update.

The MAX and MIN measurements are calculated every half period (e.g. every 10ms for a 50Hz signal). The AVG measurements are calculated every second. However, the MAX, AVG and MIN measurements are refreshed every 250ms.
5.1.6 Simultaneous Display of the Different Current Measurements

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS</td>
<td>10.4</td>
<td>18.4</td>
<td>16.9</td>
<td>11.6 A∞</td>
</tr>
<tr>
<td>DC</td>
<td>+0.0</td>
<td>+0.0</td>
<td>−0.3</td>
<td>−0.3 A∞</td>
</tr>
<tr>
<td>THD</td>
<td>27.7</td>
<td>3.0</td>
<td>1.6 %</td>
<td></td>
</tr>
<tr>
<td>CF</td>
<td>1.61</td>
<td>1.40</td>
<td>1.45</td>
<td></td>
</tr>
<tr>
<td>KF</td>
<td>1.92</td>
<td>1.03</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>DF</td>
<td>25.9</td>
<td>2.9</td>
<td>1.5 %</td>
<td></td>
</tr>
</tbody>
</table>

Figure 5-6

As seen on the bar on the right, K factor is only available for currents 4A, 3A or 2A, depending on hook up of leads.

As seen on the bar on the right, flicker is only available for voltages 3V or 2V, depending on hook up of leads.

Flicker and K factor are available when either L1, L2 or L3 is selected from the choices on the right side of the screen.

DC current will be displayed, however the values are only valid when a current probe capable of measuring DC is used. The MR193 probe is available for this purpose.
5.1.7 Phasor Diagram Display (Fresnal Diagram)

1. Absolute value of voltage or current, depending on display selection.
2. \(\Phi_{12} \) corresponds to phase angle between channel 1 and channel 2
 \(\Phi_{23} \) corresponds to phase angle between channel 2 and channel 3
 \(\Phi_{31} \) corresponds to phase angle between channel 3 and channel 1
 NOTE: This is valid for currents (4A and 3A) and for single voltage (3V).
 When the user chooses to look at a specific phase (L1, L2 or L3) \(\Phi_{VA} \) is the phase angle of V in relation to A.
3. Current or voltage unbalanced ratio.
4. Phasor diagram displays selection by voltage, current or phase.

It is advised to look at the phasor diagram prior to recording to check if the probes are installed correctly. I1, I2 and I3 should be shown, when installed on a live circuit, in a clockwise fashion.

The leading (inductive) or lagging (capacitive) effects of the load can be seen at this time and a snapshot of this screen may be appropriate.

5.2 Harmonics Mode

Press the harmonic display mode button.

Use the function buttons to select the type of harmonic analysis:

- **V** - Single phase voltage analysis
- **A** - Current analysis
- **VA** - Power and direction flow analysis
- **U** - Phase-to-phase voltage analysis

The + and - buttons allow the user to zoom in or out, in increments of 2%, 5%, 10%, 20%, 50% and 100%.

5.2.1 Single Phase and Phase-to-Phase Voltage Analysis

![Graph showing harmonic analysis](image)

Values measured for each phase, at cursor position (in the example shown above, the 3rd harmonic is selected and displayed).

The information displayed is:

- Harmonic order.
- Percentage relative to the fundamental.
- RMS value.
- Phase angle in relation to the fundamental, according to the measurement type chosen (in this example V) with the variable function buttons just below the screen.

Figure 5-8
Cursor enables selection up to 50th harmonic, with the \(\text{Cursor} \) buttons. As soon as the 25th harmonic is reached, the 25th to 50th range appears (0 represents the DC component).

Selection of expert mode \(-, +\) is available for 3-phase hookups by pressing the \(\text{Cursor} \) buttons (see §5.2.4 for description).

5.2.2 Single Phase and Phase-to-Phase Current Analysis

![Figure 5-9]

Selection of 3-phase or individual phases L1, L2 and L3, displays:

- The total THD
- The MIN and MAX instantaneous values
- The parameters for the harmonic order selected by the cursor:
 - Percentage in relation to the fundamental
 - RMS value and phase angle in relation to the fundamental component
- MIN, MAX instantaneous values for the selected current harmonic

MIN, MAX values are reset each time the cursor position is changed.
5.2.3 Power and Direction Flow Analysis

Harmonics on this screen are shown with either a positive or negative orientation. Since the bar selected in this example is negative, it indicates that it is a harmonic from load to source.

By convention, positive harmonics are from supply to load, and negative harmonics are from load to supply.

The signs are only available in harmonic power measurement.

The example above shows a power harmonic display with the 3rd harmonic highlighted by the cursor. This harmonic is generated by the load.

Harmonic direction is influenced by probe installation on the proper phase and arrow on probe facing the load.
5.2.4 Harmonic Analysis in Expert Mode

Press on the button to select “-.+” and then either the “V” or “A” variable function button “V” or “A”.

Example of a typical display:

![Example Display]

- **First column:** The harmonics inducing a negative sequence are displayed.
- **Second column:** Those inducing a zero sequence (triplets added into the neutral) are displayed.
- **Third column:** Those inducing a positive sequence are displayed.

Harmonic content is useful to evaluate the influence of harmonics that cause heating of the neutral or on rotating machines.
5.3 Power / Energy Mode

Press the power display mode button -

- Measurement of the real power (generated and consumed)
- Measurement of reactive power (capacitive or inductive)
- Measurement of apparent power

<table>
<thead>
<tr>
<th>W...</th>
<th>Choice of power parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>PF...</td>
<td>Power factor</td>
</tr>
<tr>
<td>G</td>
<td>Displays the generated or consumed energy</td>
</tr>
<tr>
<td>C</td>
<td>Starts energy totalization</td>
</tr>
<tr>
<td>є</td>
<td>Stops energy totalization</td>
</tr>
<tr>
<td>🥂</td>
<td>Resets the counters to zero</td>
</tr>
</tbody>
</table>

5.3.1 Starting and Stopping Energy Totalization

1. Start date and time of energy totalization.
2. Stop date and time of energy totalization.
3. Selection of the three phases (3L) or one in particular (L1, L2, L3) by pressing the buttons. Select Σ to display total for all phases.

![Figure 5-12]

The display is automatically adjusted for a display in W, VA, VAR or kW, kVA, kVAR. It is possible to switch to other display modes without stopping the totalization.

Incorrect probe installation on phases (black on B phase or C phase) or arrow on probe facing in the wrong direction (towards line instead of load) will result in inaccurate data. Negative data on one or more phases may be an indication of this.
5.3.2 **G** Button

This function key is used to display generated or consumed power, or real, reactive and apparent energy.

This button toggles the display between generated energy (from load to supply) and consumed energy (from supply to load) each time it is pressed. When the **G** is highlighted (yellow background) the display shows generated energy.

5.3.3 **PF...** Button

In “3L” display mode, the PF (Power Factor), DPF (Displacement Power Factor [fundamental V, I, phase shift]) or Cosine \(\phi \) values and the Tangent \(\phi \) can be displayed by pressing the “**PF...**” button.

![Power Factor Values](image)

Power Factor — **PF**

- 0.634
- 0.998
- 0.995

DPF or Cosine \(\phi \)

- 0.742
- 0.999
- 0.999

Tangent \(\phi \)

- -0.439
- +0.050
- +0.035

![Four Quadrant Power Diagram](image)

Figure 5-14

Figure 5-13
5.4 Transient Mode

Press the transient display mode button - 🎧

Transients are displayed in the form of waveforms. All channels (up to 6, based upon configuration) are stored in memory for each transient. Up to 50 transients can be captured, which include the pre-tripped waveform, the tripped waveform and two post trip waveforms for each active input.

The function buttons have the following functions in this mode:

- Starts capture search programming for a new transient
- Stops capture search
- Displays a captured transient
- Deletes a captured transient

![SEARCH FOR NEW TRANSIENTS](image)

Figure 5-15

1. Transient recording start and end time.
2. Trigger threshold: selection of 1%, 2%, 5%, 10%, 20%, 50%, 100% of full scale for voltage and current are available.
 - Press the buttons to select either “V” or “A”, then use the buttons to modify the trigger threshold.
3. Choose a name for the session and the number of transients to be captured with the arrow buttons:
 - : Selection of the character place (7 characters max)
 - : Selection of the alphanumeric value
 - : Press the Enter button to apply the conditions and to activate transient capture
The table below lists the capture threshold levels, based on the probe in use (for the current channels) and voltage at the different percent selections.

