The CAL 9500P Programmable Profiling Temperature & Process Controller

Ordering information codes

<table>
<thead>
<tr>
<th>Code</th>
<th>Model</th>
<th>Ordering example 1</th>
<th>Ordering example 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>9500P</td>
<td>Model 9500P ssd/relay/relay outputs 4-20mA input, RS485 fitted</td>
<td>Model 9500P with 4-20mA/ssd/relay outputs, sensor input, no comms</td>
</tr>
<tr>
<td>00</td>
<td>95</td>
<td>95 B2 1 P A 0 00</td>
<td></td>
</tr>
</tbody>
</table>

Codes for additional software and hardware

- CALCOMMS charting & logging software
- CALCOMMS CD Rom demo-disk
- Communications board RS485
- Communications board RS232
- RS232 to RS485 converter
- CALopc OPC server
- CALpoll

Available on the web

Ask for these brochures for our other product ranges

Temperature Controllers
This low-cost range is dedicated for temperature control and also has the added options for RS232 & RS485 communications boards. All controllers have P.I.D. control, autotune, heat-cool strategy and a single ramp-soak profile.

Temperature Sensors
This comprehensive catalogue is full of useful information as well as a wide range of thermocouples and RTDs for all applications. Also included is a range of accessories from cables, connectors, glands to thermowells.

Solid State Relays
This range of solid-state relays completes the solution from sensors to control output. This catalogue shows a range of hockey-puck style SSRs and the Solitron range with built-in heat sinks that are easy to specify and install.
The CAL 9500P Programmable Temperature / Process Controller with Communications & Software Support

Established in 1963, CAL is a dynamic and strong company leading the industry in single-loop controllers. CAL's pioneering spirit established many of today's world standards for controllers such as the first 48mm x 48mm (1/16TH DIN) analogue controller, followed by the first digital controller of the same size and then the first 24mm x 48mm (1/32TH DIN) controller.

CAL's range of easy-to-use controllers are complemented by a suite of software products for communications, data-logging and supervisory control. CAL has developed a reputation based on unique controllers that enhance our product support, innovation and attractively-priced solutions.

The CAL 9500P Programmable process controller

The CAL 9500P is a versatile programmable controller for temperature and process control applications. It is designed to offer the highest functionality in a 48mm x 48mm (1/16TH DIN) package. The 9500P can be factory configured in a range of process control or temperature control options making the controller dedicated to the application, ideal for both OEM and manufacturing process applications. This combination of programmable ramp/soak profiles, process control inputs and 3 outputs, together with RS232 or RS485 communications makes the CAL 9500P a unique and affordable package.

Controller functionality

- Full P.I.D. operation
- Autotune at 75% of set-point or at set-point
- Heat-cool operation
- RS232 or RS485 communications options
- CE, UL & CSA compliant

Inputs

- Thermocouples & RTD (PT100, 2 or 3 wire)
- Analogue – 0–20mA, 4–20mA, 0–50mV, 0–5V, 0–10V

Easy to scale input signals

CAL has made the task of scaling inputs very simple: example: 4-20mA corresponds to an input range of 10-50mV

Step 1, enter scale max’ = 260,
Step 2, enter scale min’ = 60,
Step 3, enter input max’ = 50 (i.e. 50mV = 90mA)
Step 4, enter input min’ = 10 (i.e. 10mV = 4mA).

Outputs (total of three outputs)

- Solid state relay drive (SSD) and Relays (2 amp)
- Analogue – 4-20mA, 0-5V, 0-10V

Profile of a single program

 Subset of the functions list:
- hold Suspend program until run
- on Run program
- Edit Insert, delete or copy programs

Power failure modes

- rSet Reset to program start
- Cont Continue from interruption
- hOId Hold at interruption

Segment types

- SP Ramp to next set-point
- ScAK Hold set-point for set time
- STEp Step to new set-point
- LoOp Repeat the program
- CALL Call up another program
- E.oP Generate an event output at end of segment
- Edit Delete or insert a segment

Hold back function:

- hOId Hold back, this function ‘holds back’ the ramping set-point until the measured value catches up with the ramping set-point. This function ensures that the time taken to ramp does not reduce the next segment.

