Reference Manual 00809-0300-4750, Rev CA March 2016

Rosemount[™] 8750W Magnetic Flowmeter Platform

for Utility, Water, and Wastewater Applications

Contents

Section 1: Introduction

1.1 System description 1
1.2 Product recycling/disposal

Section 2: Quick Installation and Start-Up

2.1 Introduction	3
2.2 Safety messages	3
2.3 Transmitter symbols	4
2.4 Pre-installation	5
2.5 Installation procedures	5
2.5.1 Transmitter installation	5
2.5.2 Identify options and configurations	5
2.5.3 Mechanical considerations	6
2.5.4 Electrical considerations	9
2.5.5 Environmental considerations	9
2.6 Handling and lifting	10
2.7 Mounting	11
2.7.1 Upstream/downstream piping	11
2.7.2 Flow direction	11
2.8 Sensor location	12
2.8.1 Electrode orientation	12
2.9 Sensor installation	13
2.9.1 Flanged sensors	13
2.9.2 Flange bolts	13
2.10 Process reference connection	17
2.11 Wiring the transmitter	19
2.11.1 Conduit entries and connections	20
2.11.2 Conduit requirements	20
2.11.3 Connecting sensor to transmitter	20
2.11.4 Rosemount 8750W Transmitter terminal block connections .	24
2.11.5 Analog output	25
2.11.6 Powering the transmitter	28
2.12 Field mount transmitter cover jam screw	
2.13 Basic configuration	32
2.13.1 Basic setup	32

Section 3: Advanced Installation Details

3.1 Introduction	
3.2 Safety messages	
3.3 Hardware switches	
3.3.1 Alarm mode	
3.3.2 Transmitter security	
3.3.3 Internal/external analog power	
3.3.4 Internal/external pulse power	
3.3.5 Changing hardware switch settings	
3.4 Additional loops	40
3.4.1 Connect pulse output	
3.4.2 Connect discrete output	44
3.4.3 Connect discrete input	
3.5 Process reference connection	
3.6 Coil housing configuration	48

Section 4: Operation

4.5 Process variables	
4.5.1 PV - Primary variable	82
4.5.2 PV - Percent of range	82
4.5.3 PV - Analog output	83
4.5.4 Pulse output	83

Section 5: Advanced Configuration Functionality

5.1	Introduction	85
5.2	Configure outputs	85
	5.2.1 Analog output	85
	5.2.2 Pulse output	88
	5.2.3 Totalizer	92
	5.2.4 Discrete input/output	94
5.3	Configure HART	101
	5.3.1 Variable mapping	.101
	5.3.2 Poll address	.103
	5.3.3 Burst mode	.103
	5.3.4 Configure LOI	.104
5.4	Additional parameters	106
	5.4.1 Coil drive frequency	.106
	5.4.2 Process density	.107
	5.4.3 Reverse flow	.107
	5.4.4 Low flow cutoff	.107
	5.4.5 PV damping	.108
	5.4.6 Signal processing	.108
5.5	Configure special units	110
	5.5.1 Base volume unit	.110
	5.5.2 Conversion factor	.110
	5.5.3 Base time unit	.111
	5.5.4 Special volume unit	.111
	5.5.5 Special flow rate unit	.111

Section 6: Advanced Diagnostics Configuration

6.1 Introduction	113
6.2 Licensing and enabling	114
6.2.1 Licensing the Rosemount 8750W diagnostics	115

6.3 Tunable empty pipe detection 115
6.3.1 Tunable empty pipe parameters116
6.3.2 Optimizing tunable empty pipe117
6.4 Electronics temperature 117
6.4.1 Turning electronics temperature on/off118
6.4.2 Electronics temperature parameters118
6.5 Ground/wiring fault detection 118
6.5.1 Turning ground/wiring fault on/off119
6.5.2 Ground/wiring fault parameters119
6.6 High process noise detection 119
6.6.1 Turning high process noise on/off
6.6.2 High process noise parameters120
6.7 Coated electrode detection 121
6.7.1 Turning coated electrode detection on/off
6.7.2 Coated electrode parameters121
6.8 4-20 mA loop verification 123
6.8.1 Initiating 4-20 mA loop verification123
6.8.2 4-20 mA loop verification parameters
6.9 SMART [™] Meter Verification
6.9.1 Sensor baseline (signature) parameters
6.9.2 Establishing the sensor baseline (signature)
6.9.3 SMART Meter Verification test criteria
6.10 Run manual SMART Meter Verification 128
6.10.1 Test conditions128
6.10.2 Test scope
6.11 Continuous SMART Meter Verification 129
6.11.1 Test scope
6.12 SMART Meter Verification test results
6.13 SMART Meter Verification measurements
6.14 Optimizing the SMART Meter Verification
6.14.1Optimizing continuous SMART Meter Verification
6.15 Calibration Verification Report

Section 7: Digital Signal Processing

7.1	Introduction	139
7.2	Safety messages	139
7.3	Process noise profiles	140
	7.3.1 1/f noise	.140

	7.3.2 Spike noise	40
	7.3.3 White noise	40
7.4	High process noise diagnostic 14	40
7.5	Optimizing flow reading in noisy applications 14	41
	7.5.1 Coil drive frequency14	41
	7.5.2 Auto zero	41
	7.5.3 Digital signal processing (DSP)14	42
7.6	Explanation of signal processing algorithm14	45

Section 8: Maintenance

8.1 Introduction 147
8.2 Safety information
8.3 Installing a Local Operator Interface (LOI)
8.4 Replacing the Rosemount 8750W Transmitter electronics stack 149
8.4.1 Field mount transmitter149
8.5 Replacing the terminal block 151
8.5.1 Removing the terminal block151
8.5.2 Installing the terminal block151
8.6 Trims
8.6.1 D/A trim152
8.6.2 Scaled D/A trim153
8.6.3 Digital trim153
8.6.4 Universal trim155
8.7 Review

Section 9: Troubleshooting

9.1 Introduction	157
9.2 Safety messages	157
9.3 Installation check and guide	158
9.3.1 Transmitter	158
9.3.2 Sensor	
9.3.3 Remote wiring	159
9.3.4 Process fluid	159
9.4 Diagnostic messages	
9.4.1 Troubleshooting empty pipe	
9.4.2 Troubleshooting ground/wiring fault	
9.4.3 Troubleshooting high process noise	
9.4.4 Troubleshooting coated electrode detection	on

	9.4.5 Troubleshooting 4-20 mA loop verification	168
	9.4.6 Troubleshooting the SMART Meter Verification test	169
9.5	Basic troubleshooting	170
9.6	Sensor troubleshooting	174
	9.6.1 Installed sensor tests	175
	9.6.2 Uninstalled sensor tests	177
9.7	Technical support	178
9.8	Service	178

Section A: Specifications and Reference Data

179
179
180
181
182
182
182
183
183
183
185
185
186
186
186
187
187
187
189

Section B: Product Certifications

B.1	Europ	ean Directive Information 1	93
	B.1.1	Electro Magnetic Compatibility (EMC)(2004/108/EC) and (2014/30/EU)1	93
	B.1.2	Low Voltage Directive (LVD) (2006/95/EC) and (2014/35/EU)1	93
	B.1.3	Ingress Protection Rating for dust and water1	93
	B.1.4	European Pressure Equipment Directive (PED) (97/23/EC) and (2014/68/EU)1	93
	B.1.5	Rosemount 8750W Flanged Flowtubes1	93

B.2 Certifications 1	93
B.2.1 Factory Mutual (FM)1	193
B.2.2 CSA1	194
B.3 IEC EC and ATEX Approval Information 1	98

Appendix C: Wiring Diagrams

C.1 Emerson [™] 775 Wireless THUM [™] Adapter	218
C.2 475 Field Communicator	219

Appendix D: Implementing a Universal Transmitter

D.8.1 Kent Sensor to Rosemount 8750W Transmitter241
D.9 Krohne Sensors
D.9.1 Krohne Sensor to Rosemount 8750W Transmitter242
D.10 Taylor Sensors
D.10.1 Series 1100 Sensor to Rosemount 8750W Transmitter243
D.10.2 Taylor Sensor to Rosemount 8750W Transmitter244
D.11 Yamatake Honeywell Sensors 245
D.11.1 Yamatake Honeywell Sensor to Rosemount 8750W Transmitter245
D.12 Yokogawa Sensors
D.12.1 Yokogawa Sensor to Rosemount 8750W Transmitter246
D.13 Generic manufacturer sensors
D.13.1 Identify the terminals247
D.13.2 Wiring connections

Rosemount[™] 8750W Magnetic Flowmeter Platform

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

AWARNING

Failure to follow these installation guidelines could result in death or serious injury.

- Installation and servicing instructions are for use by qualified personnel only. Do
 not perform any servicing other than that contained in the operating instructions,
 unless qualified.
- Verify the installation is done safely and is consistent with the operating environment.
- Ensure the device certification and installation techniques are suitable for the installation environment.
- Explosion hazard. Do not disconnect equipment when a flammable or combustible atmosphere is present.
- To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing circuits.
- Do not connect a Rosemount 8750W Transmitter to a non-Rosemount sensor that is located in an explosive atmosphere.
- Follow national, local, and plant standards to properly earth ground the transmitter and sensor. The earth ground must be separate from the process reference ground.
- Rosemount Magnetic Flowmeters ordered with non-standard paint options or non-metallic labels may be subject to electrostatic discharge. To avoid electrostatic charge build-up, do not rub the flowmeter with a dry cloth or clean with solvents.

Explosions could result in death or serious injury.

- Verify the operating atmosphere of the sensor and transmitter is consistent with the appropriate hazardous locations certifications.
- Do not remove transmitter cover in explosive atmospheres when the circuit is alive.
- Before connecting a HART[®]-based communicator in an explosive atmosphere, make sure instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Failure to follow safe installation and servicing guidelines could result in death or serious injury.

- Make sure only qualified personnel perform the installation.
- Do not perform any service other than those contained in this manual unless qualified.
- Process leaks could result in death or serious injury.

High voltage that may be present on leads could cause electrical shock.

Avoid contact with leads and terminals.

ACAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Emerson[™] Process Management Sales Representative.

Section 1 Introduction

1.1 System description

The Rosemount[™] 8750W Magnetic Flowmeter System consists of a sensor and a transmitter. The sensor is installed in-line with the process piping; the transmitter can be remotely mounted or integrally mounted to the sensor.

Figure 1-2. Wall Mount Transmitter Remote

Figure 1-3. Flanged Sensor

The flow sensor contains two magnetic coils located on opposite sides of the sensor. Two electrodes, located perpendicular to the coils and opposite each other, make contact with the liquid. The transmitter energizes the coils and creates a magnetic field. A conductive liquid moving through the magnetic field generates an induced voltage at the electrodes. This voltage is proportional to the flow velocity. The transmitter converts the voltage detected by the electrodes into a flow reading.

1.2 Product recycling/disposal

Recycling of equipment and packaging should be taken into consideration and disposed of in accordance with local and national legislation/regulations.

Section 2 Quick Installation and Start-Up

Introduction	page 3
Safety messages	page 3
Transmitter symbols	page 4
Pre-installation	page 5
Installation procedures	page 5
Handling and lifting	page 10
Mounting	page 11
Sensor location	page 12
Sensor installation	page 13
Process reference connection	page 17
Wiring the transmitter	page 19
Field mount transmitter cover jam screw	page 32
Basic configuration	.page 32
	Introduction

2.1 Introduction

This section covers the steps required to physically install the magnetic flowmeter. Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Refer to the following safety messages before performing any operation in this section.

2.2 Safety messages

This section provides basic installation guidelines for the Rosemount[™] 8750W Magnetic Flowmeter System. For comprehensive instructions for detailed configuration, diagnostics, maintenance, service, installation, or troubleshooting refer to the appropriate sections in this manual. The manual and quick start guide are also available electronically on <u>EmersonProcess.com/Rosemount</u>.

AWARNING

Failure to follow these installation guidelines could result in death or serious injury.

- Installation and servicing instructions are for use by qualified personnel only. Do
 not perform any servicing other than that contained in the operating instructions,
 unless qualified.
- Verify the installation is done safely and is consistent with the operating environment.
- Ensure the device certification and installation techniques are suitable for the installation environment.
- Explosion hazard. Do not disconnect equipment when a flammable or combustible atmosphere is present.
- To prevent ignition of flammable or combustible atmospheres, disconnect power before servicing circuits.
- Do not connect a Rosemount 8750W Transmitter to a non-Rosemount sensor that is located in an explosive atmosphere.
- Follow national, local, and plant standards to properly earth ground the transmitter and sensor. The earth ground must be separate from the process reference ground.
- Rosemount Magnetic Flowmeters ordered with non-standard paint options or non-metallic labels may be subject to electrostatic discharge. To avoid electrostatic charge build-up, do not rub the flowmeter with a dry cloth or clean with solvents.

NOTICE

- The sensor liner is vulnerable to handling damage. Never place anything through the sensor for the purpose of lifting or gaining leverage. Liner damage may render the sensor inoperable.
- Metallic or spiral-wound gaskets should not be used as they will damage the liner face of the sensor.
- Correct flange bolt tightening is crucial for proper sensor operation and life. All bolts
 must be tightened in the proper sequence to the specified torque specifications.
 Failure to observe these instructions could result in severe damage to the sensor
 lining and possible sensor replacement.
- In cases where high voltage/high current are present near the meter installation, ensure that proper protection methods are followed to prevent stray voltage / current from passing through the meter. Failure to adequately protect the meter could result in damage to the transmitter and lead to meter failure.
- Completely remove all electrical connections from both sensor and transmitter prior to welding on the pipe. For maximum protection of the sensor, consider removing it from the pipeline.

2.3 Transmitter symbols

Caution symbol – check product documentation for details

Protective conductor (grounding) terminal $\left(\frac{\bot}{=}\right)$

2.4 Pre-installation

Before installing the Rosemount 8750W, there are several pre-installation steps that should be completed to make the installation process easier:

- Identify the options and configurations that apply to your application
- Set the hardware switches if necessary
- Consider mechanical, electrical, and environmental requirements

2.5 Installation procedures

2.5.1 Transmitter installation

Installation of the Rosemount Magnetic Flowmeter Transmitter includes both detailed mechanical and electrical installation procedures.

2.5.2 Identify options and configurations

The typical installation of the Rosemount 8750W Transmitter includes a device power connection, a 4–20 mA output connection, and sensor coil and electrode connections. Other applications may require one or more of the following configurations or options:

- Pulse Output
- Discrete Output
- Discrete Input
- HART[®] Multidrop Configuration

Hardware switches

The Rosemount 8750W electronics stack is equipped with user-selectable hardware switches. These switches set the Alarm mode, Internal/external analog power, Internal/external pulse power, and Transmitter security. The standard configuration for these switches when shipped from the factory are as follows:

Standard switch configuration			
Alarm Mode	High		
Internal/External Analog Power	Internal		
Internal/External Pulse Power ⁽¹⁾	External		
Transmitter Security	Off		

1. Only available with the Field Mount Transmitter.

In most cases, it will not be necessary to change the setting of the hardware switches. If the switch settings need to be changed, follow the steps outlined in the Rosemount 8750W Reference Manual (see "Changing hardware switch settings" on page 38).

Note

To prevent switch damage, use a non-metallic tool to move switch positions.

Be sure to identify any additional options and configurations that apply to the installation. Keep a list of these options for consideration during the installation and configuration procedures.

2.5.3 Mechanical considerations

The mounting site for the Rosemount 8750W should provide enough room for secure mounting, easy access to conduit entries, full opening of the transmitter covers, and easy readability of the LOI screen if equipped.

For remote mount transmitter installations, a mounting bracket is provided for use on a 2-in. pipe or a flat surface (see Figure 2-1 for field mount and Figure 2-3 for wall mount).

Note

If the transmitter is mounted separately from the sensor, it may not be subject to limitations that might apply to the sensor.

Rotate integral mount transmitter housing or remote junction box

The transmitter housing can be rotated on the sensor in 90° increments by removing the four mounting screws on the bottom of the housing. Sensor lead wires should be disconnected from the electronics before rotating the housing. Do not rotate the housing more than 180° in any one direction. Prior to tightening, be sure the mating surfaces are clean, the O-ring is seated in the groove, and there is no gap between the housing and the sensor.

Dimensional drawings

Figure 2-2. Rosemount 8750W Integral Field Mount Transmitter

A. Ground lug B. ¹/2-in. –14 NPT conduit connection (4 places) Dimensions in inches (millimeters).

A. LOI keypad cover

Note

Default conduit entries are 1/2-in. NPT. If an alternate thread connection is required, thread adapters must be used.

2.5.4 Electrical considerations

Before making any electrical connections to the Rosemount 8750W, consider national, local and plant electrical installation requirements. Be sure to have the proper power supply, conduit, and other accessories necessary to comply with these standards.

Both remotely and integrally mounted transmitters require external power so there must be access to a suitable power source.