<table>
<thead>
<tr>
<th></th>
<th>Thresholds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100%</td>
</tr>
<tr>
<td>MN93</td>
<td>200A</td>
</tr>
<tr>
<td>MN193 (100A)</td>
<td>100A</td>
</tr>
<tr>
<td>MN193 (5A)</td>
<td></td>
</tr>
<tr>
<td>SR193</td>
<td>1000A</td>
</tr>
<tr>
<td>AmpFlex® 193</td>
<td>2900A</td>
</tr>
<tr>
<td>MiniFlex™</td>
<td>2900A</td>
</tr>
<tr>
<td>MR193</td>
<td>1000A</td>
</tr>
<tr>
<td>2999A ratio adapter</td>
<td>3000A</td>
</tr>
<tr>
<td>1A ratio adapter</td>
<td>1A</td>
</tr>
<tr>
<td>Voltage</td>
<td>480V</td>
</tr>
</tbody>
</table>

Transients are detected by comparing all 256 samples on the current cycle with their counterparts from the previous cycle for each active input channel. Should any one sample deviate from its counterpart by the selected percentage value in the set up, this will be considered a transient and the data will be captured.

When capture occurs, four cycles are recorded for each input. These include the trigger cycle, the previous cycle to the trigger and the two cycles that follow the triggered cycle. All active inputs will be captured.
5.4.1 Opening Previously Stored Transients

The screen below can be accessed with the retrieve button. It displays a list transients previously stored in the memory.

![Screen Displaying Stored Transients]

- **Selection of Transient**
 - TEST 05 05/07/02 14:31:41
 - TEST 04 05/07/02 14:31:41
 - TEST 03 05/07/02 14:31:21
 - TEST 02 05/07/02 14:31:04
 - TEST 01 05/07/02 14:31:04

Figure 5-16

- If the “@” symbol appears as the first letter of the recording name (e.g. @EST 05), the data may be corrupted and should be checked carefully.

1. The status bar at the top displays the memory filled by stored transients.
2. Name and transient number (from 01 to 50) for each stored transient.
3. Transient recording time and date are displayed for each transient.
 - To select a transient, press the buttons, then select it with the button
 - To delete a selected transient, press the button, then confirm it with the button

5.4.2 Storing the Trigger

The threshold T in percent, defined as an envelope width (over and under) the last cycle of signal V or A input signal. Its width W is calculated with the nominal measurement range R for a channel (depending on the selected current sensor).

\[W = T \times R \]

Example: Using the SR193 probe and a 2% trigger level, the width would be 1000A x 2% = 20A. Therefore, a deviation of ±20A will cause a transient event to be captured.
The display below shows the transient selected in Fig. 5-16 on the previous page.

The screen displays 4 cycles of 256 points/cycle, with 1 cycle before the trigger and 3 cycles after.

1. The waveforms to be displayed are selected by pressing on the buttons.
 - 3V displays the three phase voltages during the transient
 - 4A displays the three phase currents and the neutral current during the transient
 - L1, L2 or L3 displays the current and voltage on phase 1, 2 or 3

2. Instant values at an instant “t”, in relation to the cursor, can be displayed on the time scale with the buttons.

3. : Returns to the transient selection screen
 and : Changes the time scale (screen display of 4, 2 or 1 periods) centered on the cursor, which can be moved with the buttons.

All transients captured and stored can be downloaded to a PC with the Data-View® software (see Chapter 6).
5.5 Alarm Mode

Press the alarm display mode button - .

Figure 5-18 presents the various alarms stored.

NOTE: The threshold values must first have been programmed in the  mode. Also, the alarm event, or alarm capture, must end before an alarm will be displayed.

- Starts alarm capture
- Stops alarm capture
- Deletes all stored alarms

Figure 5-18

1. **Alarm memory status bar** (indicates available alarm storage memory)
2. **Alarm target**
3. **Measurement parameter monitored**
4. **Maximum or minimum amplitude detected**
5. **Alarm duration**

Use the  buttons to select an alarm.

Use the  buttons to display alarms within a period of time.

NOTE: All the alarms recorded can be downloaded to a PC with the DataView® software (see Chapter 6). Up to 4096 alarms can be captured.

The Alarm values for PF, DPF, Tan, ϕ, W and VAR are absolute values.

NOTE: The type of connection selected in the  mode has no influence on the possibilities of choices, target and monitored parameter. The user is responsible for making pertinent choices.
5.6 Recording Mode

After a recording is set, the instrument will go into sleep mode (no display) to save the batteries. The recording will start as programmed. Press any button other than the ON/OFF button to turn ON the display again. Turning off the PowerPad® clears the schedule, even if turned on again, the recording will not start.

This mode enables all the parameters previously configured in the setup mode to be recorded (see § 4.1.8). Press the record display mode button - The variable function buttons have the following functions in this mode:

- Creates a new recording
- Opens a previous recording
- Deletes recording

5.6.1 Saving the Selected Parameters

![Figure 5-19](image)

1. Recording status bar (displays remaining memory capacity).
2. Parameters - press the buttons to select the parameters and the buttons to modify them. An underline will appear under the selected parameter.
 - Select the configuration number to be modified with the buttons. (CONFIG 1, 2, 3 or 4)
 - Select the dates with the buttons.

NOTE: The dates are adjusted according to the chosen recording integration period. “PERIOD” does not refer to a sampling period, but rather, to an integration period (average).
- Select a recording storage rate using the buttons.

NOTE: The possible storage rates are 1, 5 or 20 sec; 1, 2, 5, 10 or 15 min.

- Enter the record name with the buttons, which scroll through the alphabet and numbers. Up to 7 characters may be entered.

- Save the changes with the button.

NOTE: The 3945-B will calculate the storage needs of the recording, and if necessary, will display the message “Not enough memory”.

If the recording is scheduled, the PowerPad® will display “Recording on Standby”.

If it doesn’t accept any of the parameters, it will instead move the cursor to the field it doesn’t accept. After changing the parameter, press enter again.

Parameters not accepted could include the start time being before the present time. If the period (storage rate) is more than 1 minute, the start time must be a multiple of the storage rate (e.g. if there is a 10 minute storage rate, the recording start time could not be 4:09, but should instead be 4:00 or 4:10). The duration must also be a multiple of the storage rate.

The setup config number must have at least 1 parameter selected to record. The recording name cannot be blank. There must be enough memory.

TIP: It may be wise to do a very short sample program to be sure everything is set correctly. For example, choose a 10 minute recording session called “test 1” and evaluate results.

TIP: Make sure to leave the PowerPad® on until the recording is completed and check that there is AC power or enough time left on the battery.
5.6.2 Selecting or Deleting a Record

SELECTION OF RECORDING

<table>
<thead>
<tr>
<th>Recording</th>
<th>Date</th>
<th>Time</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>TEST</td>
<td>07/25/02</td>
<td>17:58</td>
<td>In progress</td>
</tr>
<tr>
<td>PUMP</td>
<td>07/18/02</td>
<td>17:58</td>
<td>07/18/02 11:45</td>
</tr>
<tr>
<td>MOTORA</td>
<td>07/12/02</td>
<td>14:41</td>
<td>07/12/02 16:40</td>
</tr>
</tbody>
</table>

If the “@” symbol appears as the first letter of the recording name (e.g. @EST), the data may be corrupted and should be checked carefully.

The status bar at the top displays the memory occupied by previous records.

To Select a Recording:

- Press the buttons to select the recording. The current selection will appear in bold type. Press the button to accept the selection.

To Delete a Recording:

- Select the record to be deleted with the buttons, press on button and then press the button to delete the selection.

TIP: It is possible to display a measurement being recorded by selecting the name of the recording. To refresh the screen, press the mode buttons (caution: loss of cursor position and zoom capability will occur).

The instrument automatically makes a correction if the programmed dates and times do not match the current date, the current time or the set storage rate.

It is recommended to set multiple times:
- of 2 for 2 min
- of 5 for 5 min

The instrument automatically corrects the start and end time in order to improve the readability of the time scales of the recording mode (graph representation).
5.6.3 Selecting a Graphic Display for Recorded Measurements

Recorded data can be displayed in graphic form.