Programmer functionality

- Up to 31 programs (profiles)
- Up to 126 segments
- Unlimited use of event outputs via the 2nd and 3rd outputs
- Copy/Paste/Edit/Delete functions to simplify program building
- Call another program as a sub-program segment
- Up to 999 program loop cycles, or continuous loop cycling
- Hold back function, to ensure the next segment is not started until the last segment reaches the set-point
- 3 power fail recovery options, (Hold, Continue or Reset)
- Front panel interrogation of the program position
- Memory usage indication during programming.

(note: program capacity is a memory function and different types of segment use more/less memory).

Examples:

Maximum capacity; 351 Bytes, 126 segments per program, 31 programs

Example 1 (349 Bytes)
One program of 116 segments
(58 ramps, 58 soaks)

Example 2 (340 Bytes)
4 programs of 28 segments
(14 ramps, 14 soaks)

Example 3 (341 Bytes)
31 programs of (ramp-soak-ramp)

The above ramps are without hold-back option

E.oP Event Output
E.oP Event Output

The CAL 9500P is potentially the most versatile and flexible controller in its size and price range. The above program shows what is possible from this unique controller.
Software and Connectivity

Using CAL controllers there’s a wide range of software support products designed to suit different applications.

<table>
<thead>
<tr>
<th>Product</th>
<th>CALCOMMS</th>
<th>CALopc</th>
<th>CALpoll</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Easy to use and install software application requiring no design work.</td>
<td>Software driver for OPC client/server applications such as SCADA.</td>
<td>Example demo program plus source code to help you build a custom application.</td>
</tr>
<tr>
<td>Ideal for:</td>
<td>Chart-recorders, Data-logger, Alarms</td>
<td>Large SCADA applications requiring many inputs other than CAL.</td>
<td>Custom software applications dedicated to one application.</td>
</tr>
<tr>
<td>For use by:</td>
<td>Plant/Process engineers, Supervisors, Quality control, System/Machine designers</td>
<td>Process engineers, Plant managers, SCADA system builders.</td>
<td>Software engineers with Visual C experience</td>
</tr>
<tr>
<td>Typical applications</td>
<td>Quality control, Process optimisation, Lab equipment</td>
<td>Process control, Manufacturing</td>
<td>OEM machines, development projects</td>
</tr>
<tr>
<td>License cost</td>
<td>$</td>
<td>$$$</td>
<td>Gratis/web</td>
</tr>
<tr>
<td>Development cost</td>
<td>$</td>
<td>$$$</td>
<td>$$$$$</td>
</tr>
<tr>
<td>Flexibility/Versatility</td>
<td>✔</td>
<td>Connect to other h/w</td>
<td>✔</td>
</tr>
<tr>
<td>Other comments</td>
<td>Designed for simplicity with many features</td>
<td>User must also purchase the SCADA software</td>
<td>For use with Visual C++ Compiler</td>
</tr>
</tbody>
</table>

Terminology:

SCADA Supervisory Control And Data Acquisition
OPC Object Linking and Embedding for Process Control
OEM Original Equipment Manufacturer

CALopc - OPC server

The CALopc server is a MODBUS RTU software product designed for integration into OPC client/server applications such as SCADA. CALopc includes pre-configured templates for all CAL controllers, together with controller bitmaps and the 7-segment LED true type font.

Using this OPC server allows ‘tags’ to be added to all controller functions and built into the SCADA application enabling the display and changing of any parameters in a custom configured application for complete process monitoring and control.

CALpoll - tools for custom software engineers

CALpoll is a free of charge software product available from www.cal-controls.com It includes an example program and source code in Visual C++. It is ideal for use by software engineers who wish to create custom applications that need to communicate with CAL controllers via the MODBUS RTU protocol.

The source code includes routines for communicating via MODBUS saving the software engineer significant development time. The example program also doubles as an ideal diagnostic tool for proving that the communications hardware is set up correctly.

Ideal for: Recording process data for manufacturing reporting, quality control, health & safety purposes, or OEM system development.

For further details please contact CAL.

CALCOMMSTM Chart-recorder, Data-logging & Configuration software for Windows

CALCOMMSTM charting and logging software is incredibly easy to use. It is designed to connect up to 128 controllers by RS485 into a standard or industrial PC. This allows the user to program all functions of the controller and to data-log the recorded process signals.