Table 2-1.Electrical Data

Field mount transmitter			
Power input	90–250 VAC, 0.45 A, 40 VA 12 –42 VDC, 1.2 A, 15 W		
Pulsed circuit	Internally powered (Active): Outputs up to 12 VDC, 12.1 mA, 73 mW Externally powered (Passive): Input up to 28 VDC, 100 mA, 1 W		
4—20 mA output circuit	Internally Powered (Active): Outputs up to 25 mA, 24 VDC, 600 mW Externally Powered (Passive): Input up to 25 mA, 30 VDC, 750 mW		
Coil excitation output	500 mA, 40 V max, 9 W max		
Wall mount transmitter			
Power input	90–250 VAC, 0.28 A, 40 VA 12 – 42 VDC, 1 A, 15 W		
Pulsed circuit	Externally powered (Passive): 5–24 VDC, up to 2 W		
4–20mA output circuit	Internally Powered (Active): Outputs up to 25 mA, 30 VDC Externally Powered (Passive): Input up to 25 mA, 10–30 VDC		
Coil excitation output	500 mA, 40 V max, 9 W max		
Sensor ⁽¹⁾			
Coil excitation input	500 mA, 40 V max, 20 W max		
Electrode circuit	5 V, 200 uA, 1 mW		

1. Provided by the transmitter.

2.5.5 Environmental considerations

To ensure maximum transmitter life, avoid extreme temperatures and excessive vibration. Typical problem areas include the following:

- High-vibration lines with integrally mounted transmitters
- Tropical/desert installations in direct sunlight
- Outdoor installations in arctic climates

Remote mounted transmitters may be installed in the control room to protect the electronics from the harsh environment and to provide easy access for configuration or service.

2.6 Handling and lifting

- Handle all parts carefully to prevent damage. Whenever possible, transport the system to the installation site in the original shipping container.
- PTFE-lined sensors are shipped with end covers that protect it from both mechanical damage and normal unrestrained distortion. Remove the end covers just before installation.
- Keep the shipping plugs in the conduit connections until you are ready to connect and seal them.
- The sensor should be supported by the pipeline. Pipe supports are recommended on both the inlet and outlet sides of the sensor pipeline. There should be no additional support attached to the sensor.
- Additional safety recommendations for mechanical handling:
 - Use proper PPE (Personal Protection Equipment should include safety glasses and steel toed shoes).
 - Do not drop the device from any height.
- Do not lift the meter by holding the electronics housing or junction box. The sensor liner is vulnerable to handling damage. Never place anything through the sensor for the purpose of lifting or gaining leverage. Liner damage can render the sensor useless.
- If provided, use the lifting lugs on each flange to handle the Magnetic Flowmeter when it is transported and lowered into place at the installation site. If lifting lugs are not provided, the Magnetic Flowmeter must be supported with a lifting sling on each side of the housing.
 - Flanged sensors 3-in. through 48-in. come with lifting lugs.

Figure 2-5. Support for Handling and Lifting

Without lifting lugs With lifting lugs

Mounting 2.7

2.7.1 Upstream/downstream piping

To ensure specified accuracy over widely varying process conditions, install the sensor with a minimum of five straight pipe diameters upstream and two pipe diameters downstream from the electrode plane (see Figure 2-6).

Installations with reduced upstream and downstream straight runs are possible. In reduced straight run installations, the meter may not meet absolute accuracy specifications. Reported flow rates will still be highly repeatable.

2.7.2 Flow direction

The sensor should be mounted so that the arrow points in the direction of flow. See Figure 2-7.

Figure 2-7. Flow Direction Arrow

2.8 Sensor location

The sensor should be installed in a location that ensures it remains full during operation. Vertical installation with upward process fluid flow keeps the cross-sectional area full, regardless of flow rate. Horizontal installation should be restricted to low piping sections that are normally full.

2.8.1 Electrode orientation

The electrodes in the sensor are properly oriented when the two measurement electrodes are in the 3 and 9 o'clock positions or within 45° from the horizontal, as shown on the left in Figure 2-9. Avoid any mounting orientation that positions the top of the sensor at 90° from the vertical position as shown on the right in Figure 2-9.

2.9 Sensor installation

2.9.1 Flanged sensors

Gaskets

The sensor requires a gasket at each process connection. The gasket material must be compatible with the process fluid and operating conditions. Gaskets are required on each side of a grounding ring (see Figure 2-10). All other applications (including sensors with lining protectors or a grounding electrode) require only one gasket on each process connection.

Note

Metallic or spiral-wound gaskets should not be used as they will damage the liner face of the sensor.

2.9.2 Flange bolts

Note

Do not bolt one side at a time. Tighten both sides simultaneously. Example:

- 1. Snug upstream
- 2. Snug downstream
- 3. Tighten upstream
- 4. Tighten downstream

Do not snug and tighten the upstream side and then snug and tighten the downstream side. Failure to alternate between the upstream and downstream flanges when tightening bolts may result in liner damage.

Suggested torque values by sensor line size and liner type are listed in Table 2-3 for ASME B16.5 flanges and Table 2-4 for EN flanges. Consult the factory if the flange rating of the sensor is not listed. Tighten flange bolts on the upstream side of the sensor in the incremental sequence shown in Figure 2-11 to 20 percentof the suggested torque values. Repeat the process on the downstream side of the sensor. For sensors with more or less flange bolts, tighten the bolts in a similar crosswise sequence. Repeat this entire tightening sequence at 40, 60, 80, and 100% of the suggested torque values.

If leakage occurs at the suggested torque values, the bolts can be tightened in additional 10% increments until the joint stops leaking, or until the measured torque value reaches the maximum torque value of the bolts. Practical consideration for the integrity of the liner often leads the user to distinct torque values to stop leakage due to the unique combinations of flanges, bolts, gaskets, and sensor liner material.

Check for leaks at the flanges after tightening the bolts. Failure to use the correct tightening methods can result in severe damage. While under pressure, sensor materials may deform over time and require a second tightening 24 hours after the initial installation.

Figure 2-11. Flange Bolt Torquing Sequence

Prior to installation, identify the lining material of the flow sensor to ensure the suggested torque values are applied.

Table 2-2. Lining Material

Fluoropolymer liners	Other liners	
T - PTFE	P - Polyurethane N - Neoprene	

		Fluoropolymer liners		Resilient liners	
Size code	Line size	Class 150 (pound-feet)	Class 300 (pound-feet)	Class 150 (pound-feet)	Class 300 (pound-feet)
005	0.5-in. (15 mm)	8	8	N/A	N/A
010	1-in. (25 mm)	8	12	N/A	N/A
015	1.5-in. (40 mm)	13	25	7	18
020	2-in. (50 mm)	19	17	14	11
025	2.5-in. (65 mm)	22	24	17	16
030	3-in. (80 mm)	34	35	23	23
040	4-in. (100 mm)	26	50	17	32
050	5-in. (125 mm)	36	60	25	35
060	6-in. (150 mm)	45	50	30	37
080	8-in. (200 mm)	60	82	42	55
100	10-in. (250 mm)	55	80	40	70
120	12-in. (300 mm)	65	125	55	105
140	14-in. (350 mm)	85	110	70	95
160	16-in. (400 mm)	85	160	65	140
180	18-in. (450 mm)	120	170	95	150
200	20-in. (500 mm)	110	175	90	150
240	24-in. (600 mm)	165	280	140	250

Table 2-3. Flange Bolt Torque and Load Specifications (ASME)

Table 2-4. Flange Bolt Torque and Load Specifications (EN 1092-1)

		Fluoropolymer liners			
Size code	Line size	PN10 (Newton- meter)	PN 16 V (Newton- meter)	PN 25 (Newton- meter)	PN 40 (Newton- meter)
005	0.5-in. (15 mm)	N/A	N/A	N/A	10
010	1-in. (25 mm)	N/A	N/A	N/A	20
015	1.5-in. (40 mm)	N/A	N/A	N/A	50
020	2-in. (50 mm)	N/A	N/A	N/A	60
025	2.5-in. (65 mm)	N/A	N/A	N/A	50
030	3-in. (80 mm)	N/A	N/A	N/A	50
040	4-in. (100 mm)	N/A	50	N/A	70
050	5-in. (125 mm)	N/A	70	N/A	100
060	6-in. (150mm)	N/A	90	N/A	130
080	8-in. (200 mm)	130	90	130	170

		Fluoropolymer liners			
Size code	Line size	PN10 (Newton- meter)	PN 16 V (Newton- meter)	PN 25 (Newton- meter)	PN 40 (Newton- meter)
100	10-in. (250 mm)	100	130	190	250
120	12-in. (300 mm)	120	170	190	270
140	14-in. (350 mm)	160	220	320	410
160	16-in. (400 mm)	220	280	410	610
180	18-in. (450 mm)	190	340	330	420
200	20-in. (500 mm)	230	380	440	520
240	24-in. (600 mm)	290	570	590	850
010	1-in. (25 mm)	N/A	N/A	N/A	20
015	1.5-in. (40 mm)	N/A	N/A	N/A	30
020	2-in. (50 mm)	N/A	N/A	N/A	40
025	2.5-in. (65 mm)	N/A	N/A	N/A	35
030	3-in. (80 mm)	N/A	N/A	N/A	30
040	4-in. (100 mm)	N/A	40	N/A	50
050	5-in. (125 mm)	N/A	50	N/A	70
060	6-in. (150 mm)	N/A	60	N/A	90
080	8-in. (200 mm)	90	60	90	110
100	10-in. (250 mm)	70	80	130	170
120	12-in. (300 mm)	80	110	130	180
140	14-in. (350 mm)	110	150	210	280
160	16-in. (400 mm)	150	190	280	410
180	18-in. (450 mm)	130	230	220	280
200	20-in. (500 mm)	150	260	300	350
240	24-in. (600 mm)	200	380	390	560

Table 2-4. Flange Bolt Torque and Load Specifications (EN 1092-1)

		Fluoropolymer liners		
Size code	Line size	Class D (pound-feet)	Class E (pound-feet)	Class F (pound-feet)
300	30-in. (750 mm)	195	195	195
360	36-in. (900 mm)	280	280	280
			Resilient liners	
300	30-in. (750 mm)	165	165	165
360	36-in. (900 mm)	245	245	245
400	40-in. (1000 mm)	757	757	N/A
420	42-in. (1050 mm)	839	839	N/A
480	48-in. (1200 mm)	872	872	N/A

Table 2-5. Flange Bolt Torque and Load Specifications Larger Line Sizes (AWWA C207)

Table 2-0. Flange bolt for que anu coau specifications carger Line sizes (EN 1092-	Table 2-6. Flan	ge Bolt Torque a	nd Load Specific	cations Larger Li	ine Sizes (EN 10	92-1)
--	-----------------	------------------	------------------	-------------------	------------------	-------

		Fluoropolymer liners		
Size code	Line size	PN6 (Newton-meter)	PN10 (Newton-meter)	PN16 (Newton-meter)
360	36-in. (900 mm)	N/A	264	264
			Resilient liners	
360	36-in. (900 mm)	N/A	264	264
400	40-in. (1000 mm)	208	413	478
480	48-in. (1200 mm)	375	622	N/A

2.10 **Process reference connection**

Figure 2-13 through Figure 2-16 illustrate process reference connections only. Earth safety ground is also required as part of the installation but is not shown in the figures. Follow national, local, and plant electrical codes for safety ground.

Use Table 2-7 to determine which process reference option to follow for proper installation. **Table 2-7. Process Reference Installation**

Process reference options					
Type of pipe	Grounding straps	Grounding rings	Reference electrode	Lining protectors	
Conductive unlined pipe	See Figure 2-12	See Figure 2-13 ⁽¹⁾	See Figure 2-15 ⁽¹⁾	See Figure 2-15 ⁽¹⁾	
Conductive lined pipe	Insufficient grounding	See Figure 2-13	See Figure 2-12	See Figure 2-15	
Non-conductive pipe	Insufficient grounding	See Figure 2-14	Not recommended	See Figure 2-15	

1. Grounding ring, reference electrode, and lining protectors are not required for process reference. Grounding straps per Figure 2-12 are sufficient.

Note

For line sizes 10-in. and larger, the ground strap may come attached to the sensor body near the flange. See Figure 2-16.

Figure 2-13. Grounding with Grounding Rings in Conductive Pipe

A. Grounding rings

2.11 Wiring the transmitter

This wiring section covers the wiring between the transmitter and sensor, the 4–20 mA output, and supplying power to the transmitter. Follow the conduit information, cable requirements, and disconnect requirements in the sections below.

For sensor wiring diagrams, see Electrical Drawing 8750W-1504 in Appendix C: Wiring Diagrams.

For information on connecting to another manufacturer's sensor, refer to Appendix D: Implementing a Universal Transmitter.

2.11.1 Conduit entries and connections

The standard conduit entries for the transmitter and sensor are 1/2-in. NPT. Thread adapters are provided for units ordered with M20 conduit entries. Conduit connections should be made in accordance with national, local, and plant electrical codes. Unused conduit entries should be sealed with the appropriate certified plugs. The flow sensor is rated IP68. For sensor installations requiring IP68 protection, the cable grands, conduit, and conduit plugs must be rated for IP68. The plastic shipping plugs do not provide ingress protection.

2.11.2 Conduit requirements

- For installations with an intrinsically safe electrode circuit, a separate conduit for the coil cable and the electrode cable may be required. See drawing 08732-2062.
- Electrode cables should not be run together and should not be in the same cable tray with power cables.
- Output cables should not be run together with power cables.
- Select conduit size appropriate to feed cables through to the flowmeter.

Figure 2-17. Best Practice Conduit Preparation

B. Output C. Coil D. Electrode

2.11.3 Connecting sensor to transmitter

Integral mount transmitters

Integral mount transmitters ordered with a sensor will be shipped assembled and wired at the factory using an interconnecting cable. (See Figure 2-18). Use only the interconnecting cable provided by Emerson Process Management.

For replacement transmitters use the existing interconnecting cable from the original assembly. Replacement cables are available.

Remote mount transmitters

Cables kits are available as individual component cables or as a combination coil/electrode cable. Remote cables can be ordered direct from Emerson Process Management using the kit numbers shown in Table 2-8 and Table 2-9. Equivalent Alpha cable part numbers are also provided as an alternative. To order cable, specify length as quantity desired. Equal length of component cables is required.

Example: 25 feet = Qty (25) 08732-0065-0001

Table 2-8. Component Cable Kits

Standard temperature (-20 °C to 75 °C)						
Cable kit number	Description	Individual cable	Alpha p/n			
08732-0065-0001 (feet)	Kit, Component cables, Std temp. (includes Coil + Electrode)	Coil Electrode	518243 518245			
08732-0065-0002 (meters)	Kit, Component cables, Std temp. (includes Coil + Electrode)	Coil Electrode	518243 518245			
08732-0065-0003 (feet)	Kit, Component cables, Std temp. (includes Coil + I.S. Electrode)	Coil Intrinsically Safe Blue Electrode	518243 518245			
08732-0065-0004 (meters)	Kit, Component cables, Std temp. (includes Coil + I.S. Electrode)	Coil Intrinsically Safe Blue Electrode	518243 518245			
Extended temperature (-50 °C to 125 °C)						
Cable kit number	Description	Individual cable	Alpha p/n			
08732-0065-1001 (feet)	Kit, Component cables, Ext temp. (includes Coil + Electrode)	Coil Electrode	840310 518189			
08732-0065-1002 (meters)	Kit, Component cables, Ext temp. (includes Coil + Electrode)	Coil Electrode	840310 518189			
08732-0065-1003 (feet)	Kit, Component cables, Ext temp. (includes Coil + I. S. Electrode)	Coil Intrinsically Safe Blue Electrode	840310 518189			
08732-0065-1004 (meters)	Kit, Component cables, Ext temp. (includes Coil + I. S. Electrode)	Coil Intrinsically Safe Blue Electrode	840310 518189			

Table 2-9. Combination Cable Kits

Coil/Electrode cable (-20 °C to 80 °C)			
Cable kit number	Description		
08732-0065-2001 (feet)	Kit Combination cable Standard		
08732-0065-2002 (meters)			
08732-0065-3001 (feet)	Kit, Combination cable, Submersible		
08732-0065-3002 (meters)	(80 °C dry/60 °C Wet)(33 ft. continuous)		

Cable requirements

Shielded twisted pairs or triads must be used. For installations using the individual coil drive and electrode cable, see Figure 2-19. Cable lengths should be limited to less than 500 ft. (152 m). Consult factory for length between 500 to 1000 ft. (152 to 304 m). Equal length cable is required for each.

For installations using the combination coil drive/electrode cable, see Figure 2-20. Combination cable lengths should be limited to less than 330 feet (100 m).

Figure 2-19. Individual Component Cables

A. Outer jacketB. Overlapping foil shieldC. Twisted stranded insulated conductors

Figure 2-20. Combination Coil/Electrode Cable

A. Electrode shield-drain

B. Overlapping foil shield

C. Outer jacket

Cable preparation

When preparing all wire connections, remove only the insulation required to fit the wire completely under the terminal connection. Prepare the ends of the coil drive and electrode cables as shown in Figure 2-21. Limit the unshielded wire length to less than one inch on both the coil drive and electrode cables. Any length of unsheathed conductor should be insulated. Excessive removal of insulation may result in an unwanted electrical short to the transmitter housing or other wire connections. Excessive unshielded lead length, or failure to connect cable shields properly, may expose the unit to electrical noise, resulting in an unstable meter reading.

AWARNING

Shock Hazard

Potential shock hazard across remote junction box terminals 1 and 2 (40V).

Explosion Hazard

Electrodes exposed to process. Use only compatible transmitter and approved installation practices.

For complete sensor wiring diagrams, reference installation drawings in Appendix C: Wiring Diagrams.

2.11.4 Transmitter terminal block connections

Field mount transmitter

Remove the back cover of the transmitter to access the terminal block. See Figure 2-23 for terminal identification. To connect pulse output and/or discrete input/output consult the comprehensive product manual. Installations with intrinsically safe outputs should reference the hazardous location installation drawings in Appendix B: Product Certifications.