- Select the recording to be displayed using the buttons. Then, open the recording by pressing the button. A screen similar to figure 5-21 will appear.

![RECORDING TEST](image)

TEST

<table>
<thead>
<tr>
<th>START</th>
<th>END</th>
<th>PERIOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>:07/25/02 17:58</td>
<td>:07/25/02 18:27</td>
<td>:1 mn</td>
</tr>
</tbody>
</table>

SELECTION OF MEASUREMENT TO VIEW

![Figure 5-21](image)

Use the function buttons to enable direct selection of the measurement to be displayed.

Pressing the "../.." key enables the user to scroll through all the measurements selected when the record was programmed.

Example when Vrms is Selected

![Figure 5-22](image)
1. Display of the average voltage for each of the 3 voltages. Moving the cursor with the
 buttons updates the values to reflect the new cursor position.
2. Selection of the 3 phases or each phase separately with the
 buttons.
3. Returns to the screen where the measurement to be displayed is selected.

Example when L1 is Selected

![Figure 5-23](image)

1. MIN, AVG and MAX values over the display period
2. MAX value
3. AVG value
4. MIN value
5. Returns to the Measurement Selection Screen (see Fig. 5-21)

When the display period is different from the averaging integration period:
- The average value is calculated with the sum of each integration period stored.
- The extreme values are the minimum and the maximum of an integration period during the display period selected with the cursor.
Graphic Display of Average Power

After returning to the Measurement Selection Screen (see Fig. 5-21) use the “../..” button to view more recorded parameters, if necessary. Pressing the “W” button, will bring up a screen similar to Fig. 5-24 below.

In the example above, the display shows the average value of the real power on the phase L1. The value is updated as the cursor is moved with \textcircled{1}\textcircled{2} buttons.

\textbf{Hold the cursor button down to switch to fast forward.}

Energy Measurement for a Determined Period

In the example above, the display shows the average value of the real power on the phase L1. The value is updated as the cursor is moved with \textcircled{1}\textcircled{2} buttons.

\textbf{Hold the cursor button down to switch to fast forward.}
The energy over a selected period can be calculated from the average power records:

- Move the cursor to the start time.
- Press the function button.
- Move the cursor with buttons to the desired end time.
- The energy value is displayed, with end date and end time.

It is possible to make an energy measurement over several recording ranges in the 4 quadrants.

All of the data in a recording session can be downloaded to a computer using the DataView® software.

The and buttons allow the integration period of the displayed measurement and the graph time-scale to be changed.

<table>
<thead>
<tr>
<th>Display Averaging Period</th>
<th>Graph Scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 hours</td>
<td>over 5 days</td>
</tr>
<tr>
<td>1 hour</td>
<td>over 2 1/2 days</td>
</tr>
<tr>
<td>15 minutes</td>
<td>over 15 hours</td>
</tr>
<tr>
<td>10 minutes</td>
<td>over 10 hours</td>
</tr>
<tr>
<td>5 minutes</td>
<td>over 5 hours</td>
</tr>
<tr>
<td>1 minute</td>
<td>over 1 hour</td>
</tr>
<tr>
<td>20 seconds</td>
<td>over 20 minutes</td>
</tr>
<tr>
<td>5 seconds</td>
<td>over 5 minutes</td>
</tr>
<tr>
<td>1 second</td>
<td>over 1 minute</td>
</tr>
</tbody>
</table>

NOTE: The minimum integration period is limited by the recording period. The recording integration period of 2 minutes is a special case. In this case, only the following display integration periods are possible: 10 minutes, 1 hour and 2 hours.

5.7 Saving a Display

This button allows 12 snapshots to be saved for future recall and evaluation.

- Press the button (for about 3s) to capture the current display.
- The icon is displayed in the top left corner as soon as the operation is successful.
- This icon is replaced by if there is no space left in the memory to record the display.

These screens can be downloaded to a computer using the DataView® software.
5.8 Opening a Previously Saved Snapshot

A short press (about 1s) on the button gives access to the menu of snapshots that have been saved.

The small icon to the left of each snapshot (date and time) tells you what type of data was stored.

- Use the buttons to select the snapshot.
- To display the snapshot, press the button, then the enter button.
- After reviewing the snapshot, press the enter button again to return to the list of saved snapshots.
- To delete a selected snapshot, press the button, then press the enter button.

The various storage spaces of the Model 3945-B are of a fixed size and are completely independent. There are four memory spaces available (alarms, snapshot, transients and recordings).
5.9 Printing

The print button allows a screen to be printed directly to a dedicated printer connected to the serial port.

When the print button is pressed, the screen freezes and the top left mode icon is replaced by the icon (as shown in Figure 5-27 above).

NOTE: It will take a few seconds for the icon to appear. Print transmission speed is 19.2kb.

To stop the printing in progress (e.g. in the event of an error), press the print button once again.

The recommended printer for the Model 3945-B is the SEIKO Model DPU414-30B (Cat. #2140.21). This printer is shipped with set-up instructions for use with the Model 3945-B PowerPad®.

5.10 Help

Press this button to obtain help for the current display mode.

To exit the Help mode, press the button once again.
CHAPTER 6

DATAVIEW® SOFTWARE

6.1 Features

DataView® has a simple, easy-to-use interface for configuring and running tests with the PowerPad®, as well as printing reports of the test results. There are many features that are available through this program. A few of the most popular are listed below.

- Configures and displays all functions of the PowerPad®
- Runs tests from your computer with a simple click and execute process
- Views and captures data in real time
- Retrieves data from the instrument’s memory
- Plots graphs of recorded information that has been downloaded
- Presents reports, including your analysis in the comments section
- Stores a library of setups for different applications
- Provides consistency in testing, regardless of who performs the test

For a Tutorial on how to use DataView with the PowerPad, visit our Power Quality category in our “Tech Info” section on our website - www.aemc.com.

6.2 Installing DataView®

DO NOT CONNECT THE INSTRUMENT TO THE PC BEFORE INSTALLING THE SOFTWARE AND DRIVERS.

Minimum Computer Requirements:

- Windows XP / Windows Vista & Windows 7 (32/64 bit)
- 256MB of RAM for Windows XP
 1GB of RAM for Windows Vista & Windows 7 (32 bit)
 2GB or RAM for Windows Vista & Windows 7 (64 bit)
- 80MB of hard disk space (200MB recommended)
- CD-ROM drive

Windows is a registered trademark of Microsoft Corporation in the United States and other countries.
NOTE: When installing, the user must have Administrative access rights during the installation. The users access rights can be changed after the installation is complete.

DataView® must be reinstalled for each user in a multi-user system.

1. Insert the DataView® CD into your CD-ROM drive.

 If auto-run is enabled, the Setup program will start automatically. If auto-run is not enabled, select Run from the Start menu and type in `D:\SETUP` (if your CD-ROM drive is drive D. If this is not the case, substitute the appropriate drive letter).

 NOTE: If installing onto a Vista based computer the User Account Control dialog box will be displayed. Select the Allow option to proceed.

2. A Set-up window, similar to the one below, will appear.

 ![Figure 6-1](image-url)

 There are several different options to choose from. Some options(*) require an internet connection.

 - **DataView, Version x.xx.xxxx** - Installs DataView® onto the PC.
 - **Adobe Reader** - Links to the Adobe® website to download the most recent version of Adobe® Reader to the computer. Adobe® Reader is required for viewing PDF documents supplied with DataView® that are accessible from the Help menu.
• *DataView Updates* - Links to the online AEMC® software updates to check for new software version releases.

• *Firmware Upgrades* - Links to the online AEMC® firmware updates to check for new firmware version releases.

• **Documents** - Shows a list of instrument related documents that you can view. Adobe® Reader is required for viewing PDF documents supplied with DataView®.

3. **DataView, Version x.xx.xxxx** option should be selected by default. Select the desired language and then click on **Install**.

4. The **Installation Wizard** window will appear. Click **Next**.

5. To proceed, accept the terms of the license agreement and click **Next**.

6. In the **Customer Information** window, enter a Name and Company, then click **Next**.

7. In the **Setup Type** window that appears, select the “**Complete**” radio button option, then click **Next**.

8. In the **Select Features** window that appears, deselect the instrument’s control panel that you do not want to install, then click **Next**.

NOTE: The PDF-XChange option must be selected to be able to generate PDF reports from within DataView®.