Functions

- Data-logger for archiving process data
- Chart-recorder for on-screen viewing of trends
- Virtual instrument display
- On-screen alarm displays
- Configuration/programming tool for controllers
- ‘Cloning’ of instrument settings
- Saving of applications of multiple controller set-ups
- Remote set-point adjustment

Applications:

Food industry, Dairy industry, Rubber & Plastics manufacturing, Ovens, Furnaces, Kilns, Plastics machines, Laboratory and Scientific equipment, Bottling and beverage production and many other process industries.

Example of networked controller configuration into CALCOMMSTM

RS 485 – MODBUS RTU – up to 128 controllers

For further details please contact CAL.
Thermocouple

- **9 types:** B, E, J, K, L, N, R, S, T
- **Standards:** IEC 584–1–1 : EN60584–1
- **CJC rejection:** 0.01 (0.05°C) typical
- **External resistance:** 100Ω maximum

Resistance thermometer

- **RTD/Pt100:** 2 or 3 wire
- **Standards:** IEC751: EN60751 (100Ω 0°C/138.5Ω 100°C Pt)
- **Bulb current:** 0.2mA maximum

Analogue process inputs

- **0 to 50mV, +/- 0.1%**
- **0-20mA, +/- 0.1%**
- **0-5V, +/- 0.1%**
- **0-10V, +/- 0.1%**

- **Applicable to all Thermocouple and RTD inputs (SM = sensor maximum)**
 - **Calibration accuracy:** +/- 0.25%SM +/- 1°C
 - **Sampling frequency:** input 10Hz, CJC 8 sec.
 - **Common mode rejection:** Negligible effect up to 140dB, 240V, 50-60Hz
 - **Series mode rejection:** 60dB, 50-60Hz
 - **Temperature coefficient:** 50ppm/°C SM typical
 - **Reference conditions:** 22°C +/- 2°C, rated voltage after 15 minutes settling time.

Output devices (check configuration)

- **SSd1 and SSd2:** Solid state relay driver: To switch a remote SSR 6Vdc (nominal) 20mA non-isolated
- **Relay 1,2,3:** Miniature power relay: Form A/SPST contacts (AgCdO): 2A/250Vac resistive load
- **Analogue output:** 4–20mA 500Ω max +/- 0.1% full scale typical
 - 0–5Vdc 10mA (500Ω min) +/- 0.1% full scale typical
 - 0–10Vdc 10mA (1KΩ min) +/- 0.1% full scale typical

General

- **Displays:** Upper, 4 Digits, high brightness green LED. 10mm (0.4") high.
 Lower, 4 Digits, high brightness orange LED 9mm (0.35") high.
- **Digital range:** -199 to 9999. Hi-res mode -199.9 to 999.9.
- **LED output indicators:** - SP1 square, green; SP2/SP3 round, red
- **Keypad:** 3 elastomeric buttons

Programmer functions:

- **Segments:** Total of 126 per program
- **Programs:** Maximum of 31 programs
- **Program memory:** 351 Bytes (see memory allocation table)

Environmental

- **Humidity:** Max 95% non-condensing
- **Altitude:** up to 2000M
- **Installation:** Categories II and III
- **Pollution:** Degree II
- **Protection:** NEMA 4X, IP66 (Front panel only)
- **EMC emission:** ENS0081–1 FCC Rules 15 subpart J Class A
- **EMC immunity:** EN55022–2
- **Ambient:** 0-50°C (32-130°F)
- **Mouldings:** flame retardant polycarbonate
- **Weight:** 180g (6.4 oz)
- **Safety:** EN61010–1, CSA/UL 61010-1 92 (see users manual)

Dimensions

- **Front facia:** 51.0 x 51.0mm (2.0" x 2.0") (includes gasket)
- **Sleeve length:** 106.7mm (4.2") (includes gasket)
- **Instrument body:** 44.8 x 44.8mm (1.76" x 1.76")
- **Overall length:** 116.9mm (4.6")

Supply Voltage

- **100–240Vac, 50–60Hz +/- 10% maximum permitted fluctuation **

Power Requirements

- **6.0VA (nominal) **

Typical Application

In this example the load temperature is monitored by a temperature transducer/transmitter which provides a 4–20mA input signal to the controller. The 4–20mA output has been allocated to SP1 to drive an SCR power controller providing a phase angle controlled output to the heater.