Figure 2-23. Field Mount Transmitter Terminal Block Connections

Wall mount transmitter

Open the lower cover of the transmitter to access the terminal block. See Figure 2-24 for terminal identification or inside the cover for wiring terminal identification. To connect the pulse output and or discrete input/output, see "Connect pulse output" on page 40 or "DI/O 1 control" on page 95.

2.11.5 Analog output

Field mount transmitter

The analog output signal is a 4–20 mA current loop. The loop can be powered internally or externally via a hardware switch located on the front of the electronics stack. The switch is set to internal power when shipped from the factory. For units with a display, the LOI must be removed to change switch position.

For HART communication a minimum loop resistance of 250 ohms is required. It is recommended to use individually shielded twisted pair cable. The minimum conductor size is 0.51 mm diameter (number 24 AWG) for cable runs less than 5,000 ft. (1,500 m) and 0.81 mm diameter (number 20 AWG) for longer distances.

Internal power

The 4–20 mA analog signal is a 24 VDC active output.

Maximum allowable loop resistance is 500 ohms.

Wire terminal 1 (+) and terminal 2 (-). See Figure 2-25.

Figure 2-25. Field Mount Transmitter Analog Wiring - Internal Power

Note

Terminal polarity for the analog output is reversed between internally and externally powered.

External power

The 4–20mA analog signal is passive and must be powered from an external power source. Power at the transmitter terminals must be 10.8 - 30 VDC.

Wire terminal 1 (-) and terminal 2 (+). See Figure 2-26.

Figure 2-26. Field Mount Transmitter Analog Wiring - External Power

A. Power supply

Analog loop load limitations

Maximum loop resistance is determined by the voltage level of the external power supply, as described in Figure 2-27.

Figure 2-27. Field Mount Transmitter Analog Loop Load Limitations

Wall mount transmitter

The analog output signal is a 4–20mA current loop. The loop can be powered internally or externally via a hardware switch. The switch is set to internal power when shipped from the factory.

For HART Communication a minimum resistance of 250 ohms is required. It is recommended to use individually shielded twisted pair cable. The minimum conductor size is 0.51 mm diameter (number 24 AWG) for cable runs less than 5,000 ft. (1,500 m) and 0.81 mm diameter (number 20 AWG) for longer distances.

Internal power

The 4–20mA analog signal is a 24 VDC active output.

Maximum allowable loop resistance is 500 ohms.

External power

The 4–20 mA analog signal is powered from an external power source. HART multidrop installations require a 10–30 VDC external analog power source.

Analog loop load limitations

Maximum loop resistance is determined by the voltage level of the external power supply, as described in Figure 2-29.

2.11.6 Powering the transmitter

The transmitter is available in two models. The AC powered transmitter is designed to be powered by 90—250 VAC (50/60 Hz). The DC powered transmitter is designed to be powered by 12—42 VDC. Before connecting power to the transmitter, be sure to have the proper power supply, conduit, and other accessories. Wire the transmitter according to national, local, and plant electrical requirements for the supply voltage. See Figure 2-30 through Figure 2-33.

Inrush for other supply voltages can be estimated with: Inrush (Amps) = Supply (Volts)/1.0

Figure 2-32. Field Mount Transmitter AC Power Requirements

Peak inrush is 35.7 A at 250 VAC supply, lasting approximately 1ms Inrush for other supply voltages can be estimated with: Inrush (Amps) = Supply (Volts)/7.0

Figure 2-33. Wall Mount Transmitter AC Power Requirements

Supply wire requirements

Use 10—18 AWG wire rated for the proper temperature of the application. For wire 10—14 AWG, use lugs or other appropriate connectors. For connections in ambient temperatures above 122 °F (50 °C), use a wire rated for 194 °F (90 °C). For DC powered transmitters with extended cable lengths, verify that there is a minimum of 12 VDC at the terminals of the transmitter with the device under load.

Disconnects

Connect the device through an external disconnect or circuit breaker per national and local electrical code.

Installation category

The installation category for the Rosemount 8750W is OVERVOLTAGE CAT II.

Overcurrent protection

The Rosemount 8750W Transmitter requires overcurrent protection of the supply lines. Fuse rating and compatible fuses are shown in Table 2-10 and Table 2-11.

Input voltage	Fuse rating	Compatible fuse
90—250 VAC rms	1 Amp, 250V, I ² t≥1.5 A ² s Rating, Fast Acting	Bussman AGC-1, Littelfuse 31201.5HXP
12—42 VDC	3 Amp, 250V, I²t ≥ 14 A²s Rating, Fast Acting	Bel Fuse 3AG 3-R, Littelfuse 312003P, Schurter 0034.5135

Table 2-11. Wall Mount Transmitter Fuse Requirements

Input voltage	Fuse rating	Compatible fuse
90—250 VAC	2 Amp, Fast Acting	Bussman AGC-2
12-42 VDC	3 Amp, Fast Acting	Bussman AGC-3

Field mount transmitter power terminals

See Figure 2-23 for field mount terminal block connections.

For AC powered transmitter (90–250 VAC, 50/60 Hz)

Connect AC Neutral to terminal 9 (AC N/L2) and AC Line to terminal 10 (AC/L1).

For DC powered transmitter

- Connect negative to terminal 9 (DC -) and positive to terminal 10 (DC +).
- DC powered units may draw up to 1.2A.

Wall mount transmitter power terminals

See Figure 2-24 for field mount terminal connections.

For AC powered transmitter (90–250 VAC, 50/60 Hz)

• Connect AC Neutral to terminal N and AC Line to terminal L1.

For DC powered transmitter

• Connect DC- to terminal N and DC+ to terminal L1.

2.12 Field mount transmitter cover jam screw

For flow meters shipped with a cover jam screw, the screw should be installed after the instrument has been wired and powered up. Follow these steps to install the cover jam screw:

- 1. Verify the cover jam screw is completely threaded into the housing.
- 2. Install the housing cover and verify the cover is tight against the housing.
- 3. Using a 2.5 mm hex wrench, loosen the jam screw until it contacts the transmitter cover.
- 4. Turn the jam screw an additional 1/2 turn counterclockwise to secure the cover.

Note

Application of excessive torque may strip the threads.

5. Verify the cover cannot be removed.

2.13 Basic configuration

Once the magnetic flowmeter is installed and power has been supplied, the transmitter must be configured through the basic setup. The basic setup parameters can be configured through either a local operator interface (LOI) or a HART Communication device.

- For instructions on operation of the LOI or HART Communication device, refer to Section 4.
- If configuration beyond the basic setup parameters is required, refer to Section 5 for a complete list of device parameters.

Configuration settings are saved in nonvolatile memory within the transmitter.

2.13.1 Basic setup Tag

LOI menu path	Field Mount: Basic Setup, Tag Wall Mount: XMTR INFO
Traditional Fast Keys	1, 3, 1
Device dashboard	2, 2, 9, 1, 1

Tag is the quickest and shortest way of identifying and distinguishing between transmitters. Transmitters can be tagged according to the requirements of your application. The tag may be up to eight characters long.

Flow units (PV)

LOI menu path	Field Mount: Basic Setup, Flow Units, PV Units Wall Mount: UNITS
Traditional Fast Keys	1, 3, 1
Device dashboard	2, 2, 1, 2

The *flow units* variable specifies the format in which the flow rate will be displayed. Units should be selected to meet your particular metering needs. See Table 2-12 for available units of measure.

Line size

LOI menu path	Field Mount: Basic Setup, Line Size Wall Mount: TUBE SIZE
Traditional Fast Keys	1, 3, 1
Device dashboard	2, 2, 1, 4, 2

The *line size* (sensor size) must be set to match the actual sensor connected to the transmitter. The size must be specified in inches. See Table 2-13 for available sensor sizes.

URV (Upper Range Value)

LOI menu path	Field Mount: Basic Setup, PV URV Wall Mount: ANALOG OUTPUT RANGE
Traditional Fast Keys	1, 3, 1
Device dashboard	2, 2, 1, 3, 3

The upper range value (URV) sets the 20 mA point for the analog output. This value is typically set to full-scale flow. The units that appear will be the same as those selected under the flow units parameter. The URV may be set between -39.3 ft/s to 39.3 ft/s (-12 m/s to 12 m/s). There must be at least 1 ft/s (0.3 m/s) span between the URV and LRV.

LRV (Lower Range Value)

LOI menu path	Field Mount: Basic Setup, PV LRV Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 3, 1
Device dashboard	2, 2, 1, 3, 2

The *lower range value* (LRV) sets the 4 mA point for the analog output. This value is typically set to zero flow. The units that appear will be the same as those selected under the *flow units* parameter. The LRV may be set between -39.3 ft/s to 39.3 ft/s (-12 m/s to 12 m/s). There must be at least 1 ft/s (0.3 m/s) span between the URV and LRV.

Calibration number

LOI menu path	Field Mount: Basic Setup, Cal Number Wall Mount: TUBE CAL NO.	
Traditional Fast Keys	1, 3, 1	
Device dashboard	2, 2, 1, 4, 1	

The sensor *calibration number* is a 16-digit number generated at the Rosemount factory during flow calibration and is unique to each sensor and is located on the sensor tag.

PV damping

LOI menu path	Field Mount: Basic Setup, PV Damping Wall Mount: DAMPING
Traditional Fast Keys	1, 3, 1
Device dashboard	2, 2, 1, 3, 4

Primary variable damping allows selection of a response time, in seconds, to a step change in flow rate. It is most often used to smooth fluctuations in output.

Table 2-12. Available Flow Units

Volumetric units	Mass units
gal/sec	lbs/sec
gal/min	lbs/min
gal/hr	lbs/hr
gal/day	lbs/day
L/sec	kg/sec
L/min	kg/min
L/hr	kg/hr
L/day	kg/day
ft3/sec	(s) tons/min
ft3/min	(s) tons/hr
ft3/hr	(s) tons/day
ft3/day	(m) tons/min
cm3/min ⁽¹⁾	(m) tons/hr
m3/sec	(m) tons / day
m3/min	Velocity units
m3/hr	ft/sec
m3/day	m/sec
Impgal/sec	Special units
Impgal/min	Special (User Defined)

Table 2-12. Available Flow Units

Volumetric units
Impgal/hr
Impgal/day
B42/sec (1 barrel = 42 gallons)
B42/min (1 barrel = 42 gallons)
B42/hr (1 barrel = 42 gallons)
B42/day (1 barrel = 42 gallons)
B31/sec (1 barrel = 31 gallons) ⁽²⁾
B31/min (1 barrel = 31 gallons) ⁽²⁾
B31/hr (1 barrel = 31 gallons) ⁽²⁾
B31/day (1 barrel = 31 gallons) ⁽²⁾

1. Not available on Wall Mount Transmitter.

2. On Wall Mount Transmitter, 1 barrel = 31.5 gallons.

Table 2-13. Available Sensor Sizes

Sensor size	
0.10 in (2.5 mm)	18 in (450 mm)
0.15 in (4 mm)	20 in (500 mm)
0.25 in (6 mm)	24 in (600 mm)
0.30 in (8 mm)	28 in (700 mm)
0.50 in (15 mm)	30 in (750 mm)
0.75 in (20 mm)	32 in (800 mm)
1.0 in (25 mm)	36 in (900 mm)
1.5 in (40 mm)	40 in (1000 mm)
2.0 in (50 mm)	42 in (1050 mm)
2.5 in (65 mm)	44 in (1100 mm)
3.0 in (80 mm)	48 in (1200 mm)
4.0 in (100 mm)	54 in (1350 mm)
5.0 in (125 mm) ⁽¹⁾	56 in (1400 mm)
6.0 in (150 mm)	60 in (1500 mm)
8.0 in (200 mm)	64 in (1600 mm)
10 in (250 mm)	66 in (1650 mm)
12 in (300 mm)	72 in (1800 mm)
14 in (350 mm)	78 in (1950 mm) ⁽¹⁾
16 in (400 mm)	80 in (2000 mm)

1. Not available on Wall Mount Transmitter.

Section 3 Advanced Installation Details

Introduction	page 37
Safety messages	page 37
Hardware switches	page 37
Additional loops	page 40
Process reference connection	page 48
Coil housing configuration	.page 48

3.1 Introduction

This section details some of the advanced installation considerations when utilizing the Rosemount[™] 8750W Revision 4 Magnetic Flowmeter System.

3.2 Safety messages

AWARNING

The electronics may store energy after power is removed. Allow ten minutes for charge to dissipate prior to removing electronics compartment cover.

Note

The electronics stack is electrostatically sensitive. Be sure to observe handling precautions for static-sensitive components.

3.3 Hardware switches

The electronics are equipped with four user-selectable hardware switches. These switches set the Alarm Mode, Internal/External Analog Power, Transmitter Security, and Internal/External Pulse Power.

Definitions of these switches and their functions are provided below. To change the settings, see below.

3.3.1 Alarm mode

If an event occurs that would trigger an alarm in the electronics, the analog output will be driven high or low, depending on the switch position. The switch is set in the HIGH position when shipped from the factory. Refer to Table 5-1 on page 87 and Table 5-2 on page 87 for analog output values of the alarm.

3.3.2 Transmitter security

The security switch on the Rosemount 8750W allows the user to lock out any configuration changes attempted on the transmitter. No changes to the configuration are allowed when the switch is in the ON position. The flow rate indication and totalizer functions remain active at all times.

With the switch in the ON position, access to review the operating parameters is available. No configuration changes are allowed.

Transmitter security is set in the OFF position when shipped from the factory.

3.3.3 Internal/external analog power

The 8750W 4—20 mA loop may be powered internally or by an external power supply. The internal /external power supply switch determines the source of the 4—20 mA loop power.

Transmitters are shipped from the factory with the switch set in the INTERNAL position.

The external power option is required for multidrop configurations. A 10–30 VDC external supply is required and the 4–20 mA power switch must be set to the EXTERNAL position. For further information on 4–20 mA external power, see "Analog output" on page 25.

3.3.4 Internal/external pulse power⁽¹⁾

The Rosemount 8750W pulse loop may be powered internally or by an external power supply. The internal/ external pulse power is only available on the Field Mount Transmitter. The internal/external power supply switch determines the source of the pulse loop power.

Transmitters are shipped from the factory with the switch set in the EXTERNAL position.

A 5–28 VDC external supply is required when the pulse power switch is set to the EXTERNAL position. For further information on the pulse external power, see "Connect pulse output" on page 40.

3.3.5 Changing hardware switch settings

To change the switch settings, complete the steps below:

Note

The hardware switches are located on the top side of the electronics board and changing their settings requires opening the electronics housing. If possible, carry out these procedures away from the plant environment in order to protect the electronics.

- 1. Place the control loop into manual control.
- 2. Disconnect power to the transmitter.
- 3. Remove the electronics compartment cover. If the cover has a cover jam screw, this must be loosened prior to removal of the cover.
- 4. Remove the LOI, if applicable (not required for the Wall Mount Transmitter).

- 5. Identify the location of each switch (see Figure 3-1 and Figure 3-2).
- 6. Change the setting of the desired switches with a small, non-metallic tool.
- 7. Replace the LOI if applicable, and the electronics compartment cover. If the cover has a cover jam screw, this must be tightened to comply with installation requirements. See "Field mount transmitter cover jam screw" on page 32 for details on the cover jam screw.
- 8. Return power to the transmitter and verify the flow measurement is correct.
- 9. Return the control loop to automatic control.

Figure 3-1. Field Mount Transmitter Electronics Stack and Hardware Switches

Figure 3-2. Wall Mount Transmitter Electronics Stack and Hardware Switches

3.4 Additional loops

There are three additional loop connections available on the 8750W Transmitter:

- Pulse output used for external or remote totalization.
- Channel 1 can be configured as discrete input or discrete output.
- Channel 2 can be configured as discrete output only.

3.4.1 Connect pulse output

Field mount transmitter

The pulse output function provides a galvanically isolated frequency signal that is proportional to the flow through the sensor. The signal is typically used in conjunction with an external totalizer or control system. The default position of the internal/external pulse power switch is in the EXTERNAL position. The user-selectable power switch is located on the electronics board.

External

For transmitters with the internal/external pulse power switch set in the EXTERNAL position, the following requirements apply:

Supply voltage: 5 to 28 VDC Maximum current: 100 mA Maximum power: 1.0 W Load resistance: 200 to 10k Ohms (typical value 1k Ohms)

Output option code	Supply voltage	Resistance vs cable length
A	5—28 VDC	See Figure 3-3 on page 41

Pulse mode: Fixed pulse width or 50% duty cycle Pulse duration: 0.1 to 650 ms (adjustable) Maximum pulse frequency: 10,000 Hz FET switch closure: solid state switch

Complete the following steps to connect an external power supply.

- 1. Ensure the power source and connecting cable meet the requirements outlined previously.
- 2. Turn off the transmitter and pulse output power sources.
- 3. Run the power cable to the transmitter.
- 4. Connect DC to terminal 3.
- 5. Connect + DC to terminal 4.

Refer to Figure 3-4 and Figure 3-5.

Figure 3-4. Field Mount Transmitter — Connecting Electromechanical Totalizer/Counter with External Power Supply

A. Schematic showing FET between terminal 3 and 4

B. 5–24 V DC power supply

C. Electro-mechanical counter

Note

Total loop impedance must be sufficient to keep loop current below maximum rating. A resistor can be added in the loop to raise impedance.

Figure 3-5. Field Mount Transmitter — Connecting to an Electronic Totalizer/Counter with External Power Supply

A. Schematic showing FET between terminal 3 and 4

- B. 5–24 V DC power supply
- C. Electronic counter

Note

Total loop impedance must be sufficient to keep loop current below maximum rating.