Figure 6-2
9. In the **Ready to Install the Program** window, click on **Install**.

10. If the instrument selected for installation requires the use of a USB port, a warning box will appear, similar to Figure 6-3. Click **OK**.

![Figure 6-3](image)

NOTE: The installation of the drivers may take a few moments. Windows may even indicate that it is not responding, however it is running. Please wait for it to finish.

11. When the drivers are finished installing, the **Installation Successful** dialog box will appear. Click on **OK**.

12. Next, the **Installation Wizard Complete** window will appear. Click on **Finish**.

13. A **Question** dialog box appears next. Click **Yes** to read the procedure for connecting the instrument to the USB port on the computer.

NOTE: The Set-up window remains open. You may now select another option to download (e.g. Adobe® Reader), or close the window.

14. **Restart** your computer, then connect the instrument to the computer.

15. Once connected, the **Found New Hardware** dialog box will appear. Windows will complete the driver installation process automatically.

Shortcuts for DataView® and each instrument control panel selected during the installation process have been added to your desktop.

NOTE: If you connected your instrument to the computer before installing the software and drivers, you may need to use the **Add/Remove Hardware** utility to remove the instrument driver before repeating the process.
6.3 Connecting the Model 3945-B to your Computer

The Model 3945-B is supplied with an optically isolated serial interface cable required for connecting the instrument to the computer. This cable (Cat. #2140.18) is equipped with a 9-pin connector on one end, and an optical connector on the other end.

To connect the Model 3945-B to your computer:

1. Connect the optical connector end of the cable to the serial port on the side panel of the Model 3945-B PowerPad®.
2. Connect the 9-pin connector end of the cable, to an available serial port on your computer. If your computer does not have a serial port, you can obtain a serial port to USB converter from many computer stores.

You are now ready to use the DataView® software with the PowerPad®.

6.4 Opening the Control Panel

To open the Power Analyzer Control Panel:

- Double-click the PowerPad Icon that was created during installation, located on the desktop.
- The Connection window will appear (see Figure 6-4).

![Figure 6-4](image)

- Make sure that the serial port displayed in the dialog box matches the port you plugged the serial cable into. If the correct serial port is not selected, click on the drop-down menu to select it.
- The Baud Rate needs to be set at the same rate as the Model 3945-B. The Baud Rate can be selected from the Communication Rate drop-down menu.

To check the baud rate on the instrument:

- Turn ON the Model 3945-B by pressing the green button -
- Press the menu button -
- Scroll down with the button, until you reach “BAUD RATE”
- Press the enter button - and read the baud rate
- Set to read 115200
- When the proper communication parameters have been specified, click OK.
For detailed instructions and descriptions for any feature in a dialog box, click on the Help Button, or right-click on the feature you want information about.

Once the communication link is established, DataView® will automatically identify the instrument that it is connected to. The Control Panel will appear:

This Control Panel displays:

- Recorded Data from the instrument
- Realtime Data
- Connection status
- The communications port and speed of the connection
- The model number, serial number, and firmware revision
- The battery charge level, whether the battery is charging or discharging, and the time on the clock
- If a recording is in progress and when it is scheduled to end
- If a delayed recording is scheduled and when it is scheduled to begin
- Connection type (Electrical Hookup)
If the indicated items are not shown on the screen, select **Restore Default Layout** from the Window menu.

If the battery charge is shown to be unknown, plug the PowerPad® into AC Power, when it reaches 100% charge, the display should again be able to show the battery charge.

6.5 Common Functions

The buttons described below appear on several DataView® Setup Screens.

- **Re-Read from Instrument**: Reads the current configuration of the PowerPad® attached via the serial cable.

- **Save to File**: Saves the current configuration. This file will reside on the computer’s disk drive. Saving different configuration setups can be useful for future functions and tests.

- **Load from File**: Retrieves a saved file from the computer’s disk drive to be used in programming the PowerPad®.

- **OK**: Closes the dialog box and brings up the Control Panel.

- **Cancel**: Exit without saving configuration.

- **Apply**: Programs the PowerPad® using the current settings without closing the window.

- **Help**: Opens the online Help.

6.6 Configuring the Instrument

The Configure dialog box lets you configure every aspect of the Model 3945-B PowerPad®. Each field is identical to the programmable features available from the instrument's front panel itself.

Several of the functions are configured by typing the appropriate value in the field provided. Others are configured by clicking on the appropriate radio button or Icon, such as, selecting the current probe.

To configure the instrument, go to **Instrument > Configure** or select **Configuration** from the Instrument Tree.
6.6.1 Setup

- **Reactive Values Calculation**: With or without harmonics. Applies to VAR calculation.
- **Nominal Frequency**: 50 or 60Hz. This parameter determines the correction coefficients used for calculating power and energy.
- **Current Sensor**: MN93, MN193, SR193, MR193, A193 AmpFlex®, MiniFlex™ or ADA Adapter (used to accept probes with other ratios or a direct 1 Amp or 5 Amp input)
- **Connection Type**: Single Phase, Two phase, Three phase-3 wire or Three phase-4 wire.
- **Set Instrument's Clock**: Programs the computer’s time and date into the configuration of the PowerPad®.
- **Voltage Transformer Ratio**: Sets the scale for voltage measurement in cases where measurements are on the secondary side of a transformer and the primary value needs to be displayed.

Figure 6-6
6.6.2 Instrument Display

The PowerPad® display window allows you to customize the display (colors, clocks, language and contrast).

![Configure the instrument dialog box](image)

Figure 6-7

For detailed instructions and descriptions for any feature in a dialog box, click on the **Help Button** (lower right-side of the dialog box), or **right-click on the feature** you want information about.
6.6.3 Alarm Conditions Configuration

The Alarm Conditions window allows you to set up 10 alarm configurations.

Hysteresis: This value for alarms is set to prevent multiple recordings of an event that goes above the threshold and a certain percentage below it at times.

Example: If the alarm threshold is 100 Volts or higher, hysteresis is 1%. When the voltage goes up to 100V, the alarm condition starts. When it goes back down to 99V, the alarm condition stops.

Disable All Alarms: When this box is checked, all alarms will be disabled even if the individual alarm enable box is checked. *Make sure this is not checked if you want to record alarms.*

Alarm Conditions

- **Enabled**: When check box is checked, alarm is enabled.
- **Harmonic Number**: For alarm parameters, Vh, Ah, Uh, and VAh, selects which harmonic number is being used as an alarm condition. For example, Vh with a harmonic number of 2, will only look at Voltage phase to neutral, harmonic 2.
- **Capture Parameter**: The Alarm will be triggered based on the value of the selected parameter.

Choices include:

- **None**: no alarm
- **Vrms**: voltage root mean squared
- **Urms**: voltage phase minus phase root mean squared
- **Arms**: current root mean squared
- **VPST**: voltage short term flicker
- **Vcf**: voltage crest factor
- **Ucf**: voltage phase minus phase crest factor
- **Acf**: current crest factor
- **Vunb**: voltage unbalance
- **Aunb**: current unbalance
- **Hz**: frequency
- **Akf**: current K factor
- **Vthd**: voltage total harmonic distortion
- **Uthd**: voltage phase minus phase total harmonic distortion
- **Athd**: current total harmonic distortion
- **W**: active power

- **Phases**: Some alarm conditions have a phase selection. W, VAR, and VA, have a choice of “3L” or each individual phase, or “Sum” which is the sum of phases. DPF, PF, and TAN have the choice of “3L” or each individual phase, or “Mean” which is the mean of phases.

- **Threshold**: The value that must be reached to start an alarm. For “>” alarms, the value or higher must be reached, for “<” alarms, the value or lower must be reached.

- **Duration**: The Alarm will only be recorded if the duration of the parameter meeting the threshold criteria exceeds the duration. The minimum alarm duration can be in minutes or seconds. In the case of Vrms, Urms or Arms not using neutral current, can also be in hundredths of a second. For Vrms, Urms, and Arms, it can be useful to set a duration of 0 seconds. In that case an event as short as a half cycle can be detected (8 milliseconds at 60Hz). For all other parameters, the minimum duration that can be detected is 1 second.

ℹ️ You can check for alarms, records and search for transients at the same time.
6.6.4 Recordings Configuration

The Recording window shows the dialog box used to configure the parameters for a recording session.