F1 Fuse: 1A time lag type to IEC127. CSA/UL rating 250Vac

F2 Fuse: High Rupture Capacity (HRC) Suitable for maximum rated load current

S1 Switch: IEC/CSA/UL Approved disconnecting device.

Model 9500P

- **(48x48mm) 1/16 DIN**

CAL 9500P Specifications

<table>
<thead>
<tr>
<th>Thermocouple</th>
<th>9 types: B, E, J, K, L, N, R, S, T</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standards</td>
<td>IEC 584–1–1 : EN60584–1</td>
</tr>
<tr>
<td>CJC rejection</td>
<td>0.01 (0.05°C) typical</td>
</tr>
<tr>
<td>External resistance</td>
<td>100Ω maximum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Resistance thermometer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTD/Pt100</td>
</tr>
<tr>
<td>Standards</td>
</tr>
<tr>
<td>Bulb current</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Analogue process inputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 to 50mV, +/- 0.1%</td>
</tr>
<tr>
<td>0-20mA, +/- 0.1%</td>
</tr>
<tr>
<td>0-5V, +/- 0.1%</td>
</tr>
<tr>
<td>0-10V, +/- 0.1%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output devices (check configuration)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSd1 and SSd2</td>
</tr>
<tr>
<td>Relay 1,2,3</td>
</tr>
<tr>
<td>Analogue output</td>
</tr>
<tr>
<td>4–20mA 500Ω max +/- 0.1% full scale typical</td>
</tr>
<tr>
<td>0–5Vdc 10mA (500Ω min) +/- 0.1% full scale typical</td>
</tr>
<tr>
<td>0–10Vdc 10mA (1KΩ min) +/- 0.1% full scale typical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displays: Upper, 4 Digits, high brightness green LED. 10mm (0.4") high.</td>
</tr>
<tr>
<td>Lower, 4 Digits, high brightness orange LED 9mm (0.35") high.</td>
</tr>
<tr>
<td>Digital range: -199 to 9999. Hi-res mode -199.9 to 999.9.</td>
</tr>
<tr>
<td>LED output indicators: - SP1 square, green; SP2/SP3 round, red</td>
</tr>
<tr>
<td>Keypad: 3 elastomeric buttons</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Programmer functions:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Segments: Total of 126 per program</td>
</tr>
<tr>
<td>Programs: Maximum of 31 programs</td>
</tr>
<tr>
<td>Program memory: 351 Bytes (see memory allocation table)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humidity: Max 95% non-condensing</td>
</tr>
<tr>
<td>Altitude: up to 2000M</td>
</tr>
<tr>
<td>Installation: Categories II and III</td>
</tr>
<tr>
<td>Pollution: Degree II</td>
</tr>
<tr>
<td>Protection: NEMA 4X, IP66 (Front panel only)</td>
</tr>
<tr>
<td>EMC emission: ENS0081–1 FCC Rules 15 subpart J Class A</td>
</tr>
<tr>
<td>EMC immunity: EN55022–2</td>
</tr>
<tr>
<td>Ambient: 0-50°C (32-130°F)</td>
</tr>
<tr>
<td>Mouldings: flame retardant polycarbonate</td>
</tr>
<tr>
<td>Weight: 180g (6.4 oz)</td>
</tr>
<tr>
<td>Safety: EN61010–1, CSA/UL 61010-1 92 (see users manual)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front facia: 51.0 x 51.0mm (2.0" x 2.0") (includes gasket)</td>
</tr>
<tr>
<td>Sleeve length: 106.7mm (4.2") (includes gasket)</td>
</tr>
<tr>
<td>Instrument body: 44.8 x 44.8mm (1.76" x 1.76")</td>
</tr>
<tr>
<td>Overall length: 116.9mm (4.6")</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supply Voltage:</th>
</tr>
</thead>
<tbody>
<tr>
<td>100–240Vac, 50–60Hz +/- 10% maximum permitted fluctuation</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Power Requirements:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0VA (nominal)</td>
</tr>
</tbody>
</table>

Technical Specifications

![Image of CAL 9500P specifications and technical data]