Internal

When the pulse switch is set to internal, the pulse loop will be powered from the transmitter. Supply voltage from the transmitter can be up to 12 VDC. Refer to Figure 3-6 and connect the transmitter directly to the counter. Internal pulse power can only be used with an electronic totalizer or counter and cannot be used with an electromechanical counter.

- 1. Turn off the transmitter.
- 2. Connect DC to terminal 3.
- 3. Connect + DC to terminal 4.

A. Schematic showing FET between terminal 3 and 4 B. Electronic counter

Wall mount transmitter

The pulse output function provides an isolated switch-closure frequency signal that is proportional to the flow through the sensor. The Wall Mount Transmitter is only available with an externally powered pulse output. The signal is typically used in conjunction with an external totalizer or control system. The following requirements apply:

Supply Voltage: 5 to 24 V DC Load Resistance: 1,000 to 100 k ohms (typical 5 k) Pulse Duration: 1.5 to 500 msec (adjustable), 50% duty cycle below 1.5 msec Maximum Power: 2.0 watts up to 4,000 Hz and 0.1 watts at 10,000 Hz Switch Closure: solid state switch

A. 5–28 VDC power supply B. Electronic counter C. 1k to 100k (typical 5k)

3.4.2 Connect discrete output

The discrete output control function can be configured to drive an external signal to indicate zero flow, reverse flow, empty pipe, diagnostic status, flow limit, or transmitter status. The following requirements apply:

Supply Voltage: 5 to 28 VDC Maximum Voltage:

- Field Mount: 28 VDC at 240 mA
- Wall Mount: 2 W

Switch Closure:

- Field Mount: Solid state relay
- Wall Mount: Optically isolated solid state switch

For discrete output control, connect the power source and control relay to the transmitter. To connect external power for discrete output control, complete the following steps:

- 1. Ensure the power source and connecting cable meet the requirements outlined previously.
- 2. Turn off the transmitter and discrete power sources.
- 3. Run the power cable to the transmitter.
- 4. Connect channel 1.
 - a. For Field Mount, connect -DC to terminal 5.
 - b. For Field Mount, connect +DC to terminal 6.

OR

- a. For Wall Mount, connect -DC to terminal 10.
- b. For Wall Mount, connect +DC to terminal 9.
- 5. Connect channel 2.
 - a. For Field Mount, connect -DC to terminal 7.
 - b. For Field Mount, connect +DC to terminal 8.

OR

- a. For Wall Mount, connect -DC to terminal 20.
- b. For Wall Mount, connect +DC to terminal 16.

Refer to Figure 3-9 and Figure 3.5.

Note

Total loop impedance must be sufficient to keep loop current below maximum rating. A resistor can be added in the loop to raise impedance.

3.4.3 Connect discrete input

The discrete input can provide positive zero return (PZR) or net totalizer reset. The following requirements apply:

Supply Voltage: 5 to 28 VDC Control Current: 1.5 - 20 mA Input Impedance: $2.5 \text{ k}\Omega$ plus 1.2 V Diode drop. See Figure 3-12.

To connect the discrete input, complete the following steps.

- 1. Ensure the power source and connecting cable meet the requirements outlined previously.
- 2. Turn off the transmitter and discrete power sources.
- 3. Run the power cable to the transmitter.
- 4. Connect terminals.
 - a. For Field Mount, connect -DC to terminal 5.
 - b. For Field Mount, connect +DC to terminal 6.

OR

- a. For Wall Mount, connect -DC to terminal 10.
- b. For Wall Mount, connect +DC to terminal 9.

Refer to Figure 3-11 and Figure 3-13.

Figure 3-11. Field Mount Transmitter – Connect Discrete Input

A. Relay contact or control system output B. 5-28 V DC power supply

Figure 3-12. Discrete Input Operating Range

Figure 3-13. Wall Mount Transmitter – Connect Discrete Input

3.5 Process reference connection

Establishing a process reference for the sensor is one of the most important details of sensor installation. Proper process reference creates the lowest noise environment for the transmitter to make a stable reading. Refer to Table 2-8 and Table 2-9 on page 22 to determine which option to follow for proper installation.

Note

Consult factory for installations requiring cathodic protection or situations where there are high electrical currents or high electrical potentials present in the process.

3.6 Coil housing configuration

The coil housing provides physical protection of the coils and other internal components from contamination and physical damage that might occur in an industrial environment. The coil housing is an all-welded and gasket-free design.

The 8750W model is available in one coil housing configuration (see Figure 3-14).

B. No relief port (welded shut)

Section 4 Operation

Introduction	page 49
Field mount transmitter Loi	page 49
Wall mount transmitter LOI	page 56
Field Communicator interface	page 60
Process variables	.page 82

4.1 Introduction

The Rosemount[™] 8750W Magnetic Flowmeter features a full range of software functions, transmitter configurations, and diagnostic settings. These features can be accessed through the Local Operator Interface (LOI), a Field Communicator, AMS[™] Device Manager, ProLink[™] III, or a host control system. Configuration variables may be changed at any time; specific instructions are provided through on-screen instructions.

This section covers the basic features of the LOI (optional) and provides general instructions on how to navigate the configuration menus using the optical buttons on the Field Mount Transmitter. The section also covers the use of a Field Communicator and provides menu trees to access each function.

For detailed LOI configuration refer to Section 5: Advanced Configuration Functionality.

4.2 Field mount transmitter Loi

The optional LOI provides a communications center for the Rosemount 8750W.

The LOI allows an operator to:

- Change transmitter configuration
- View flow and totalizer values
- Start/stop and reset totalizer values
- Run diagnostics and view the results
- Monitor transmitter status
- Other functions

4.2.1 Basic features

The basic features of the LOI include a display window and four navigational arrow keys (see Figure 4-1).

To activate the LOI, select the **DOWN** arrow two times. Select the **UP**, **DOWN**, **LEFT**, and **RIGHT** arrows to navigate the menu structure. A map of the LOI menu structure is shown on Figure 4-2 and Figure 4-3.

4.2.2 Data entry

The LOI keys are not alphanumeric. Alphanumeric and symbolic data is entered by the following procedure. Use the steps below to access the appropriate functions.

- 1. Select the arrow keys to navigate the menu structure (Figure 4-2 and Figure 4-3) in order to access the appropriate alphanumeric parameter.
- 2. Select the **UP**, **DOWN** or **RIGHT** arrow key to begin editing the parameter. (Use the **LEFT** arrow key to go back without changing the value).
 - For numerical data, toggle through the digits **0-9, decimal point**, and **dash**.
 - For alphabetical data, toggle through the letters of the alphabet A-Z, digits 0-9, and the symbols ?, &, +, -, *, /, \$, @,%, and the blank space.
- 3. Select the **RIGHT** arrow key to highlight each character you want to change and then select the **UP** or **DOWN** arrow keys to select the value. If you go past a character that you wish to change, keep selecting the **RIGHT** arrow key to wrap around in order to arrive at the character you want to change.
- 4. Select "**E**" (the **LEFT** arrow key) when all changes are complete to save the entered values. Select the **LEFT** arrow key again to navigate back to the menu tree.

4.2.3 Data entry examples

Select the **DOWN** arrow key twice to access the menu structures shown in Figure 4-2 and Figure 4-3. Use the arrow keys to navigate to the desired parameters to review/change. Parameter values are classified as table values or select values. Table values are available from a predefined list. For parameters such as *line size* or *flow units*. Select values are integers. floating point numbers, or character strings and are entered one character at a time using the arrow keys for parameters such as *PV URV* and *calibration number*.

Table value example

Setting the sensor size:

- 1. Select the **DOWN** arrow key twice to access the menu. See Figure 4-2.
- 2. Using the arrow keys, select *line size* from the *basic setup* menu.
- 3. Select the **UP/DOWN** arrow to increase/decrease the sensor size to the next value.
- 4. When you reach the desired sensor size, select "E" (the left arrow).
- 5. Set the loop to manual if necessary, and select "E" again.

After a moment, the LOI will display VALUE STORED SUCCESSFULLY and then display the selected value.

Select value example

Changing the upper range limit:

- 1. Select the **DOWN** arrow key twice to access the menu. See Figure 4-2.
- 2. Using the arrow keys, select *PV URV* from the *basic setup* menu.
- 3. Select **RIGHT** arrow key to position the cursor.
- 4. Select **UP** or **DOWN** to set the number.
- 5. Repeat steps 3 and 4 until desired number is displayed, select "E" (the left arrow).
- 6. Set the loop to manual if necessary, and select "**E**" again.

After a moment, the LOI will display VALUE STORED SUCCESSFULLY and then display the selected value.

4.2.4 Totalizer functionality

Start totalizer

To start the totalizer, select the **DOWN** arrow to display the totalizer screen and select "**E**" to begin totalization. A symbol will flash in the lower right hand corner indicating that the meter is totalizing.

Pause totalizer

To pause the totalizer, select the **DOWN** arrow to display the totalizer screen and select the **RIGHT** arrow to pause the totalizer. This will hold the current totalizer values on the screen for reading or recording. The totalizer will continue to run even though the values are not changing. To unpause the totalizer, select the **RIGHT** arrow again. The totalizer value will instantly increment to the correct value and continuing running.

Stop totalizer

To stop the totalizer, select the **DOWN** arrow to display the totalizer screen and select "**E**" to end totalization. The flashing symbol will no longer display in the lower right hand corner indicating that the meter has stopped totalizing.

Reset totalizer

To reset the totalizer, select the **DOWN** arrow to display the totalizer screen and follow the procedure above to stop totalization. Once totalization has stopped, select the **RIGHT** arrow key to reset the NET total value to zero. To reset the GROSS, FORWARD, and REVERSE total values, you must change the *line size*. See "Basic configuration" on page 32 for details on how to change the line size.

4.2.5 Display lock

The Rosemount 8750W Field Mount Transmitter has display lock functionality to prevent unintentional configuration changes. The display can be locked manually or configured to automatically lock after a set period of time.

Manual display lock

To activate hold the **UP** arrow for three seconds and then following the on-screen instructions. When the display lock is activated, a lock symbol will appear in the lower right hand corner of the display. To deactivate the display lock, hold the **UP** arrow for three seconds and follow the on-screen instructions. Once deactivated, the lock symbol will no longer appear in the lower right hand corner of the display.

Auto display lock

- 1. Select the **DOWN** arrow key twice to access the menu. See Table 4-2.
- 2. Using the arrow keys, select **LOI config** from the *Detailed Setup* menu.
- 3. Select **DOWN** arrow to highlight *disp auto lock* and press the **RIGHT** arrow to enter the menu.
- 4. Select **DOWN** arrow to select the auto lock time.
- 5. When you reach the desired time, select "**E**" (the left arrow).
- 6. Set the loop to manual if necessary, and select "E" again.

After a moment, the LOI will display VALUE STORED SUCCESSFULLY and then display the selected value.

4.2.6 Diagnostic messages

Diagnostic messages may appear on the LOI. See Table 6-1 on page 113, Table 6-2 on page 132, and Table 6-3 on page 132 for a complete list of messages, potential causes, and corrective actions for these messages.

4.2.7 Display symbols

When certain transmitter functions are active, a symbol will appear in the lower right corner of the display. The possible symbols include the following:

Display Lock	₿
Totalizer	ወ
Reverse flow	R
Continuous meter verification	/

Figure 4-2. Field Mount Transmitter LOI Menu Tree (Diagnostics and Basic Setup)

4.3 Wall mount transmitter LOI

4.3.1 Basic features

The basic features of the LOI include display control, totalizer, data entry, and transmitter parameters. These features provide control of all transmitter functions, see Figure 4-4.

Totalizer keys

The totalizer keys enable you to start, stop, read, and reset the totalizer.

Data entry keys

The data entry keys enable you to move the display cursor, incrementally increase the value, or enter the selected value.

Transmitter parameter keys

The transmitter parameter keys provide direct access to the most common transmitter parameters and stepped access to the advanced functions of the 8750W through the **Aux. Function** key.

4.3.2 Data entry

The LOI keypad does not have numerical keys. Numerical data is entered by the following procedure.

- 1. Access the appropriate function.
- 2. Select **SHIFT** to highlight the digit you want to enter or change.

- 3. Select **INCR.** to change the highlighted value.
 - For numerical data, INCR. toggle through the digits 0–9, decimal point, and dash.
 - For alphabetical data, toggle through the letters of the alphabet A–Z, digits 0–9, and the symbols &, +, -, *, /, \$, @,%, and the blank space. (INCR. is also used to toggle through pre-determined choices that do not require data entry.)
- 4. Select **SHIFT** to highlight other digits you want to change and change them.
- 5. Select **ENTER**.

4.3.3 Data entry examples

Select the **TRANSMITTER PARAMETER** keys shown in Figure 4-4 to change the parameters, which are set in one of two ways, table values or select values.

Table values

Table values are parameters such as units that are available from a predefined list.

Select values

Select values are parameters that consist of a user-created number or character string, such as calibration number; values are entered one character at a time using the data entry keys.

Table value example

Setting the sensor line size:

- 1. Select **TUBE SIZE**.
- 2. Select **SHIFT** or **INCR.** to increase (incrementally) the size to the next value.
- 3. When you reach the desired size, select **ENTER**.
- 4. Set the loop to manual if necessary, and select **ENTER** again.

After a moment, the LOI will display the new tube size and the maximum flow rate.

Select value example

Changing the analog output range:

- 1. Select **ANALOG OUTPUT RANGE**.
- 2. Select **SHIFT** to position the cursor.
- 3. Select **INCR.** to set the number.
- 4. Repeat steps 2 and 3 until desired number is displayed.
- 5. Select ENTER.

After a moment, the LOI will display the new analog output range.

4.3.4 Totalizer functionality

Start totalizer

To start the totalizer, select the **TOTALIZE** button to bring up the totalizer screen. Select **START/STOP** to begin totalization. A flashing letter "T" on the LOI indicates that totalizer is activated.

Stop totalizer

To stop the totalizer, select the **TOTALIZE** button to bring up the totalizer screen. Select **START/STOP** to end totalization.

Pause totalizer

To pause the totalizer, select the **TOTALIZE** button and then select the **READ/ RESET** button. This will display the current value, but will not stop the totalization.

Reset totalizer

To reset the totalizer, select the **TOTALIZE** button. If totalizer is running, select **START/STOP** to stop the totalization and then select **READ/ RESET** button to reset net totalization. If totalizer is stopped, select **READ/ RESET** button to reset net totalization. To reset the GROSS, FORWARD, and REVERSE total values, you must change the *line size*. See "Basic configuration" on page 32 for details on how to change the line size.

4.3.5 Diagnostic messages

Diagnostic messages may appear on the LOI. See Table 6-1, Table 6-2, and Table 6-3 on page 132 for a complete list of messages, potential causes, and corrective actions for these messages.

4.3.6 Display symbols

When certain transmitter functions are active, a symbol will appear in the lower-right corner of the display. The possible symbols include the following:

Totalizer ${\tilde{D}}$ Reverse flow R

4.4 Field Communicator interface

The transmitter can be configured with a Field Communicator using HART Protocol gaining access to the software functions, transmitter configurations, and diagnostic settings. Refer to the Field Communicator Manual for detailed instructions on how to connect to the device.

4.4.1 Field Communicator user interface

The 8750W device driver uses conditional formatting menus. If the diagnostic is not active, the diagnostic will not be displayed as a menu item in the Field Communicator. The Fast Key sequence and menu trees will be resequenced accordingly.

There are two styles of interface available for Field Communicators. The traditional interface is shown in Figure 4-6. The device dashboard interface is shown in Figure 4-7.

igure 4-6. Traditional Interface		
← 8732E :RE Online	V 4	>>> 🖹 🗙
1 Device set 2 PV 3 PV Loop o 4 PV LRV 5 PV URV	tup :urrent	0.15 Cuft/s 5.600 mA 0.00000 Cuft/s 1.54014 Cuft/s
	SAVE	

The traditional interface Fast Keys are located in Table 4-1 on page 61. The corresponding menu trees are located Figure 4-8 on page 78 and Figure 4-9 on page 79.

Figure 4-7. Device Dashboard Interface

Image: Second system Image: Second system
1 Overview 2 Configure 3 Service Tools
SAVE
The device dashboard interface Fast Keys are located in Table 4-2 on page 70. The corresponding menu tree is located Figure 4-10 on page 80 and Figure 4-11 on page 81.