![Configure the instrument](image)

Figure 6-9

Four different configurations are available. More configurations can be saved by pressing **Save to File** and recalled later by pressing **Load From File**.

1. Check the configuration you wish to set up: 1, 2, 3 or 4.
2. Check all the “Data to Record” parameters you wish to record by clicking on each one.
3. Configure the harmonic values to be recorded, if desired.

 It is also possible to record up to 2 of 4 types of harmonic data, voltage (Vh), current (Ah), phase to phase voltage (Uh), and power (VAh).

 For each selected harmonic data type, you can choose a range of harmonics to record from the 1st to 50th. You can further limit that range to only include odd numbers by checking the box for “Odd Harmonics Only”.

The PowerPad® loses its scheduled recording if it is powered off before the recording begins. If it is powered off during the recording, a partial recording will usually still exist but with the first letter of its name changed to “@”. The start and end times requested for the recording might be adjusted by the PowerPad® to be in even multiples of the averaging period. For instance, if an integration period of 10 minutes was requested, and the start time was 9:03, the recording might not actually begin until 9:10.
6.6.5 Transients

The Transients window allows you to set up the criteria for capturing transients.

Figure 6-10

1. Type a name for the session, up to seven characters.
2. Select the date and time to begin and end the search for transients.
3. Select the percent deviation for voltage and current transients. The choices available from the drop-down menu are 1, 2, 5, 10, 20, 50 and 100% of the full scale range of measurement. See § 5.4 for detailed information on these values.
4. Select the maximum number of transients to capture (from 1 to 50).
6.6.6 Monitoring

The EN50160 standard defines limiting values and permissible variations of the voltage quality for the European Community. It defines which parameters are relevant, and how they are measured. Continuous or random sampling control of the voltage quality provides the supplier of electric energy with a reliable basis when dealing with network problems, and it contributes to quality assurance.

The purpose of the EN50160 standard “Voltage characteristics of electricity supplied by public distribution systems” is to specify the characteristics of the supply voltage with regard to the course of the curve, the voltage level, the frequency and symmetry of the three phase-network at the interconnecting point to the customer. The goal is to determine limiting values for regular operating conditions.

However, facility defects may lead to major disturbances in the electricity distribution supply network. Accordingly, the standard establishes these values as limiting values, which are not allowed to be exceeded on the high or low side during 95% of the controlled period typically one week.

Configure and start an EN50160 test of line quality. It is recommended that a brief test of 10 minutes or shorter be done first, to verify the connections and parameters of the test are correct. Only then should the 1-week test be done.

If neither of the voltage profiles are chosen, a field appears to enter the nominal voltage. The frequency is not asked for, since it will be asked for when the test result is downloaded.

Follow the instructions in the dialog box to set up and run this special test. Press the Help button for further instructions.
6.6.7 Running the Test
After configuring the instrument, press “OK”. The status window will display if a recording is ready to start. Select Yes to schedule a recording, select No to bring you back to the Configure dialog box.

6.7 Real-time Windows
When your setup is completed, you can display different views on the screen of real-time data and waveforms.

6.7.1 Waveform, Harmonic Bar and Harmonic Text

Figure 6-12a

Figure 6-12b
On each screen, you can:

- Select the type of data to see.
- Stop the update with the Hold function.
- Print the screen selected.
- Save it to disk. There is a choice of a database to be viewed in DataView or a .csv file to view in a spreadsheet program.

6.7.2 Power/Energy

The Power/Energy window displays accumulated power and energy data. Accumulated energy data can be started or stopped and the results can be downloaded to a database and viewed on the screen, selected by phase.
The data for all available phases are downloaded to a database or spreadsheet, not just what is shown on the screen.

6.7.3 Trend

Figure 6-14

Shows a real-time trend of data from the PowerPad®. The data is an average of waveforms downloaded to the PC. There might be 1 waveform per 2.6 seconds. The data is summarized to 1 datapoint every 10 seconds.

6.8 Downloading Data to Database

To download recorded data, go to Instrument > Recorded Data.

1. Select the data you want to Download by clicking on the desired tab (Recordings, Photographs, etc.), then clicking on the file name.

2. Select “Save” (this may take few minutes).

3. Type a name for the downloaded file and click “OK”. It can be saved as a database to be viewed in DataView® or as a comma delimited file to be viewed in a spreadsheet program (e.g. Microsoft® Excel).

4. Alternatively, select “View”. After the download is complete, a window will appear with a graph of the data and some viewing or channel options. In that window you can select “Save” or “Print”.

5. From the Instrument tree view, expand the sections under “Recorded Data from the instrument” then click on a line that describes the recorded data. It will bring up a window with a graph of the data.
Following are examples of each tab listed in the display window.

6.8.1 Recordings

The Recording window displays a list of recordings within the PowerPad®. These recordings can be selected and downloaded to a database.
6.8.2 Photographs

The Photographs window displays a list of photographs (snapshots), with the date and time, taken when the camera button was pressed.

When “View” is selected, it shows the waveforms, power data and Bitmap image of the PowerPad® screen from the time the camera button was pressed.

Snapshots can only be initiated using the camera button on the PowerPad® itself, not by DataView®.
6.8.3 Alarms

The Alarms window displays a list of alarms recorded on the PowerPad®. A subset of the list, can be viewed by the phase of the triggering event.

Alarms can be selected and downloaded to a database. The downloaded alarms contain no more information than is shown in the screen display.

Alarm Phase: Allows the user to select which type of alarms to display (either all, those that were triggered by an event in phase 1, 2 or 3, neutral phase, or an event that involved multiple phases or no phase, such as frequency).

6.8.4 Transients
The Transients window displays transients stored on the PowerPad® It shows the number and name of the recording, and the time it began and ended. The selected transient(s) can either be downloaded or deleted.

The downloaded result contains many waveforms. Use the controls “>” and “<” located at the lower right corner of the window, to zoom in or out of the data. These controls are available in every graph from recorded data.

There is also a checkbox, “View As List”, which can be used to show the value of every datapoint.
6.8.5 Monitoring

The Monitoring window displays recorded tests that can be downloaded and analyzed.

![Figure 6-19a](image-url)

After selecting a recording and clicking "View", the summary window appears showing the results after all the data has been downloaded to a database. It displays the name, percent of the 10-minute periods that it has been out of range, followed by the range it needed to be within.

![Figure 6-19b](image-url)
6.8.6 Saving Real-time Measurements

Real-time data received from an instrument can be saved directly into a recording session database. This differs from the process of downloading and saving recorded data in that the measurements are stored on the computer as the instrument measures them. These measurements are not necessarily being stored within the instrument. However, the instrument may be configured to record at the same time real-time measurements are being received from the instrument. In which case, two copies of the measurements will be stored. One copy is stored on the local computer and the other in memory within the instrument.

To Save a Real-time Measurement:

1. From the Realtime Trend window, check the “Rec to PC” checkbox.

2. In the Save As dialog box that appears, specify the type of file to save in the “Save as Type” field. The choices are .dvb (DataView database), .xls (Excel spreadsheet), or .csv (Comma Separated File). Specify the name of the file by typing it into the File name field, select the desired location to save the file, then click Save to save the file.

3. When the “Rec to PC” option is unchecked the file can be opened by selecting Yes from the View Saved File dialog box.

To edit the Session Properties, return to the Power Analyzer Control Panel and select File > Edit Session Properties.

The Session Properties dialog box allows you to specify the Operator, Site and Custom parameters that are to be saved with recorded data. These parameters are used when generating reports.
The Operator and Site tabs allow you to maintain lists of operators and sites, saving you time when specifying parameters for reports.

On the left of the Operator and Site tabs is the list of previously defined Operators and Sites. On the right of the Operator and Site tabs is the individual parameters that will be saved in an associated database. Only a single set of operator and site fields are saved in the recording database.

The Custom tab contains a list of user defined parameters. Along side each user defined parameter is a check box. Items that are checked will be added to an associated database. Only a single set of Custom parameters can be maintained (unlike the Operator and Site lists). The Custom tab allows you to specify any user defined parameters (in addition to the comments field of the Site tab) that are to be used in displaying a report.

In addition to the pre-designed report templates, DataView® allows you to totally configure reports to your needs. Refer to the DataView® HELP file on “Templates” to learn more about templates.
MAINTENANCE

Use only factory specified replacement parts. AEMC® will not be held responsible for any accident, incident, or malfunction following a repair done other than by its service center or by an approved repair center.