 Table 4-1. Traditional Field Communicator Fast Keys

Function	Traditional Fast Keys
Process variables	1,1
Primary Variable (PV)	1, 1, 1
PV Percent of Range (PV % rnge)	1, 1, 2
PV Analog Output (AO) (PV Loop current)	1, 1, 3
Totalizer Setup	1, 1, 4
Totalizer Units	1, 1, 4, 1
Gross Total	1, 1, 4, 2
Net Total	1, 1, 4, 3
Reverse Total	1, 1, 4, 4
Start Totalizer	1, 1, 4, 5
Stop Totalizer	1, 1, 4, 6
Reset Totalizer	1, 1, 4, 7
Pulse Output	1, 1, 5
Diagnostics	1,2
Diag Controls	1, 2, 1
Diagnostic Controls	1, 2, 1, 1
Empty Pipe	1, 2, 1, 1, ⁽¹⁾
Process Noise	1, 2, 1, 1, ⁽¹⁾
Grounding/Wiring	1, 2, 1, 1, ⁽¹⁾
Electrode Coating	1, 2, 1, 1, ⁽¹⁾
Electronics Temp	1, 2, 1, 1, ⁽¹⁾
Reverse Flow	1, 2, 1, 2
Continual Ver.	1, 2, 1, 3
Coils	1, 2, 1, 3, 1 ⁽¹⁾
Electrodes	1, 2, 1, 3, 2 ⁽¹⁾
Transmitter	1, 2, 1, 3, 3(1)
Analog Output	1, 2, 1, 3, 4(1)
Basic Diagnostics	1, 2, 2
Self Test	1, 2, 2, 1
AO Loop Test	1, 2, 2, 2
4 mA	1, 2, 2, 2, 1
20 mA	1, 2, 2, 2, 2
Simulate Alarm	1, 2, 2, 2, 3

Function	Traditional Fast Keys
Other	1, 2, 2, 2, 4
End	1, 2, 2, 2, 5
Pulse Output Loop Test	1, 2, 2, 3
Tune Empty Pipe	1, 2, 2, 4
EP Value	1, 2, 2, 4, 1
EP Trig. Level	1, 2, 2, 4, 2
EP Counts	1, 2, 2, 4, 3
Electronics Temp	1, 2, 2, 5
Flow Limit 1	1, 2, 2, 6
Control 1	1, 2, 2, 6, 1
Mode 1	1, 2, 2, 6, 2
High Limit 1	1, 2, 2, 6, 3
Low Limit 1	1, 2, 2, 6, 4
Flow Limit Hysteresis	1, 2, 2, 6, 5
Flow Limit 2	1, 2, 2, 7
Control 2	1, 2, 2, 7, 1
Mode 2	1, 2, 2, 7, 2
High Limit 2	1, 2, 2, 7, 3
Low Limit 2	1, 2, 2, 7, 4
Flow Limit Hysteresis	1, 2, 2, 7, 5
Total Limit	1, 2, 2, 8
Total Control	1, 2, 2, 8, 1
Total Mode	1, 2, 2, 8, 2
Total High Limit	1, 2, 2, 8, 3
Total Low Limit	1, 2, 2, 8, 4
Total Limit Hysteresis	1, 2, 2, 8, 5
Advanced Diagnostics	1, 2, 3
Electrode Coat	1, 2, 3, 1
EC Value	1, 2, 3, 1, 1
EC Level 1 Limit	1, 2, 3, 1, 2
EC Level 2 Limit	1, 2, 3, 1, 3
Max EC Value	1, 2, 3, 1, 4
Clear Max Electrode	1, 2, 3, 1, 5
8714i Cal Verification	1, 2, 3, 2
Run 8714i Cal Verification	1, 2, 3, 2, 1
View Results	1, 2, 3, 2, 2

Function	Traditional Fast Keys
Manual Results	1, 2, 3, 2, 2, 1
Test Condition	1, 2, 3, 2, 2, 1, 1
Test Criteria	1, 2, 3, 2, 2, 1, 2
8714i Test Result	1, 2, 3, 2, 2, 1, 3
Simulated Velocity	1, 2, 3, 2, 2, 1, 4
Actual Velocity	1, 2, 3, 2, 2, 1, 5
Velocity Deviation	1, 2, 3, 2, 2, 1, 6
Xmter Cal Test Result	1, 2, 3, 2, 2, 1, 7
Sensor Cal Deviation	1, 2, 3, 2, 2, 1, 8
Sensor Cal Test Result	1, 2, 3, 2, 2, 1, 9
Coil Circuit Test Result ⁽²⁾	1, 2, 3, 2, 2, 1, 10
Electrode Circuit Test Result ⁽²⁾	1, 2, 3, 2, 2, 1, 11
Continual Results	1, 2, 3, 2, 2, 2
Continuous Limit	1, 2, 3, 2, 2, 2, 1
Simulated Velocity	1, 2, 3, 2, 2, 2, 2
Actual Velocity	1, 2, 3, 2, 2, 2, 3
Velocity Deviation	1, 2, 3, 2, 2, 2, 4
Coil Signature	1, 2, 3, 2, 2, 2, 5
Sensor Cal Deviation	1, 2, 3, 2, 2, 2, 6
Coil Resistance	1, 2, 3, 2, 2, 2, 7
Electrode Resistance	1, 2, 3, 2, 2, 2, 8
mA Expected	1, 2, 3, 2, 2, 2, 9
mA Actual ⁽²⁾	1, 2, 3, 2, 2, 2, 10
mA Deviation ⁽²⁾	1, 2, 3, 2, 2, 2, 11
Sensor Signature	1, 2, 3, 2, 3
Signature Values	1, 2, 3, 2, 3, 1
Coil Resistance	1, 2, 3, 2, 3, 1, 1
Coil Signature	1, 2, 3, 2, 3, 1, 2
Electrode Resistance	1, 2, 3, 2, 3, 1, 3
Re-Signature Meter	1, 2, 3, 2, 3, 2
Recall Last Saved Values	1, 2, 3, 2, 3, 3
Set Pass/Fail Criteria	1, 2, 3, 2, 4
No Flow Limit	1, 2, 3, 2, 4, 1
Flowing Limit	1, 2, 3, 2, 4, 2
Empty Pipe Limit	1, 2, 3, 2, 4, 3
Continuous Limit	1, 2, 3, 2, 4, 4

Function	Traditional Fast Keys
Measurements	1, 2, 3, 2, 5
Manual Measurements	1, 2, 3, 2, 5, 1
Coil Resistance	1, 2, 3, 2, 5, 1, 1
Coil Signature	1, 2, 3, 2, 5, 1, 2
Electrode Resistance	1, 2, 3, 2, 5, 1, 3
Continual Measurements	1, 2, 3, 2, 5, 2
Coil Resistance	1, 2, 3, 2, 5, 2, 1
Coil Signature	1, 2, 3, 2, 5, 2, 2
Electrode Resistance	1, 2, 3, 2, 5, 2, 3
Actual Velocity	1, 2, 3, 2, 5, 2, 4
mA Expected	1, 2, 3, 2, 5, 2, 5
mA Actual	1, 2, 3, 2, 5, 2, 6
4-20 mA Verify	1, 2, 3, 3
4-20 mA Verification	1, 2, 3, 3, 1
View Results	1, 2, 3, 3, 2
Licensing	1, 2, 3, 4
License Status	1, 2, 3, 4, 1
Process Noise Detect	1, 2, 3, 4, 1, 1 ⁽¹⁾
Line Noise Detection	1, 2, 3, 4, 1, 2 ⁽¹⁾
Electrode Coating	1, 2, 3, 4, 1, 3 ⁽¹⁾
8714i	1, 2, 3, 4, 1, 4 ⁽¹⁾
Digital I/O	1, 2, 3, 4, 1, 5 ⁽¹⁾
License Key	1, 2, 3, 4, 2
Device ID	1, 2, 3, 4, 2, 1
License Key	1, 2, 3, 4, 2, 2
Diagnostic Variables	1, 2, 4
EP Value	1, 2, 4, 1
Electronics Temp	1, 2, 4, 2
Line Noise	1, 2, 4, 3
5 Hz SNR	1, 2, 4, 4
37 Hz SNR	1, 2, 4, 5
Electrode Coat	1, 2, 4, 6
EC Value	1, 2, 4, 6, 1
Max EC Value	1, 2, 4, 6, 2
Sig Power	1, 2, 4, 7
8714i Results	1, 2, 4, 8

Function	Traditional Fast Keys
Manual Results	1, 2, 4, 8, 1
Test Condition	1, 2, 4, 8, 1, 1
Test Criteria	1, 2, 4, 8, 1, 2
8714i Test Result	1, 2, 4, 8, 1, 3
Simulated Velocity	1, 2, 4, 8, 1, 4
Actual Velocity	1, 2, 4, 8, 1, 5
Velocity Deviation	1, 2, 4, 8, 1, 6
Xmtr Cal Test Result	1, 2, 4, 8, 1, 7
Sensor Cal Deviation	1, 2, 4, 8, 1, 8
Sensor Cal Test Result	1, 2, 4, 8, 1, 9
Coil Circuit Test Result ⁽²⁾	1, 2, 4, 8, 1, 10
Electrode Circuit Test Result ⁽²⁾	1, 2, 4, 8, 1, 11
Continual Results	1, 2, 4, 8, 2
Continuous Limit	1, 2, 4, 8, 2, 1
Simulated Velocity	1, 2, 4, 8, 2, 2
Actual Velocity	1, 2, 4, 8, 2, 3
Velocity Deviation	1, 2, 4, 8, 2, 4
Coil Signature	1, 2, 4, 8, 2, 5
Sensor Cal Deviation	1, 2, 4, 8, 2, 6
Coil Resistance	1, 2, 4, 8, 2, 7
Electrode Resistance	1, 2, 4, 8, 2, 8
mA Expected	1, 2, 4, 8, 2, 9
mA Actual ⁽²⁾	1, 2, 4, 8, 2, 10
mA Deviation ⁽²⁾	1, 2, 4, 8, 2, 11
Auto Zero Offset	1, 2, 4, 9
Trims	1, 2, 5
D/A Trim	1, 2, 5, 1
Scaled D/A Trim	1, 2, 5, 2
Digital Trim	1, 2, 5, 3
Auto Zero	1, 2, 5, 4
Universal Trim	1, 2, 5, 5
View Status	1, 2, 6
Basic setup	1,3
Тад	1, 3, 1
Flow Units	1, 3, 2

	,
Function	Traditional Fast Keys
PV Units	1, 3, 2, 1
Special Units	1, 3, 2, 2
Volume Unit	1, 3, 2, 2, 1
Base Volume Unit	1, 3, 2, 2, 2
Conversion Number	1, 3, 2, 2, 3
Base Time Unit	1, 3, 2, 2, 4
Flow Rate Unit	1, 3, 2, 2, 5
Line Size	1, 3, 3
PV URV	1, 3, 4
PV LRV	1, 3, 5
Calibration Number	1, 3, 6
PV Damping	1, 3, 7
Detailed setup	1,4
Additional Parameters	1, 4, 1
Coil Drive Frequency	1, 4, 1, 1
Density Value	1, 4, 1, 2
PV USL	1, 4, 1, 3
PV LSL	1, 4, 1, 4
PV Minimum Span	1, 4, 1, 5
Configure Output	1, 4, 2
Analog Output	1, 4, 2, 1
PV URV	1, 4, 2, 1, 1
PV LRV	1, 4, 2, 1, 2
PV Loop Current	1, 4, 2, 1, 3
AO Alarm Type (PV Alrm typ)	1, 4, 2, 1, 4
AO Loop Test	1, 4, 2, 1, 5
D/A Trim	1, 4, 2, 1, 6
Scaled D/A Trim	1, 4, 2, 1, 7
Alarm Level	1, 4, 2, 1, 8
AO Diagnostic Alarm	1, 4, 2, 1, 9
Empty Pipe	1, 4, 2, 1, 9, 1 ⁽¹⁾
Reverse Flow	1, 4, 2, 1, 9, 2 ⁽¹⁾
Ground/Wiring Fault	1, 4, 2, 1, 9, 3 ⁽¹⁾
High Process Noise	1, 4, 2, 1, 9, 4 ⁽¹⁾
Elect Temp Out of Range	1, 4, 2, 1, 9, 5 ⁽¹⁾

	usenceys
Function	Traditional Fast Keys
Electrode Coat Limit 2	1, 4, 2, 1, 9, 6 ⁽¹⁾
Totalizer Limit 1	1, 4, 2, 1, 9, 7 ⁽¹⁾
Flow Limit 1	1, 4, 2, 1, 9, 8(1)
Flow Limit 2	1, 4, 2, 1, 9, 9(1)
Cont. Meter Verification	1, 4, 2, 1, 9, 10(1)
Pulse Output	1, 4, 2, 2
Pulse Scaling	1, 4, 2, 2, 1
Pulse Width	1, 4, 2, 2, 2
Pulse Mode	1, 4, 2, 2, 3
Pulse Out Loop Test	1, 4, 2, 2, 4
DI/DO Output (Digital I/O)	1, 4, 2, 3
DI/DO 1	1, 4, 2, 3, 1
Configure I/O 1	1, 4, 2, 3, 1, 1
Input	1, 4, 2, 3, 1, 1, 1
Output	1, 4, 2, 3, 1, 1, 2
Not Available/Off	1, 4, 2, 3, 1, 1, 3
DIO 1 Control	1, 4, 2, 3, 1, 2
Digital Input 1	1, 4, 2, 3, 1, 3
Digital Output 1	1, 4, 2, 3, 1, 4
DO 2	1, 4, 2, 3, 2
Flow Limit 1	1, 4, 2, 3, 3
Control 1	1, 4, 2, 3, 3, 1
Mode 1	1, 4, 2, 3, 3, 2
High Limit 1	1, 4, 2, 3, 3, 3
Low Limit 1	1, 4, 2, 3, 3, 4
Flow Limit Hysteresis	1, 4, 2, 3, 3, 5
Flow Limit 2	1, 4, 2, 3, 4
Control 2	1, 4, 2, 3, 4, 1
Mode 2	1, 4, 2, 3, 4, 2
High Limit 2	1, 4, 2, 3, 4, 3
Low Limit 2	1, 4, 2, 3, 4, 4
Flow Limit Hysteresis	1, 4, 2, 3, 4, 5
Total Limit	1, 4, 2, 3, 5
Total Control	1, 4, 2, 3, 5, 1
Total Mode	1, 4, 2, 3, 5, 2
Total High Limit	1, 4, 2, 3, 5, 3

	- y -
Function	Traditional Fast Keys
Total Low Limit	1, 4, 2, 3, 5, 4
Total Limit Hysteresis	1, 4, 2, 3, 5, 5
Diagnostic Status Alert	1, 4, 2, 3, 6
Electronics Failure	1, 4, 2, 3, 6, ⁽¹⁾
Coil Open Circuit	1, 4, 2, 3, 6,(1)
Empty Pipe	1, 4, 2, 3, 6,(1)
Reverse Flow	1, 4, 2, 3, 6,(1)
Ground/Wiring Fault	1, 4, 2, 3, 6, ⁽¹⁾
High Process Noise	1, 4, 2, 3, 6,(1)
Elect Temp Out of Range	1, 4, 2, 3, 6, ⁽¹⁾
Electrode Coat Limit 1	1, 4, 2, 3, 6,(1)
Electrode Coat Limit 2	1, 4, 2, 3, 6,(1)
Cont. Meter Verification	1, 4, 2, 3, 6, ⁽¹⁾
Coil Over Current	N/A
Sensor Electrode Saturated	N/A
Coil Power Limit	N/A
Reverse Flow	1, 4, 2, 4
Totalizer Setup	1, 4, 2, 5
Totalizer Units	1, 4, 2, 5, 1
Gross Total	1, 4, 2, 5, 2
Net Total	1, 4, 2, 5, 3
Reverse Total	1, 4, 2, 5, 4
Start Totalizer	1, 4, 2, 5, 5
Stop Totalizer	1, 4, 2, 5, 6
Reset Totalizer	1, 4, 2, 5, 7
Alarm Levels	1, 4, 2, 6
Alarm Level	1, 4, 2, 6, 1
Hi Alarm	1, 4, 2, 6, 2
Hi Sat	1, 4, 2, 6, 3
Low Sat	1, 4, 2, 6, 4
Low Alarm	1, 4, 2, 6, 5
HART Output	1, 4, 2, 7
Variable Mapping	1, 4, 2, 7, 1
PV is	1, 4, 2, 7, 1, 1
SV is	1, 4, 2, 7, 1, 2
TV is	1, 4, 2, 7, 1, 3

	, -
Function	Traditional Fast Keys
QV is	1, 4, 2, 7, 1, 4
Poll Address	1, 4, 2, 7, 2
Num Req Preams	1, 4, 2, 7, 3
Num Resp Preams	1, 4, 2, 7, 4
Burst Mode	1, 4, 2, 7, 5
Burst Option	1, 4, 2, 7, 6
PV	1, 4, 2, 7, 6, ⁽¹⁾
% Range/Current	1, 4, 2, 7, 6, ⁽¹⁾
Process Vars/Current	1, 4, 2, 7, 6, ⁽¹⁾
Dynamic Vars	1, 4, 2, 7, 6, ⁽¹⁾
LOI Config	1, 4, 3
Language	1, 4, 3, 1
Flowrate Display	1, 4, 3, 2
Totalizer Display	1, 4, 3, 3
Display Lock	1, 4, 3, 4
Meter type	1, 4, 3, 5
LOI Error Mask	1, 4, 3, 6
Signal Processing	1, 4, 4
Operating Mode	1, 4, 4, 1
Man Config DSP	1, 4, 4, 2
Status	1, 4, 4, 2, 1
Samples	1, 4, 4, 2, 2
% Limit	1, 4, 4, 2, 3
Time Limit	1, 4, 4, 2, 4
Coil Drive Freq	1, 4, 4, 3
Low Flow Cutoff	1, 4, 4, 4
PV Damping	1, 4, 4, 5
Universal Trim	1, 4, 5
Device Info	1, 4, 6
Manufacturer	1, 4, 6, 1
Тад	1, 4, 6, 2
Descriptor	1, 4, 6, 3
Message	1, 4, 6, 4
Date	1, 4, 6, 5
Device ID	1, 4, 6, 6
PV Sensor S/N	1, 4, 6, 7

Function	Traditional Fast Keys
Sensor Tag	1, 4, 6, 8
Write protect	1, 4, 6, 9
Revision No. ⁽²⁾	1, 4, 6, 10
Universal Rev ⁽²⁾	1, 4, 6, 10, 1
Transmitter Rev ⁽²⁾	1, 4, 6, 10, 2
Software Rev ⁽²⁾	1, 4, 6, 10, 3
Final Assembly # ⁽²⁾	1, 4, 6, 10, 4
Construction Materials ⁽²⁾	1, 4, 6, 11
Flange Type ⁽²⁾	1, 4, 6, 11,1
Flange Material ⁽²⁾	1, 4, 6, 11, 2
Electrode Type ⁽²⁾	1, 4, 6, 11, 3
Electrode Material ⁽²⁾	1, 4, 6, 11, 4
Liner Material ⁽²⁾	1, 4, 6, 11, 5
Device Reset	1, 4, 7
Review	1,5

These items are in a list format without numeric labels.
 To access these features, you must scroll to this option in the HART Field Communicator.

Table 4-2. Device Dashboard Fast Keys

Function	Fast Keys
Overview	1
Device Status	1,1
Flow Rate	1,2
Analog Output Value	1,3
Upper Range Value	1,4
Lower Range Value	1,5
Run Meter Verification	1,6
Meter Verification Results	1,7
Device Information	1,8
Tag	1, 8, 1, 1
Manufacturer	1, 8, 1, 2
Model	1, 8, 1, 3
Final Assembly Number	1, 8, 1, 4
Device ID	1, 8, 1, 5
Date	1, 8, 1, 6
Description	1, 8, 1, 7

Function	Fast Keys	
Message	1, 8, 1, 8	
Universal Revision	1, 8, 2, 1	
Device Revision	1, 8, 2, 2	
Software Revision	1, 8, 2, 3	
Hardware Revision	1, 8, 2, 4	
DD Revision	1, 8, 2, 5	
Sensor Serial Number	1, 8, 3, 1	
Sensor Tag	1, 8, 3, 2	
Calibration Number	1, 8, 3, 3	
Line Size	1, 8, 3, 4	
Lower Sensor Limit	1, 8, 3, 5	
Upper Sensor Limit	1, 8, 3, 6	
Minimum Span	1, 8, 3, 7	
Liner Material	1, 8, 3, 8, 1	
Electrode Type	1, 8, 3, 8, 2	
Electrode Material	1, 8, 3, 8, 3	
Flange Type	1, 8, 3, 8, 4	
Flange Material	1, 8, 3, 8, 5	
Write Protect	1, 8, 4, 1	
Alarm Direction	1, 8, 4, 2	
Alarm Type	1, 8, 4, 3	
High Alarm	1, 8, 4, 4	
High Saturation	1, 8,4,5	
Low Saturation	1,8,4,6	
Low Alarm	1, 8, 4, 7	
Licenses	1, 8, 5	
Configure	2	
Guided Setup	2, 1	
Initial Setup	2, 1, 1	
Basic Setup	2, 1, 1, 1	
Configure Display	2, 1, 1, 2	
Special Units	2, 1, 1, 3	
Outputs	2, 1, 2	
Analog Output	2, 1, 2, 1	
Pulse Output	2, 1, 2, 2	

Table 4-2. Device Dashboard Fast Keys

Function	Fast Keys
Discrete Input/Output	2, 1, 2, 3
Totalizer	2, 1, 2, 4
Reverse Flow	2, 1, 2, 5
Burst Mode	2, 1, 2, 7
Variable Mapping	2, 1, 2, 8
Diagnostics	2, 1, 3
Configure Basic Diagnostics	2, 1, 3, 1
Upgrade License	2, 1, 3, 2
Configure Process Diagnostics	2, 1, 3, 3
Configure Meter Verification	2, 1, 3, 4
Re-Baseline Sensor	2, 1, 3, 5
Alerts	2, 1, 4
ser Alert Configuration 2, 1, 4, 1	
Analog Alarm Configuration	2, 1, 4, 2
Optimize Signal Processing	2, 1, 5
Manual Setup	2,2
Flow Units	2, 2, 1, 2
Lower Range Value	2, 2, 1, 3, 2
Upper Range Value	2, 2, 1, 3, 3
Damping	2, 2, 1, 3, 4
Calibration Number	2, 2, 1, 4, 1
Line Size	2, 2, 1, 4, 2
Language	2, 2, 1, 5, 1
Flow Display	2, 2, 1, 5, 2
Totalizer Display	2, 2, 1, 5, 3
Display Lock	2, 2, 1, 5, 4
Density	2, 2, 2, 1, 6
Pulse Mode	2, 2, 2, 2, 2
Pulse Scaling	2, 2, 2, 2, 3
Pulse Width	2, 2, 2, 2, 4
Net Total	2, 2, 2, 3, 1
Gross Total	2, 2, 2, 3, 2
Reverse Total	2, 2, 2, 3, 3
Totalizer Control	2, 2, 2, 3, 4
Totalizer Units	2, 2, 2, 3, 5

Function	Fast Keys
Polling Address	2, 2, 3, 1, 1
Burst Option	2, 2, 3, 1, 3
Primary Variable	2, 2, 3, 2, 1
Secondary Variable	2, 2, 3, 2, 2
Third Variable	2, 2, 3, 2, 3
Fourth Variable	2, 2, 3, 2, 4
Discrete I/O 1 Direction	2, 2, 4, 1, 1
Discrete Input 1	2, 2, 4, 1, 2
Discrete Output 1	2, 2, 4, 1, 3
Discrete Output 2	2, 2, 4, 2
Flow Limit 1	2, 2, 4, 3
High Limit 1	2, 2, 4, 3,1
Low Limit 1	2, 2, 4, 3, 2
Limit 1 Control	2, 2, 4, 3, 3
Limit 1 Status Alert	2, 2, 4, 3, 4
Flow Limit 2	2, 2, 4, 4
High Limit 2	2, 2, 4, 4, 1
Low Limit 2	2, 2, 4, 4, 2
Limit 2 Control	2, 2, 4, 4, 3
Limit 2 Status Alert	2, 2, 4, 4, 4
Flow Hysteresis	2, 2, 4, 6
Totalizer Limit	2, 2, 4, 5
Totalizer High Limit	2, 2, 4, 5, 1
Totalizer Low Limit	2, 2, 4, 5, 2
Totalizer Limit Control	2, 2, 4, 5, 3
Totalizer Limit Status Alert	2, 2, 4, 5, 4
Totalizer Hysteresis	2, 2, 4, 7
Diagnostics Status Alert	2, 2, 4, 8
Enable Diagnostics	2, 2, 5, 1
License Status	2, 2, 5, 2
Empty Pipe Value	2, 2, 5, 3, 1
Empty Pipe Trigger Level	2, 2, 5, 3, 2
Empty Pipe Counts	2, 2, 5, 3, 3
Electrode Coating Value	2, 2, 5, 6, 1
Electrode Coating Level 1 Limit	2, 2, 5, 6, 2

Table 4-2. Device Dashboard Fast Keys

Function	Fast Keys
Electrode Coating Level 2 Limit	2, 2, 5, 6, 3
Electrode Coating Maximum Value	2, 2, 5, 6, 4
Reset Maximum Electrode Coating Value	2, 2, 5, 6, 5
Diagnostic Analog Alarm	2, 2, 5, 9
Recall Last Baseline	2, 2, 6, 1, 5
No Flow Limit	2, 2, 6, 3, 1
Flowing Limit	2, 2, 6, 3, 2
Empty Pipe Limit	2, 2, 6, 3, 3
Continuous Meter Verification Limit	2, 2, 6, 4, 1
Enable Continuous Meter Verification Parameters	2, 2, 6, 4, 2
Coils	2, 2, 6, 4, 2, 1
Electrodes	2, 2, 6, 4, 2, 2
Transmitter	2, 2, 6, 4, 2, 3
Analog Output (Continuous Meter Verification)	2, 2, 6, 4, 2, 4
Coil Drive Frequency	2, 2, 8, 3
Auto Zero	2, 2, 8, 4
Digital Signal Processing (DSP) Operation	2, 2, 8, 5
DSP Control	2, 2, 8, 6, 1
Number of Samples	2, 2, 8, 6, 2
Percent of Rate	2, 2, 8, 6, 3
Time Limit	2, 2, 8, 6, 4
Tag	2, 2, 9, 1, 1
Date	2, 2, 9, 3, 1
Description	2, 2, 9, 3, 2
Message	2, 2, 9, 3, 3
Sensor Serial Number	2, 2, 9, 4, 1
Sensor Tag	2, 2, 9, 4, 2
Liner Material	2, 2, 9, 4, 3, 1
Electrode Type	2, 2, 9, 4, 3, 2
Electrode Material	2, 2, 9, 4, 3, 3
Flange Type	2, 2, 9, 4, 3, 4
Flange Material	2, 2, 9, 4,3, 5
Alarm Type	2, 2, 9, 5, 2
Alert Setup	2,3
Flow/Totalizer Limits	2, 3, 1
Diagnostics	2, 3, 2

Function	Fast Keys
Flow Limit 1	2, 3, 3
Flow Limit 2	2, 3, 4
Totalizer Limit	2, 3, 5
Analog Alarm	2, 3, 6
Discrete Output Alert	2, 3, 7
Calibration	2,4
Universal Trim	2, 4, 1
Service tools	3
Alerts	3, 1
Refresh Alerts	3, 1, 1
Active Alerts	3, 1, 2
Variables	3, 2
Flow Rate	3, 2, 1, 1
Pulse Output	3, 2, 1, 2
Analog Output	3, 2, 1, 3
Net Total	3, 2, 1, 4, 1
Gross Total	3, 2, 1, 4, 2
Reverse Total	3, 2, 1, 4, 3
Empty Pipe Value	3, 2, 2, 1
Electronics Temperature	3, 2, 2, 2
Coil Current	3, 2, 2, 3
Line Noise	3, 2, 3, 1
Electrode Coating Value	3, 2, 3, 2
5 Hz Signal-to-Noise Ratio	3, 2, 3, 3, 1
37 Hz Signal-to-Noise Ratio	3, 2, 3, 3, 2
Signal Power	3, 2, 3, 3, 3
Continuous Meter Verification	3, 2, 4
Baseline Coil Resistance	3, 2, 4, 1, 1
Baseline Coil Inductance	3, 2, 4, 1, 2
Baseline Electrode Resistance	3, 2, 4, 1, 3
Continuous Sensor Measurements	3, 2, 4, 2
Continuous Measured Coil Resistance	3, 2, 4, 2, 1
Continuous Measured Coil Inductance	3, 2, 4, 2, 2
Continuous Coil Baseline Deviation	3, 2, 4, 2, 3
Continuous Measured Electrode Resistance	3, 2, 4, 2, 4
Continuous Transmitter Measurements	3, 2, 4, 3

Table 4-2.	Device	Dashboard	Fast Keys
------------	--------	-----------	-----------

Function	Fast Keys
Continuous Simulated Velocity	3, 2, 4, 3, 1
Continuous Actual Velocity	3, 2, 4, 3, 2
Continuous Velocity Deviation	3, 2, 4, 3, 3
Continuous Analog Output Measurements	3, 2, 4, 4
Continuous Expected mA Value	3, 2, 4, 4, 1
Continuous Actual mA Value	3, 2, 4, 4, 2
Continuous mA Deviation	3, 2, 4, 4, 3
Trends	3, 3
Flow Rate Trend	3, 3, 1
Empty Pipe Trend	3, 3, 2
Electronics Temperature Trend	3, 3, 3
Line Noise Trend	3, 3, 4
5 Hz Signal-to-Noise Ratio Trend	3, 3, 5
37 Hz Signal-to-Noise Ratio Trend	3, 3, 6
Coil Inductance Trend	3, 3, 7
Coil Resistance Trend	3, 3, 8
Electrode Resistance Trend	3, 3, 9
Maintenance	3,4
Re-Baseline Sensor	3, 4, 1, 1, 4
Recall Last Baseline	3, 4, 1, 1, 5
No Flow Limit	3, 4, 1, 2, 1
Flowing Limit	3, 4, 1, 2, 2
Empty Pipe Limit	3, 4, 1, 2, 3
Manual Sensor Measurements	3, 4, 1, 3
Manual Measured Coil Resistance	3, 4, 1, 3, 1
Manual Measured Coil Inductance	3, 4, 1, 3, 2
Manual Measured Electrode Resistance	3, 4, 1, 3, 3
Run Manual Meter Verification	3, 4, 1, 4
Manual Meter Verification Results	3, 4, 1, 5
Manual Coil Circuit Test Result	3, 4, 1, 5, 1, 3
Manual Electrode Circuit Test Result	3, 4, 1, 5, 1, 6
Manual Sensor Deviation	3, 4, 1, 5, 2, 3
Manual Sensor Test Result	3, 4, 1, 5, 2, 4
Manual Simulated Velocity	3, 4, 1, 5, 3, 1
Manual Actual Velocity	3, 4, 1, 5, 3, 2

Function	Fast Keys
Manual Transmitter Deviation	3, 4, 1, 5, 3, 3
Manual Transmitter Test Result	3, 4, 1, 5, 3, 4
Manual Test Conditions	3, 4, 1, 5, 4, 1
Manual Overall Test Result	3, 4, 1, 5, 4, 2
Continuous Meter Verification Limit	3, 4, 2, 2
Enable Continuous Meter Verification Parameters	3, 4, 2, 3
Coils	3, 4, 2, 3, 1
Electrodes	3, 4, 2, 3, 2
Transmitter	3, 4, 2, 3, 3
Analog Output (Continuous Meter Verification)	3, 4, 2, 3, 4
4-20 mA Verification	3, 4, 3
Run Manual 4-20 mA Verification	3, 4, 3, 1
4 mA Measurement	3, 4, 3, 2
12 mA Measurement	3, 4, 3, 3
20 mA Measurement	3, 4, 3, 4
Low Alarm Measurement	3, 4, 3, 5
High Alarm Measurement	3, 4, 3, 6
Analog D/A Trim	3, 4, 4, 5
Scaled Analog D/A Trim	3, 4, 4, 6
Electronics (Digital) Trim	3, 4, 5
Master Reset	3, 4, 6
Simulate	3,5
Analog Loop Test	3, 5, 1, 1
Pulse Loop Test	3, 5, 2, 1

Figure 4-8. Field Communicator Traditional Menu Tree (Basic Setup and Detailed Setup)

Figure 4-9. Field Communicator Traditional Menu Tree (Process Variables and Diagnostics)

Figure 4-10. Field Communicator Dashboard Menu Tree (Overview and Configuring Guided/Manual

4.5 **Process variables**

LOI menu path	N/A
Traditional Fast Keys	1,1
Device dashboard	1

Process variables are available through the Field Communicator or AMS software suite. These variables display flow in several ways that reflect your needs and the configuration of your flowmeter. When commissioning a flowmeter, review each process variable, its function and output, and take corrective action if necessary before using the flowmeter in a process application.

Primary variable (PV) - The actual measured flow rate of the process fluid. Use the *flow units* function to select the units for your application.

Percent of range - The process variable as a percentage of the analog output range, provides an indication where the current flow of the meter is within the configured range of the flowmeter. For example, the analog output range may be defined as 0 gal/min to 20 gal/min. If the measured flow is 10 gal/min, the percent of range is 50 percent.

Analog output - The analog output variable provides the analog value for the flow rate. The analog output refers to the industry standard output in the 4-20 mA range. The analog output and 4-20 mA loop can be verified using the Analog Feedback diagnostic capability internal to the transmitter (See "4-20 mA loop verification" on page 123).

Pulse output - The *pulse output* variable provides the pulse value in terms of a frequency for the flow rate.

4.5.1 PV - Primary variable

LOI menu path	Field Mount: Home screen if configured to display flow Wall Mount: FLOW RATE	
Traditional Fast Keys	1, 1, 1	
Device dashboard	1,2	

The *primary variable* shows the current measured flow rate. This value determines the analog output from the transmitter.

4.5.2 PV - Percent of range

LOI menu path	Field Mount: Home screen if configured to display percent span Wall Mount: N/A		
Traditional Fast Keys	1, 1, 2		
Device dashboard	3, 4, 4, 2		

The *PV% range* shows where in the flow range the current flow value is as a percentage of the configured span.

4.5.3 PV - Analog output

LOI menu path	N/A
Traditional Fast Keys	1, 1, 3
Device dashboard	1,3

The *PV analog output* displays the mA output of the transmitter corresponding to the measured flow rate.

4.5.4 Pulse output

LOI menu path	N/A
Traditional Fast Keys	1, 1, 5
Device dashboard	3, 2, 1, 2

The *pulse output* displays the value of the pulse signal.

Section 5 Advanced Configuration Functionality

Introduction	page 85
Configure outputs	page 85
Configure HART	page 101
Additional parameters	page 106
Configure special units	page 110

5.1 Introduction

This section contains information for advanced configuration parameters.

The software configuration settings for the Rosemount[™] 8750W Magnetic Flowmeter can be accessed through a HART[®]-based communicator, Local Operator Interface (LOI), AMS[™] Device Manager, ProLink[™] III, or through a control system. Before operating the Rosemount 8750W in an actual installation, you should review all of the factory set configuration data to ensure that they reflect the current application.

5.2 **Configure outputs**

LOI menu path	Field Mount: Detailed Setup, Output Config Wall Mount: N/A	
Traditional Fast Keys	1, 4, 2	
Device dashboard	2, 2, 2	

The *configure outputs* functionality is used to configure advanced features that control the analog, pulse, auxiliary, and totalizer outputs of the transmitter.

5.2.1 Analog output

LOI menu path	Field Mount: Detailed Setup, Output Config, Analog Wall Mount: N/A	
Traditional Fast Keys	1, 4, 2, 1	
Device dashboard	2, 2, 2, 1	

The analog output function is used to configure all of the features of the 4-20 mA output.