After receiving your PowerPad® shipment, charge and discharge the instrument one or two cycles to ensure the proper level display of the battery indicator.

7.1 Recharging and Changing the Battery

The battery is automatically charged when the unit is connected to AC power.

The instrument will not recharge if the message “Instrument will soon turn OFF” is displayed on the screen. The Enter button must be pressed or the instrument must be turned OFF before recharging will start.

WARNING:

• When changing the battery, disconnect all instrument inputs and turn the equipment off. There must be a delay of at least one minute without the battery being connected.
• Do not expose the battery to heat exceeding 212°F (100°C)
• Do not short-circuit the battery terminals

7.2 Cleaning

Disconnect the instrument from any source of electricity.

• Use a soft cloth, lightly dampened with soapy water
• Wipe with a damp cloth and then dry with a dry cloth
• Do not splash water directly on the clamp
• Do not use alcohol, solvents or hydrocarbons
APPENDIX A

MATHEMATICAL FORMULAS FOR VARIOUS PARAMETERS

NOTE the following abbreviations used in this section:

NSHC = number of samples per half cycle (between two consecutive zeros)
NSC = number of samples per cycle
NSS = number of samples in a second (multiple of NSC)
V = voltage phase to neutral
U = voltage phase to phase

Half-period Voltage and Current RMS Values

\[V_{\text{half}}[i] = \sqrt{\frac{1}{\text{NSHC}} \cdot \sum_{n, \text{Next Zero}} V[i][n]^2} \quad \text{Single rms voltage half-period i + 1 phase} \]

\[U_{\text{half}}[i] = \sqrt{\frac{1}{\text{NSHC}} \cdot \sum_{n, \text{Next Zero}} U[i][n]^2} \quad \text{Compound rms voltage half-period i + 1 phase} \]

\[A_{\text{half}}[i] = \sqrt{\frac{1}{\text{NSHC}} \cdot \sum_{n, \text{Next Zero}} A[i][n]^2} \quad \text{Rms current half-period i + 1 phase} \]

n: sample (0; 255)
i: phase (0; 1; 2)
MIN / MAX Values for Voltage and Current

\[V_{\text{max}}[i] = \max (V_{\text{dem}}[i]), \quad V_{\text{min}}[i] = \min (V_{\text{dem}}[i]) \]
\[U_{\text{max}}[i] = \max (U_{\text{dem}}[i]), \quad U_{\text{min}}[i] = \min (U_{\text{dem}}[i]) \]
\[A_{\text{max}}[i] = \max (A_{\text{dem}}[i]), \quad A_{\text{min}}[i] = \min (A_{\text{dem}}[i]) \quad \text{(Avg calculation on 1s)} \]

Peak Values for Voltage and Current (Updated on each waveform refresh)

\[V_{\text{pp}}[i] = \max (V[i][n]), \quad V_{\text{pm}}[i] = \min (V[i][n]), \quad n \in [0..\text{NSC}-1] \]
\[U_{\text{pp}}[i] = \max (U[i][n]), \quad U_{\text{pm}}[i] = \min (U[i][n]), \quad n \in [0..\text{NSC}-1] \]
\[A_{\text{pp}}[i] = \max (A[i][n]), \quad A_{\text{pm}}[i] = \min (V[i][n]), \quad n \in [0..\text{NSC}-1] \]

Peak Factors for Current and Voltage

\[V_{\text{cf}}[i] = \frac{\max(V_{\text{pp}}[i], V_{\text{pm}}[i])}{\sqrt{\frac{1}{\text{NSC}} \cdot \sum_{n=0}^{\text{NSC}-1} V[i][n]^2}} \quad \text{Peak factor single voltage i + 1 phase} \]
\[U_{\text{cf}}[i] = \frac{\max(U_{\text{pp}}[i], U_{\text{pm}}[i])}{\sqrt{\frac{1}{\text{NSC}} \cdot \sum_{n=0}^{\text{NSC}-1} U[i][n]^2}} \quad \text{Peak factor phase-phase voltage i + 1 phase} \]
\[A_{\text{cf}}[i] = \frac{\max(A_{\text{pp}}[i], A_{\text{pm}}[i])}{\sqrt{\frac{1}{\text{NSC}} \cdot \sum_{n=0}^{\text{NSC}-1} A[i][n]^2}} \quad \text{Peak factor current i + 1 phase} \]
1 sec RMS Values for Voltage and Current

\[V_{\text{rms}}[i] = \sqrt{\frac{1}{\text{NSS}} \cdot \sum_{n=0}^{\text{NSS}-1} V[i][n]^2} \]
Single rms voltage \(i + 1 \) phase

\[U_{\text{rms}}[i] = \sqrt{\frac{1}{\text{NSS}} \cdot \sum_{n=0}^{\text{NSS}-1} U[i][n]^2} \]
Compound rms voltage \(i + 1 \) phase

\[A_{\text{rms}}[i] = \sqrt{\frac{1}{\text{NSS}} \cdot \sum_{n=0}^{\text{NSS}-1} A[i][n]^2} \]
Rms current \(i + 1 \) phase

Voltage and Current Unbalance

\[V_+ = \frac{1}{3} (VF[0] + a \cdot VF[1] + a^2 \cdot VF[2]) \]
Direct voltage (complex notation \(a = e^{j \frac{2\pi}{3}} \))

\[V_- = \frac{1}{3} (VF[0] + a^2 \cdot VF[1] + a \cdot VF[2]) \]
Reverse voltage

\[V_{\text{unb}} = \frac{|V_{\text{rms}}_-|}{|V_{\text{rms}}_+|}, \quad A_{\text{unb}} = \frac{|A_{\text{rms}}_-|}{|A_{\text{rms}}_+|} \]

THD Calculation

\[V_{\text{thd}}[i] = \sqrt{\sum_{n=2}^{50} \frac{V_{\text{harm}}[i][n]^2}{V_{\text{harm}}[i][1]^2}} \, , \quad U_{\text{thd}}[i] = \sqrt{\sum_{n=2}^{50} \frac{U_{\text{harm}}[i][n]^2}{U_{\text{harm}}[i][1]^2}} \, , \quad A_{\text{thd}}[i] = \sqrt{\sum_{n=2}^{50} \frac{A_{\text{harm}}[i][n]^2}{A_{\text{harm}}[i][1]^2}} \]

\(i: \) phase (0; 1; 2) \(n: \) range (2 to 50)
Calculation of Harmonic Bins

Harmonic bins are calculated by FFT with 16 bit resolution (1024 samples on 4 cycles) without windowing (IEC 1000-4-7). From real and imaginary components, each bin ratio is calculated on each phase Vharm[3][51], Uharm[3][51] and Aharm[3][51] in proportion to the fundamental value and the phase angles Vph[3][51], Uph[3][51] and Aph[3][51] between each bin and the fundamental.

This calculation is accomplished using the following principle:

\[
\text{module in } \%: \quad \text{mod}_k = \frac{c_k}{c_1} \times 100
\]
\[
\text{angle in degree: } \phi_k = \arctan\left(\frac{a_k}{b_k}\right)
\]

\[
c_k = |b_k + ja_k| = \sqrt{a_k^2 + b_k^2}
\]
\[
b_k = \frac{1}{512} \sum_{s=0}^{1024} F_s \times \sin\left(\frac{k\pi}{512} s + \phi_k\right)
\]
\[
a_k = \frac{1}{512} \sum_{s=0}^{1024} F_s \times \cos\left(\frac{k\pi}{512} s + \phi_k\right)
\]
\[
c_0 = \frac{1}{1024} \sum_{s=0}^{1024} F_s
\]

ck: amplitude of the component with a frequency of \(f_k = \frac{k}{4} f_1 \)

Fs: sampled signal

c0: DC component

k: ordinal number (spectral bin)

Multiplying the voltage harmonic factor with the current harmonics factor gives the power harmonic factor. Differentiating voltage harmonic phase angle with current harmonic phase angle gives power harmonic phase angle.