Upper range value

LOI menu path	Field Mount: Detailed Setup, Output Config, Analog, PV URV Wall Mount: ANALOG OUTPUT RANGE	
Traditional Fast Keys	1, 4, 2, 1	
Device dashboard	2, 2, 2, 1, 4	

The upper range value (URV) sets the 20 mA point for the analog output. This value is typically set to full-scale flow. The units that appear will be the same as those selected under the units parameter. The URV may be set between -39.3 ft/s to 39.3 ft/s (-12 m/s to 12 m/s) or the equivalent range based on the selected *flow units*. There must be at least 1 ft/s (0.3 m/s) span or equivalent between the URV and LRV.

Lower range value

LOI menu path	Field Mount: Detailed Setup, Output Config, Analog, PV LRV Wall Mount: AUX. FUNCTION	
Traditional Fast Keys	1, 4, 2, 1	
Device dashboard	2, 2, 2, 1, 3	

The *lower range value* (LRV) sets the 4 mA point for the analog output. This value is typically set to zero flow. The units that appear will be the same as those selected under the units parameter. The LRV may be set between –39.3 ft/s to 39.3 ft/s (–12 m/s to 12 m/s) or the equivalent range based on the selected *flow units*. There must be at least 1 ft/s (0.3 m/s) span or equivalent between the URV and LRV.

Alarm type

LOI menu path	Field Mount: Detailed Setup, Output Config, Analog, Alarm Type Wall Mount: AUX. FUNCTION	
Traditional Fast Keys	1, 4, 2, 1, 4	
Device dashboard	2, 2, 9, 5, 1	

The analog output *alarm type* displays the position of the alarm switch on the electronics board. There are two available positions for this switch:

- High
- Low

Alarm level

LOI menu path	Field Mount: Detailed Setup, Output Config, Analog, Alarm Level Wall Mount: AUX. FUNCTION	
Traditional Fast Keys	1, 4, 2, 1, 8 or 1, 4, 2, 6	
Device dashboard	2, 2, 9, 5, 2	

The *alarm level* configuration will drive the transmitter to preset values if an alarm occurs. There are two options:

- Rosemount Alarm and Saturation Values (see table Table 5-1 for specific values)
- NAMUR-Compliant Alarm and Saturation Values (see Table 5-2 for specific values)

Table 5-1. Rosemount Values

Level	4-20 mA saturation	4-20 mA alarm
Low	3.9 mA	3.75 mA
High	20.8 mA	22.5 mA

Table 5-2. NAMUR Values

Level	4-20 mA saturation	4-20 mA alarm
Low	3.8 mA	3.5 mA
High	20.5 mA	22.6 mA

AO diagnostic alarm

LOI menu path	Field Mount: Detailed Setup, Output Config, Analog, AO Diag Alarm Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 1, 9
Device dashboard	2, 2, 5, 9

There are diagnostics that, when under active conditions, do not drive the analog output to alarm level. The *AO diagnostic alarm* menu enables selection of these diagnostics to be associated with an analog alarm. If any of the selected diagnostics are active, it will cause the analog output to go to the configured alarm level. For a list of diagnostic alarms that can be configured to drive an analog alarm, see Table 5-3.

Table 5-3. Analog Alarm Diagnostic Options

Diagnostic	LOI menu path	Fast Keys	Description
Empty Pipe ⁽¹⁾	Detailed Setup, Output Config, Analog, AO Diag Alarm, Empty Pipe	1, 4, 2, 1, 9, 1	Drive to an alarm state when empty pipe is detected.
Reverse Flow	Detailed Setup, Output Config, Analog, AO Diag Alarm, Reverse Flow	1, 4, 2, 1, 9, 2	Drive to an alarm state when reverse flow is detected.

Diagnostic	LOI menu path	Fast Keys	Description
Grounding/Wiring Fault ⁽¹⁾	Detailed Setup, Output Config, Analog, AO Diag Alarm, Ground/Wiring	1, 4, 2, 1, 9, 3	Drive to an alarm state when grounding or wiring fault is detected.
High Process Noise ⁽¹⁾	Detailed Setup, Output Config, Analog, AO Diag Alarm, Process Noise	1, 4, 2, 1, 9, 4	Drive to an alarm state when the transmitter detects high levels of process noise.
Electronics Tem- perature Out of Range ⁽¹⁾	Detailed Setup, Output Config, Analog, AO Diag Alarm, Elect Temp	1, 4, 2, 1, 9, 5	Drive to an alarm state when the temperature of the elec- tronics exceeds allowable lim- its
Electrode Coating Limit 2 ⁽¹⁾⁽²⁾	Detailed Setup, Output Config, Analog, AO Diag Alarm, Elec Coat- ing	1, 4, 2, 1, 9, 6	Drive to an alarm state when electrode coating reaches a point where it impacts the flow measurement
Totalizer Limit 1	Detailed Setup, Output Config, Analog, AO Diag Alarm, Total Limit	1, 4, 2, 1, 9, 7	Drive to an alarm state when the totalizer value exceeds the parameters set in the total- izer limit configuration (see page 5-x for more details on this functionality)
Flow Limit 1	Detailed Setup, Output Config, Analog, AO Diag Alarm, Flow Limit 1	1, 4, 2, 1, 9, 8	Drive to an alarm state when the flow rate exceeds the parameters set in the flow limit 1 configuration (see page 5-x for more details on this functionality)
Flow Limit 2	Detailed Setup, Output Config, Analog, AO Diag Alarm, Flow Limit 2	1, 4, 2, 1, 9, 9	Drive to an alarm state when the flow rate exceeds the parameters set in the flow limit 2 configuration (see page 5-x for more details on this functionality)
Continuous Meter Verification ⁽¹⁾⁽²⁾	Detailed Setup, Output Config, Analog, AO Diag Alarm, Cont Meter Ver	1, 4, 2, 1, 9, ⁽³⁾	Drive to an alarm state when the continuous meter verifica- tion diagnostic detects a fail- ure of one of the tests

Table 5-3. Analog Alarm Diagnostic Options

1. 2. 3.

See Section 6 for more details on each of the diagnostics. Only available on the Field Mount Transmitter. To access these features, you must scroll to this option in the HART Field Communicator.

5.2.2 Pulse output

LOI menu path	Field Mount: Detailed Setup, Output Config, Pulse Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 2
Device dashboard	2, 2, 2, 2

Under this function the *pulse output* of the Rosemount 8750W can be configured.

Pulse scaling

LOI menu path	Field Mount: Detailed Setup, Output Config, Pulse, Pulse Scaling Wall Mount: PULSE OUTPUT SCALING
Traditional Fast Keys	1, 4, 2, 2, 1
Device dashboard	2, 2, 2, 2, 3

Transmitter may be commanded to supply a specified frequency between 1 pulse/day at 39.37 ft/sec (12 m/s) to 10,000 Hz at 1 ft/sec (0.3 m/s).

Note

Line size, special units, and density must be selected prior to configuration of the *pulse scaling* factor.

The pulse output scaling equates one transistor switch closure pulse to a selectable number of volume units. The volume unit used for scaling pulse output is taken from the numerator of the configured flow units. For example, if gal/min had been chosen when selecting the *flow unit*, the volume unit displayed would be gallons.

Note

The pulse output scaling is designed to operate between 0 and 10,000 Hz. The minimum conversion factor value is found by dividing the minimum span (in units of volume per second) by 10,000Hz.

Note

The maximum *pulse scaling* frequency for transmitters with an intrinsically safe output (output option code B) is 5000 Hz.

When selecting pulse output scaling, the maximum pulse rate is 10,000Hz. With the 110 percent over range capability, the absolute limit is 11,000Hz. For example, if you want the Rosemount 8750W to pulse every time 0.01 gallons pass through the sensor, and the flow rate is 10,000 gal/min, you will exceed the 10,000 Hz full-scale limit:

 $\frac{10,000 \text{ gal}}{1 \text{ min}} \times \frac{1 \text{ min}}{60 \text{ s}} \times \frac{1 \text{ pulse}}{0.01 \text{ gal}} = 16,666 \text{ Hz}$

The best choice for this parameter depends upon the required resolution, the number of digits in the totalizer, the extent of range required, and the maximum frequency limit of the external counter.

Pulse width

LOI menu path	Field Mount: Detailed Setup, Output Config, Pulse, Pulse Width Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 2, 2
Device dashboard	2, 2, 2, 2, 4

The factory default *pulse width* is 0.5 ms.

The width, or duration, of the pulse can be adjusted to match the requirements of different counters or controllers (see Figure 5-1). These are typically lower frequency applications (< 1000 Hz). The transmitter will accept values from 0.1 ms to 650 ms.

For frequencies higher than 1000 Hz, it is recommended to set the pulse mode to 50% duty cycle by setting the *pulse mode* to *frequency output*.

The *pulse width* will limit the maximum frequency output, If the *pulse width* is set too wide (more than 1/2 the period of the pulse) the transmitter will limit the pulse output. See example below.

Example

If pulse width is set to 100 ms, the maximum output is 5 Hz; for a pulse width of 0.5 ms, the maximum output would be 1000 Hz (at the maximum frequency output there is a 50% duty cycle).

Pulse width	Minimum period (50% duty cycle)	Maximum frequency
100 ms	200 ms	$\frac{1 \text{ cycle}}{200 \text{ ms}} = 5 \text{ Hz}$
0.5 ms	1.0 ms	$\frac{1 \text{ cycle}}{1.0 \text{ ms}} = 1000 \text{ Hz}$

To achieve the greatest maximum frequency output, set the pulse width to the lowest value that is consistent with the requirements of the pulse output power source, pulse driven external totalizer, or other peripheral equipment.

Example

The maximum flow rate is 10,000 gpm. Set the pulse output scaling such that the transmitter outputs 10,000Hz at 10,000 gpm.

Pulse Scaling = $\frac{Flow Rate(gpm)}{\left(60\frac{s}{min}\right) \times (frequency)}$

Pulse Scaling = $\frac{10,000(\text{gpm})}{\left(60\frac{\text{s}}{\text{min}}\right) \times 10,000\text{Hz}}$

Pulse Scaling = 0.0167 $\frac{\text{gal}}{\text{pulse}}$

1 pulse = 0.0167 gal

Note

Changes to *pulse width* are only required when there is a minimum pulse width required for external counters, relays, etc.

Example

The external counter is ranged for 350 gpm and pulse is set for one gallon. Assuming the *pulse width* is 0.5 ms, the maximum frequency output is 5.833Hz.

Frequency =
$$\frac{\text{Flow Rate (gpm)}}{\left(60\frac{\text{s}}{\text{min}}\right) \times \left(\text{pulse scaling } \frac{\text{gal}}{\text{pulse}}\right)}$$

Frequency = $\frac{350 \text{ gpm}}{\left(60 \frac{\text{s}}{\text{min}}\right) \times \left(1 \frac{\text{gal}}{\text{pulse}}\right)}$

Frequency = 5.833 Hz

Example

The upper range value (20 mA) is 3000 gpm. To obtain the highest resolution of the pulse output, 10,000 Hz is scaled to the full scale analog reading.

Pulse Scaling =
$$\frac{Flow Rate(gpm)}{\left(60\frac{s}{min}\right) \times (frequency)}$$

Pulse Scaling = $\frac{3,000(\text{gpm})}{\left(60\frac{\text{s}}{\text{min}}\right) \times 10,000\text{Hz}}$

Pulse Scaling = 0.005
$$\frac{\text{gal}}{\text{pulse}}$$

Pulse mode⁽¹⁾

LOI menu path	Field Mount: Detailed Setup, Output Config, Pulse, Pulse Mode Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 2, 3
Device dashboard	2, 2, 2, 2, 2

The *pulse mode* configures the frequency output of the pulse. It can be set to either 50% duty cycle, or fixed. There are two options that *pulse mode* can be configured to:

- Pulse Output (user defines a fixed pulse width)
- Frequency Output (pulse width automatically set to 50% duty cycle)

To use *pulse width* settings, *pulse mode* must be set to *pulse output*.

5.2.3 Totalizer

The *totalizer* provides the total amount of fluid that has passed through the meter. There are three available totalizers:

- Net total increments with forward flow and decrements with reverse flow (*reverse flow* must be enabled). Can be reset to zero using the net total reset function.
- Gross/forward total will only increment with forward flow
- Reverse total will only increment with reverse flow if reverse flow is enabled

The maximum value for the totalizers is based on 4, 294, 967, 296 (2³²) ft. or corresponding unit equivalent. If a totalizer reaches this value, it will automatically reset to zero and then continue counting.

The gross/forward and reverse totalizers can be reset by manually changing the line size.

Totalizer units

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Totalizer Units Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 5, 1
Device dashboard	2, 2, 2, 3, 5

Totalizer units is used to configure the units in which the totalized value will be displayed. These units are independent of the flow units. *Totalizer units* are updated to match the *flow units* whenever the *flow units* are written.

^{1.} Pulse mode is only available on Field Mount Transmitter. Wall Mount Transmitter is set to Pulse Output and is not configurable.

Totalizer display

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer Setup, Total Display Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 3
Device dashboard	2, 2, 1, 5, 3

The totalizer screen can be configured to display the net and gross totals or the forward and reverse totals.

Note

Gross and forward totals are the same value.

Start totalizer

LOI menu path	Field Mount: On totalizer screen, press "E" Wall Mount: START/STOP
Traditional Fast Keys	1, 4, 2, 5, 5
Device dashboard	2, 2, 2, 3, 4

Start totalizer starts the totalizer counting from its current value.

Stop totalizer

LOI menu path	Field Mount: On totalizer screen, press "E" Wall Mount: START/STOP
Traditional Fast Keys	1, 4, 2, 5, 6
Device dashboard	2, 2, 2, 3, 4

Stop totalizer interrupts the totalizer count until it is restarted again. This feature is often used during pipe cleaning or other maintenance operations.

Reset totalizer

LOI menu path	Field Mount: On totalizer screen, press right arrow (totalizer must be stopped) Wall Mount: READ/RESET
Traditional Fast Keys	1, 4, 2, 5, 7
Device dashboard	2, 2, 2, 3, 4

Reset totalizer resets the net totalizer value to zero. The totalizer must be stopped before resetting.

Note

The totalizer value is stored in the non-volatile memory of the electronics every three seconds. If power to the transmitter is interrupted, the totalizer value will start at the last saved value when power is reapplied.

5.2.4 Discrete input/output

This configuration option is only available if the auxiliary option suite (option code AX) was ordered. The auxiliary output suite provides two channels for control. The *discrete input* can provide positive zero return (PZR) and net totalizer reset. The *discrete output* control function can be configured to drive an external signal to indicate zero flow, reverse flow, empty pipe, diagnostic status, flow limit, or transmitter status. A complete list and description of the available auxiliary functions is provided below.

Digital input options (Channel 1 only)

- PZR (Positive Zero Return) When conditions are met to activate the input, the transmitter will force the output to zero flow.
- Net Total Reset When conditions are met to activate the input, the transmitter will
 reset the *net total* value to zero.

Digital output options

- Reverse Flow The output will activate when the transmitter detects a reverse flow condition.
- Zero Flow The output will activate when a no flow condition is detected.
- Transmitter Fault The output will activate when a transmitter fault condition is detected.
- Empty Pipe The output will activate when the transmitter detects an empty pipe condition.
- Flow Limit 1 The output will activate when the transmitter measures a flow rate that meets the conditions established for the *flow limit 1* alert.
- Flow Limit 2 The output will activate when the transmitter measures a flow rate that meets the conditions established for the *flow limit 2* alert.
- Diagnostic Status Alert The output will activate when the transmitter detects a condition that meets the configured criteria of the *diagnostic status alert*.
- Total Limit The output will activate when the transmitter net total value meets the conditions established for the *total limit alert*.

Channel 1

Channel 1 can be configured as either a discrete input (DI) or as a discrete output (DO).

DI/O 1 control

LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, DI/O 1, DI/O Control Wall Mount: AUX. FUNCTION	
Traditional Fast Keys	1, 4, 2, 3, 1, 1	
Device dashboard	2, 2, 4, 1, 1	

This parameter configures the auxiliary output channel 1. It controls whether channel 1 will be a discrete input or discrete output on terminals 5(-) and 6(+). Note that the transmitter must have been ordered with the auxiliary output suite (option code AX) to have access to this functionality.

Discrete input 1

LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, DI/O 1, DI 1 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 1, 1, 3
Device dashboard	2, 2, 4, 1, 2

This parameter displays the configuration for channel 1 when used as a discrete input. Refer to the list above for available discrete input functions.

Discrete output 1

LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, DI/O 1, DO 1 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 1, 2, 4
Device dashboard	2, 2, 4, 1, 3

This parameter displays the configuration for channel 1 when used as a discrete output. Refer to the list above for available discrete output functions.

Channel 2

Channel 2 is only available as discrete output only.

Discrete output 2

LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, DO 2 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 2
Device dashboard	2, 2, 4, 2

This parameter displays the configuration for channel 2. Refer to the list above for available discrete output functions.

Flow limit (1 and 2)

	Flow 1	Flow 2
LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2
	Wall Mount: AUX. FUNCTION	Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 3	1, 4, 2, 3, 4
Device dashboard	2, 2, 4, 3	2, 2, 4, 4

There are two configurable flow limits. Configure the parameters that will determine the criteria for activation of a HART alert if the measured flow rate falls within a set of configured criteria. This functionality can be used for operating simple batching operations or generating alerts when certain flow conditions are met. This parameter can be configured as a discrete output if the transmitter was ordered with auxiliary outputs enabled (option code AX). If a discrete output is configured for flow limit, the discrete output will activate when the conditions defined under mode configuration are met. See "Mode" on page 97.