VAharm[3][51], VAph[3][51]

Distortion Factor Calculation (DF)

Two global values giving the relative quantity of harmonics are computed: the THD in proportion to the fundamental and the DF in proportion to the RMS value.

\[
Vdf[i] = \sqrt{\frac{1}{2} \sum_{m=2}^{50} \frac{Vharm[i][n]^2}{Vrms[i]}}
\]
\[
Udf[i] = \sqrt{\frac{1}{2} \sum_{m=2}^{50} \frac{Uharm[i][n]^2}{Urms[i]}}
\]
\[
Adf[i] = \sqrt{\frac{1}{2} \sum_{m=2}^{50} \frac{Aharm[i][n]^2}{Arms[i]}}
\]
K Factor

\[
Kf[i] = \frac{\sum_{n=1}^{n=50} n^2 Aharm[i][n]^2}{\sum_{n=1}^{n=50} Aharm[i][n]^2}
\]

- \(Kf[i]\) is the K factor for the \(i + 1\) phase.

Different Power Levels 1 Sec

- \(W[i] = \frac{1}{\text{NSS}} \sum_{n=0}^{\text{NSS}-1} V[i][n] \cdot A[i][n]\) Active power \(i + 1\) phase
- \(VA[i] = V_{\text{rms}}[i] \cdot A_{\text{rms}}[i]\) Apparent power \(i + 1\) phase
- \(\text{VAR}[i] = \frac{1}{\text{NSS}} \sum_{n=0}^{\text{NSS}-1} VF[i][n - NSC / 4] \cdot AF[i][n]\) Reactive power \(i + 1\) phase

or \(\text{VAR}[i] = \sqrt[2]{\text{VA}[i]^2 - W[i]^2}\) if computation method is with harmonics

- \(\text{VAR}[3] = \text{VAR}[0] + \text{VAR}[1] + \text{VAR}[2]\) Total reactive power
Ratios

PF\([i]\) = \(\frac{W[i]}{VA[i]} \)
\[\text{i + 1 phase power factor}\]

DPF\([i]\) = \(\cos(\phi[i]) \)
\[\text{i + 1 phase displacement factor}\]

Tan\([i]\) = \(\tan(\phi[i]) \)
\[\text{i + 1 phase tangent}\]

\[
\cos(\phi[i]) = \frac{\sum_{n=0}^{NSS-1} V[F\[i\]][n] \cdot A[F\[i\]][n]}{\sqrt{\sum_{n=0}^{NSS-1} V[F\[i\]][n]^2 \sqrt{\sum_{n=0}^{NSS-1} A[F\[i\]][n]^2}}}
\]

\[\text{Cosine angle between voltage fundamental and i + 1 phase current}\]

PF\([3]\) = \(\frac{PF[0] + PF[1] + PF[2]}{3} \)
\[\text{Total power factor}\]

DPF\([3]\) = \(\frac{DPF[0] + DPF[1] + DPF[2]}{3} \)
\[\text{Total shift factor}\]

Tan\([3]\) = \(\frac{Tan[0] + Tan[1] + Tan[2]}{3} \)
\[\text{Total tangent}\]

Various Types of Energy

Wh\([0]\)[i] = \(\sum_{Tint} \frac{W[i]}{3600} \)
\[\text{Active energy consumed phase i + 1}\]

VAh\([0]\)[i] = \(\sum_{Tint} \frac{VA[i]}{3600} \)
\[\text{Apparent energy consumed phase i + 1}\]

VARhL\([0]\)[i] = \(\sum_{Tint} \frac{VAR[i]}{3600} \)
\[\text{for VAR}[i] \geq 0 \]
\[\text{Reactive inductive energy consumed phase i + 1}\]

VARhC\([0]\)[i] = \(\sum_{Tint} \frac{-VAR[i]}{3600} \)
\[\text{for VAR}[i] \leq 0 \]
\[\text{Reactive capacitive energy consumed phase i + 1}\]

Total active energy consumed:
\[\text{Wh}[0][3] = \text{Wh}[0][0] + \text{Wh}[0][1] + \text{Wh}[0][2]\]

Total apparent energy consumed:
\[\text{VAh}[0][3] = \text{VAh}[0][0] + \text{VAh}[0][1] + \text{VAh}[0][2]\]
Total reactive capacitive energy consumed:
\[\text{VARhC}[0][3] = \text{VARhC}[0][0] + \text{VARhC}[0][1] + \text{VARhC}[0][2] \]

Total reactive inductive energy consumed:
\[\text{VARhL}[0][3] = \text{VARhL}[0][0] + \text{VARhL}[0][1] + \text{VARhL}[0][2] \]

\[\text{Wh}[1][i] = \sum_{\text{Tint}} \frac{W[i]}{3600} \]
Active energy generated phase \(i + 1 \)

\[\text{VAh}[1][i] = \sum_{\text{Tint}} \frac{VA[i]}{3600} \]
Active energy generated phase \(i + 1 \)

\[\text{VARhL}[1][i] = \sum_{\text{Tint}} -\frac{\text{VAR}[i]}{3600} \]
for \(\text{VAR}[i] \leq 0 \)
Reactive inductive energy generated phase \(i + 1 \)

\[\text{VARhC}[1][i] = \sum_{\text{Tint}} \frac{\text{VAR}[i]}{3600} \]
for \(\text{VAR}[i] \geq 0 \)
Reactive capacitive energy generated phase \(i + 1 \)

Total active energy consumed:
\[\text{Wh}[1][3] = \text{Wh}[1][0] + \text{Wh}[1][1] + \text{Wh}[1][2] \]

Total apparent energy consumed:
\[\text{VAh}[1][3] = \text{VAh}[1][0] + \text{VAh}[1][1] + \text{VAh}[1][2] \]

Total reactive capacitive energy consumed:
\[\text{VARhC}[1][3] = \text{VARhC}[1][0] + \text{VARhC}[1][1] + \text{VARhC}[1][2] \]

Total reactive inductive energy consumed:
\[\text{VARhL}[1][3] = \text{VARhL}[1][0] + \text{VARhL}[1][1] + \text{VARhL}[1][2] \]
Hysteresis

Hysteresis is a filtering principle, often used after the threshold detection has occurred. A correct setting of hysteresis value will avoid repeated triggering when the measure is varying close to the threshold.

The event detection is activated when the measure is going over the threshold but it can only be deactivated if the measure goes under the threshold minus the value of the hysteresis.

The default hysteresis value is 2% of the reference voltage but it may be set in the range of [1%, 5%] depending on the voltage stability on the system.

Alarm for high voltage RMS (Swell Detection)

Hysteresis = 2% Uref

Threshold of swell = 100% Uref

Level to go back = 100% - 2% = 98% Uref

Swell duration

Alarm for low voltage RMS (Sag or Interruption Detection)

Hysteresis = 2% Uref

Level to go back = (100% + 2%)Uref

Threshold = 102% Uref
GLOSSARY OF TERMS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>Frequency</td>
</tr>
<tr>
<td>Vrms</td>
<td>Volts rms</td>
</tr>
<tr>
<td>Arms</td>
<td>Amps rms</td>
</tr>
<tr>
<td>W</td>
<td>Watts (Real Power)</td>
</tr>
<tr>
<td>PF</td>
<td>Power Factor</td>
</tr>
<tr>
<td>Urms</td>
<td>Volts (phase-to-phase rms)</td>
</tr>
<tr>
<td>Vthd</td>
<td>Volts total harmonic distortion</td>
</tr>
<tr>
<td>Athd</td>
<td>Amps total harmonic distortion</td>
</tr>
<tr>
<td>VARS</td>
<td>VARS (reactive power)</td>
</tr>
<tr>
<td>DPF</td>
<td>Displacement power factor</td>
</tr>
<tr>
<td>Uthd</td>
<td>Volts total harmonic distortion (phase-to-phase)</td>
</tr>
<tr>
<td>Vcf</td>
<td>Volts crest factor</td>
</tr>
<tr>
<td>Acf</td>
<td>Amps Crest Factor</td>
</tr>
<tr>
<td>VA</td>
<td>Volt-Amps (apparent power)</td>
</tr>
<tr>
<td>Tan</td>
<td>Tangent (Volt-Amp)</td>
</tr>
<tr>
<td>Ucf</td>
<td>Volts crest factor (phase-to-phase)</td>
</tr>
<tr>
<td>Vunb</td>
<td>Volts Unbalanced. On the instrument’s screen, the calculation method is the IEC method that takes into account phase angle.</td>
</tr>
<tr>
<td>Aunb</td>
<td>Amps Unbalanced. On the instrument’s screen, the calculation method is the IEC method that takes into account phase angle.</td>
</tr>
<tr>
<td>PST</td>
<td>Short term flicker</td>
</tr>
<tr>
<td>Akf</td>
<td>“K” factor</td>
</tr>
<tr>
<td>Vh</td>
<td>Harmonic volt</td>
</tr>
<tr>
<td>Ah</td>
<td>Harmonic amps</td>
</tr>
<tr>
<td>3L</td>
<td>Capture of each 3 phases</td>
</tr>
<tr>
<td>N</td>
<td>Neutral current (calculated)</td>
</tr>
<tr>
<td>Σ</td>
<td>Sum of three-phase power capture</td>
</tr>
<tr>
<td>Symbol</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------</td>
</tr>
<tr>
<td>Σ/3</td>
<td>Average value of three-phase capture</td>
</tr>
<tr>
<td>3U</td>
<td>Three phases of voltage (phase-to-phase)</td>
</tr>
<tr>
<td>3V</td>
<td>Three phases of voltage (phase-to-neutral)</td>
</tr>
<tr>
<td>3A</td>
<td>Three phases of current</td>
</tr>
<tr>
<td>4A</td>
<td>Three phases of current including derived neutral current</td>
</tr>
<tr>
<td>L1</td>
<td>Phase one of voltage (phase-to-neutral) plus current</td>
</tr>
<tr>
<td>L2</td>
<td>Phase two of voltage (phase-to-neutral) plus current</td>
</tr>
<tr>
<td>L3</td>
<td>Phase three of voltage (phase-to-neutral) plus current</td>
</tr>
<tr>
<td></td>
<td>Up/Down buttons</td>
</tr>
<tr>
<td></td>
<td>Enter button</td>
</tr>
<tr>
<td>♦</td>
<td>Parameter selected for recording</td>
</tr>
<tr>
<td>◊</td>
<td>Parameter not selected for recording</td>
</tr>
<tr>
<td></td>
<td>Left/Right selection buttons</td>
</tr>
<tr>
<td></td>
<td>Right selection button</td>
</tr>
<tr>
<td></td>
<td>Left selection button</td>
</tr>
<tr>
<td></td>
<td>Warning</td>
</tr>
<tr>
<td></td>
<td>Double or reinforced insulation</td>
</tr>
<tr>
<td></td>
<td>Danger – Risk of electric shock</td>
</tr>
<tr>
<td></td>
<td>Transients mode</td>
</tr>
<tr>
<td></td>
<td>Harmonics mode</td>
</tr>
<tr>
<td></td>
<td>Harmonic analysis</td>
</tr>
<tr>
<td></td>
<td>Waveforms mode</td>
</tr>
<tr>
<td></td>
<td>Power/Energy mode</td>
</tr>
<tr>
<td></td>
<td>Recording mode</td>
</tr>
<tr>
<td></td>
<td>Alarm mode</td>
</tr>
<tr>
<td></td>
<td>Set Up mode</td>
</tr>
<tr>
<td></td>
<td>Snapshot capture</td>
</tr>
<tr>
<td></td>
<td>Direct print</td>
</tr>
<tr>
<td></td>
<td>Help</td>
</tr>
<tr>
<td></td>
<td>Tabular display of measurements</td>
</tr>
<tr>
<td></td>
<td>Phasor diagram display</td>
</tr>
<tr>
<td>Icon</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>🍃 25%</td>
<td>Battery charging or discharging</td>
</tr>
<tr>
<td>🍃 100%</td>
<td>Battery full</td>
</tr>
<tr>
<td>🍃 0%</td>
<td>Battery empty discharging</td>
</tr>
<tr>
<td>🍃 ?</td>
<td>New battery discharging</td>
</tr>
<tr>
<td>🍃 Power On/Off</td>
<td>Validate the setting</td>
</tr>
<tr>
<td>🍃 Power parameters</td>
<td></td>
</tr>
<tr>
<td>🍃 Power factor</td>
<td></td>
</tr>
<tr>
<td>🍃 Starts energy accumulation</td>
<td></td>
</tr>
<tr>
<td>🍃 Stops current activity</td>
<td></td>
</tr>
<tr>
<td>🍃 Resets counter to zero</td>
<td></td>
</tr>
<tr>
<td>🍃 Displays each type of energy (real, reactive, apparent)</td>
<td></td>
</tr>
<tr>
<td>🍃 Starts capture or recording search</td>
<td></td>
</tr>
<tr>
<td>🍃 Displays a captured transient</td>
<td></td>
</tr>
<tr>
<td>🍃 Deletes a captured transient</td>
<td></td>
</tr>
<tr>
<td>🍃 Returns to the transient selection screen</td>
<td></td>
</tr>
<tr>
<td>🍃 Zoom In</td>
<td></td>
</tr>
<tr>
<td>🍃 Zoom out</td>
<td></td>
</tr>
<tr>
<td>🍃 Saving</td>
<td></td>
</tr>
<tr>
<td>🍃 Opening a saved display</td>
<td></td>
</tr>
</tbody>
</table>
Repair and Calibration

To ensure that your instrument meets factory specifications, we recommend that it be scheduled back to our factory Service Center at one-year intervals for recalibration, or as required by other standards or internal procedures.

For instrument repair and calibration:
You must contact our Service Center for a Customer Service Authorization Number (CSA#). This will ensure that when your instrument arrives, it will be tracked and processed promptly. Please write the CSA# on the outside of the shipping container. If the instrument is returned for calibration, we need to know if you want a standard calibration, or a calibration traceable to N.I.S.T. (Includes calibration certificate plus recorded calibration data).

Ship To: Chauvin Arnoux®, Inc. d.b.a. AEMC® Instruments
15 Faraday Drive
Dover, NH 03820 USA
Phone: (800) 945-2362 (Ext. 360)
(603) 749-6434 (Ext. 360)
Fax: (603) 742-2346 or (603) 749-6309
E-mail: repair@aemc.com
(Or contact your authorized distributor)

Costs for repair, standard calibration, and calibration traceable to N.I.S.T. are available.

NOTE: You must obtain a CSA# before returning any instrument.

Technical and Sales Assistance

If you are experiencing any technical problems, or require any assistance with the proper operation or application of your instrument, please call, mail, fax or e-mail our technical support team:

Chauvin Arnoux®, Inc. d.b.a. AEMC® Instruments
200 Foxborough Boulevard
Foxborough, MA 02035 USA
Phone: (800) 343-1391
(508) 698-2115
Fax: (508) 698-2118
E-mail: techsupport@aemc.com
www.aemc.com

NOTE: Do not ship Instruments to our Foxborough, MA address.

Ship To: Chauvin Arnoux®, Inc. d.b.a. AEMC® Instruments
Limited Warranty

The PowerPad® Model 3945-B is warranted to the owner for a period of one year from the date of original purchase against defects in manufacture. This limited warranty is given by AEMC® Instruments, not by the distributor from whom it was purchased. This warranty is void if the unit has been tampered with, abused or if the defect is related to service not performed by AEMC® Instruments.

Full warranty coverage and product registration is available on our website at www.aemc.com/warranty.html.

Please print the online Warranty Coverage Information for your records.

What AEMC® Instruments will do:
If a malfunction occurs within the one-year period, you may return the instrument to us for repair, provided we have your warranty registration information on file or a proof of purchase. AEMC® Instruments will, at its option, repair or replace the faulty material.

REGISTER ONLINE AT:
www.aemc.com

Warranty Repairs

What you must do to return an Instrument for Warranty Repair:
First, request a Customer Service Authorization Number (CSA#) by phone or by fax from our Service Department (see address below), then return the instrument along with the signed CSA Form. Please write the CSA# on the outside of the shipping container. Return the instrument, postage or shipment pre-paid to:

Ship To: Chauvin Arnoux®, Inc. d.b.a. AEMC® Instruments
 15 Faraday Drive • Dover, NH 03820 USA
 Phone: (800) 945-2362 (Ext. 360)
 (603) 749-6434 (Ext. 360)
 Fax: (603) 742-2346 or (603) 749-6309
 E-mail: repair@aemc.com

Caution: To protect yourself against in-transit loss, we recommend you insure your returned material.

NOTE: You must obtain a CSA# before returning any instrument.