Control

	Flow 1	Flow 2
LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Control 1 Wall Mount: AUX. FUNCTION	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Control 2 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 3, 1	1, 4, 2, 3, 4, 1
Device dashboard	2, 2, 4, 3, 4	2, 2, 4, 4, 4

This parameter turns the flow limit HART alert **ON** or **OFF**.

ON - The transmitter will generate a HART alert when the defined conditions are met. If a discrete output is configured for flow limit, the discrete output will activate when the conditions for *mode* are met.

OFF - The transmitter will not generate a HART alert for the flow limit.
Mode

	Flow 1	Flow 2
LOI menu path	Field Mount: Detailed Setup, Out- put Config, DI/DO Config, Flow Limit 1, Mode 1 Wall Mount: AUX. FUNCTION	Field Mount: Detailed Setup, Out- put Config, DI/DO Config, Flow Limit 2, Mode 2 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 3, 2	1, 4, 2, 3, 4, 2
Device dashboard	2, 2, 4, 3, 3	2, 2, 4, 4, 3

The *mode* parameter sets the conditions under which the flow limit HART alert will activate. High and low limits exist for each channel and can be configured independently.

> High limit - The HART alert will activate when the measured flow rate exceeds the *high limit* set point.

< Low limit - The HART alert will activate when the measured flow rate falls below the *low limit* set point.

In range - The HART alert will activate when the measured flow rate is between the *high limit* and *low limit* set points.

Out of range - The HART alert will activate when the measured flow rate exceeds the *high limit* set point or falls below the *low limit* set point.

High limit

	Flow 1	Flow 2
LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, High Limit 1 Wall Mount: AUX. FUNCTION	Field Mount: Detailed Setup, Out- put Config, DI/DO Config, Flow Limit 2, High Limit 2 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 3, 3	1, 4, 2, 3, 4, 3
Device dashboard	2, 2, 4, 3, 1	2, 2, 4, 4, 1

Set the flow rate value that corresponds to the *high limit* set point for the flow limit alert.

Low limit

	Flow 1	Flow 2
LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Low Limit 1 Wall Mount: AUX. FUNCTION	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Low Limit 2 Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 3, 4	1, 4, 2, 3, 4, 4
Device dashboard	2, 2, 4, 3, 2	2, 2, 4, 4, 2

Set the flow rate value that corresponds to the *low limit* set point for the flow limit alert.

Flow limit hysteresis

	Flow 1	Flow 2
LOI menu path	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 1, Hysteresis Wall Mount: AUX. FUNCTION	Field Mount: Detailed Setup, Output Config, DI/DO Config, Flow Limit 2, Hysteresis Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 3, 5	1, 4, 2, 3, 4, 5
Device dashboard	2, 2, 4, 6	

Set the hysteresis band for the flow limit to determine how quickly the transmitter comes out of alert status. The *hysteresis* value is used for both *flow limit 1* and *flow limit 2*. Changing this parameter under the configuration parameters for one channel will cause it to also change in the other channel.

Total limit

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Total Limit Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 5
Device dashboard	2, 2, 4, 5

Configure the parameters that will determine the criteria for activating a HART alert if the measured net total falls within a set of configured criteria. This functionality can be used for operating simple batching operations or generating alerts when certain localized values are met. This parameter can be configured as a discrete output if the transmitter was ordered with auxiliary outputs enabled (option code AX). If a digital output is configured for *total limit*, the digital output will activate when the conditions for *total mode* are met.

Total control

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Total Limit, Total Control Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 5, 1
Device dashboard	2, 2, 4, 5, 4

This parameter turns the total limit HART alert **ON** or **OFF**.

ON - The transmitter will generate a HART alert when the defined conditions are met.

OFF - The transmitter will not generate a HART alert for the total limit.

Total mode

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Total Limit, Total Mode Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 5, 2
Device dashboard	2, 2, 4, 5, 3

The *total mode* parameter sets the conditions under which the total limit HART alert will activate. High and low limits exist for each channel and can be configured independently.

> High limit - The HART alert will activate when the totalizer value exceeds the *high limit* set point.

< Low limit - The HART alert will activate when the totalizer value falls below the *low limit* set point.

In range - The HART alert will activate when the totalizer value is between the *high limit* and *low limit* set points.

Out of range - The HART alert will activate when the totalizer value exceeds the *high limit* set point or falls below the *low limit* set point.

Total high limit

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Total Limit, Tot Hi Limit Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 5, 3
Device dashboard	2, 2, 4, 5, 1

Set the net total value that corresponds to the *high limit* set point for the total high limit alert.

Total low limit

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Total Limit, Tot Low Limit Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 5, 4
Device dashboard	2, 2, 4, 5, 2

Set the net total value that corresponds to the *low limit* set point for the total low limit alert.

Total limit hysteresis

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Total Limit, Hysteresis Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 5, 5
Device dashboard	2,2,4,7

Set the hysteresis band for the total limit to determine how quickly the transmitter comes out of alert status.

Diagnostic status alert

LOI menu path	Field Mount: Detailed Setup, Output Config, Totalizer, Diagnostic Status Alert Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 2, 3, 6
Device dashboard	2, 2, 4, 8

The *diagnostic status alert* is used to turn on or off the diagnostics that will cause this alert to activate.

ON - The *diagnostic status alert* will activate when a transmitter detects a diagnostic designated as ON.

OFF - The *diagnostic status alert* will not activate when diagnostics designated as OFF are detected.

Alerts for the following diagnostics can be turned ON or OFF:

- Electronics Failure
- Coil Open Circuit
- Empty Pipe
- Reverse Flow
- Ground/Wiring Fault

1. Only available on Field Mount Transmitter.

- High Process Noise
- Electronics Temperature Out of Range
- Electrode Coat Limit 1⁽¹⁾
- Electrode Coat Limit 2⁽¹⁾
- Continuous Meter Verification⁽¹⁾

5.3 Configure HART

The Rosemount 8750W has four HART variables available as outputs. The variables can be configured for dynamic readings including flow, total, and diagnostic values. The HART output can also be configured for burst mode or multi-drop communication if required.

5.3.1 Variable mapping

LOI menu path	Field Mount: Detailed Setup, Output Config, Hart, Variable Map Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 1
Device dashboard	2, 2, 3, 2

Variable mapping allows configuration of the variables that are mapped to the secondary, tertiary and quaternary variables. The *primary variable* is fixed to output flow and cannot be configured.

Primary variable (PV)

LOI menu path	Field Mount: Detailed Setup, Output Config, Hart, Variable Map, PV Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 1, 1
Device dashboard	2, 2, 3, 2, 1

The *primary variable* is configured for flow. This variable is fixed and cannot be configured. The *primary variable* is tied to the analog output.

Secondary variable (SV)

LOI menu path	Field Mount: Detailed Setup, Output Config, Hart, Variable Map, SV Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 1, 2
Device dashboard	2, 2, 3, 2, 2

The secondary variable maps the second variable of the transmitter. This variable is a HART only variable and can be read from the HART signal with a HART enabled input card, or can be burst for use with a HART Tri-Loop[™] to convert the HART signal to an analog output. Options available for mapping to this variable can be found in Table 5-4. The secondary variable for the Wall Mount Transmitter is set to pulse output and is not configurable.

Tertiary variable (TV)

LOI menu path	Field Mount: Detailed Setup, Output Config, Hart, Variable Map, TV Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 1, 3
Device dashboard	2, 2, 3, 2, 3

The *tertiary variable* maps the third variable of the transmitter. This variable is a HART only variable and can be read from the HART signal with a HART enabled input card, or can be burst for use with a HART Tri-Loop to convert the HART signal to an analog output. Options available for mapping to this variable can be found in Table 5-4 and Table 5-5.

Quaternary variable (QV)

LOI menu path	Field Mount: Detailed Setup, Output Config, Hart, Variable Map, QV Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 1, 4
Device dashboard	2, 2, 3, 2, 4

The *quaternary variable* maps the fourth variable of the transmitter. This variable is a HART only variable and can be read from the HART signal with a HART enabled input card, or can be burst for use with a HART Tri-Loop to convert the HART signal to an analog output. Options available for mapping to this variable can be found in Table 5-4 and Table 5-5.

Table 5-4. Field Mount Transmitter Available Variables

Pulse Output	Empty Pipe Value
Gross Total – TV Default	Transmitter Velocity Deviation
Net Total – SV Default	Electrode Coating Value
Reverse Total – QV Default	Electrode Resistance Value
Electronics Temp	Coil Resistance Value
Line Noise Value	Sensor Calibration Deviation Value
5 Hz Signal to Noise Value	mA Loop Deviation Value
37 Hz Signal to Noise Value	

Table 5-5. Wall Mount Transmitter Available Variables

Gross Total	Reverse Total
Net Total	Electronics Temp

5.3.2 Poll address

LOI menu path	Field Mount: Detailed Setup, Output Config, Hart Output, Poll Address Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 2
Device dashboard	2, 2, 3, 1, 1

Poll address enables the poll address to be set for use in a multi-drop configuration. The *poll address* is used to identify each meter on the multi-drop line. Follow the on-screen instructions to set the poll address at a number from 1 to 15. To set or change the flowmeter address, establish communication with the selected Rosemount 8750W in the loop.

Note

The Rosemount 8750W poll address is set to zero at the factory, allowing standard operation in a point-to-point manner with a 4-20 mA output signal. To activate multi-drop communication, the transmitter poll address must be changed to a number between 1 and 15. This change deactivates the analog output, sets the output value to 4 mA, and disables the failure mode alarm signal.

5.3.3 Burst mode

LOI menu path	Field Mount: Detailed Setup, Output Config, HART, Burst Mode Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 5
Device dashboard	2, 2, 3, 1, 2

The Rosemount 8750W includes a *burst mode* function that can be enabled to broadcast the primary variable or all dynamic variables approximately three to four times per second. *Burst mode* is a specialized function used in very specific applications. The *burst mode* function enables you to select the variables that are broadcast while in the burst mode.

Burst mode enables you to set the burst mode as **OFF** or **ON**:

- **OFF** Turns *burst mode* off; no data are broadcast over the loop
- **ON** Turns *burst mode* on; data selected under *burst option* are broadcast over the loop

Additional command options may appear that are reserved and do not apply to the Rosemount 8750W.

Burst option (burst command)

LOI menu path	Field Mount: Detailed Setup, Output Config, HART, Burst Command Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 6
Device dashboard	2, 2, 3, 1, 3

Burst option enables you to select the variable(s) that is broadcast during the transmitter burst. Choose one of the following options:

- 1; PV; Primary Variable Selects the primary variable
- 2; %range/current; Percent of Range and Loop Current Selects the variable as percent of range and analog output
- 3; Process vars/crnt; All Variables and Loop Current Selects all variables and analog output
- 110; Dynamic vars; Dynamic Variables Burst all dynamic variables in the transmitter

Request preambles

LOI menu path	Field Mount: Detailed Setup, Output Config, HART, Req Preams Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 3
Device dashboard	N/A

Request preambles is the number of preambles required by the Rosemount 8750W for HART communications.

Response preambles

LOI menu path	Field Mount: Detailed Setup, Output Config, HART, Resp Preams Wall Mount: N/A
Traditional Fast Keys	1, 4, 2, 7, 4
Device dashboard	N/A

Response preambles is the number of preambles sent by the Rosemount 8750W in response to any host request.

5.3.4 Configure LOI

LOI menu path	Field Mount: Detailed Setup, LOI Config Wall Mount: N/A
Traditional Fast Keys	1, 4, 3
Device dashboard	2, 2, 1, 5

The LOI configuration contains functionality to configure the display of the transmitter.

Flow display

LOI menu path	Field Mount: Detailed Setup, LOI Config, Flow Display Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 2
Device dashboard	2, 2, 1, 5, 2

Use *flow display* to configure the parameters that will appear on the LOI flowrate screen. The flowrate screen displays two lines of information. Choose one of the following options:

- Flowrate and % of Span
- % of Span and Net Total
- Flowrate and Net Total
- % of Span and Gross Total
- Flowrate and Gross Total

Totalizer display

LOI menu path	Field Mount: Detailed Setup, LOI Config, Total Display Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 3
Device dashboard	2, 2, 1, 5, 3

Use *totalizer display* to configure the parameters that will appear on the LOI totalizer screen. The totalizer screen has two lines of information. Choose one of the following options:

- Forward Total and Reverse Total
- Net Total and Gross Total

Language

LOI menu path	Field Mount: Detailed Setup, LOI Config, Language Wall Mount: N/A
Traditional Fast Keys	1, 4, 3, 1
Device dashboard	2, 2, 1, 5, 1

Use *language* to configure the display language shown on the LOI. Select one of the following options:

- English⁽¹⁾
- Spanish
- Portuguese
- German
- French

^{1.} Wall Mount Transmitter is only available in English.

LOI error mask

LOI menu path	Field Mount: Detailed Setup, LOI Config, LOI Err Mask Wall Mount: N/A
Traditional Fast Keys	N/A
Device dashboard	N/A

Use LOI error mask to turn off the analog output power error message (AO No Power). This may be desired if the analog output is not being used.

Display auto lock

LOI menu path	Field Mount: Detailed Setup, LOI Config, Disp Auto Lock Wall Mount: N/A
Traditional Fast Keys	1, 4, 3, 4
Device dashboard	2, 2, 1, 5, 4

Use *display auto lock* to configure the LOI to automatically lock the LOI after a set period of time. Select one of the following options:

- OFF
- 1 Minute
- 10 Minutes (default)

5.4 Additional parameters

The following parameters may be required for detailed configuration settings based on your application.

5.4.1 Coil drive frequency

LOI menu path	Field Mount: Detailed Setup, More Params, Coil Frequency Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 1
Device dashboard	2, 2, 8, 3

Use *coil drive frequency* to change the pulse rate of the coils. Choose one of the following options:

- **5 Hz** The standard coil drive frequency is 5 Hz, which is sufficient for nearly all applications.
- 37 Hz If the process fluid causes a noisy or unstable output, increase the coil drive frequency to 37.5 Hz. The 37 Hz coil drive frequency should only be used for sensor sizes 16-in. and smaller. If the 37 Hz mode is selected, perform the auto zero function for optimum performance.

See "Auto zero" on page 141.

5.4.2 Process density

LOI menu path	Field Mount: Detailed Setup, More Params, Proc Density Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1,4,3,1
Device dashboard	2,2,8,2

Use the *process density* value to convert from a volumetric flow rate to a mass flow rate using the following equation:

Qm = Qv x p

Where:

Qm is the mass flow rate

Qv is the volumetric flow rate, and

p is the fluid density

5.4.3 Reverse flow

LOI menu path	Field Mount: Detailed Setup, Output Config, Reverse Flow Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 1
Device dashboard	2, 2, 5, 1, 5

Use *reverse flow* to enable or disable the transmitter's ability to read flow in the opposite direction of the flow direction arrow (see Figure 2-6 on page 11). This may occur when the process has bi-directional flow, or when either the electrode wires or the coil wires are reversed (see "Remote wiring" on page 159). This also enables the totalizer to count in the reverse direction.

5.4.4 Low flow cutoff

LOI menu path	Field Mount: Detailed Setup, Sig Processing, Low Flow Cutoff Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 4, 4
Device dashboard	2, 2, 8, 5, 2

Low flow cutoff allows the user to set a low flow limit to be specified. The analog output signal is driven to 4mA for flow rates below the set point. For the Field Mount Transmitter, the *low flow cutoff* units are the same as the PV units and cannot be changed. For the Wall Mount Transmitter, the low flow cutoff units are feet per second and cannot be changed. The *low flow cutoff* value applies to both forward and reverse flows.

5.4.5 PV damping

LOI menu path	Field Mount: Detailed Setup, Sig Processing, PV Damping Wall Mount: DAMPING
Traditional Fast Keys	1, 4, 4, 5
Device dashboard	2, 2, 8, 1

Primary variable damping allows selection of a response time, in seconds, to a step change in flow rate. It is most often used to smooth fluctuations in output.

5.4.6 Signal processing

LOI menu path	Field Mount: Detailed Setup, Sig Processing Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 1
Device dashboard	2, 2, 8, 6

The Rosemount 8750W contains several advanced functions that can be used to stabilize erratic outputs caused by process noise. The signal processing menu contains this functionality.

If the 37 Hz coil drive mode has been set, and the output is still unstable, the damping and signal processing function should be used. It is important to set the coil drive mode to 37 Hz first, so the loop response time is not increased.

The Rosemount 8750W provides for a very easy and straightforward start-up, and also incorporates the capability to deal with difficult applications that have previously manifested themselves in a noisy output signal. In addition to selecting a higher coil drive frequency (37 Hz vs. 5 Hz) to isolate the flow signal from the process noise, the Rosemount 8750W microprocessor can actually scrutinize each input based on three user-defined parameters to reject the noise specific to the application.

See Section 7 for the detailed description of how the signal processing works.

Operating mode

LOI menu path	Field Mount: Detailed Setup, Sig Processing, Operating Mode Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 3, 1
Device dashboard	2, 2, 8, 5, 1

The operating mode function can be set to normal mode or filter mode. If set to normal mode, and the signal is noisy and provides an unstable flow reading, switch to filter mode. *Filter* mode automatically uses 37 Hz coil drive frequency and activates signal processing at the factory set default values. When using *filter* mode, perform an *auto zero* with *no flow* and a full sensor. Either of the parameters (coil drive mode or signal processing) may still be changed individually. Turning *signal processing* off or changing the coil drive frequency to 5 Hz will automatically change the *operating mode* from *filter* mode to *normal* mode.

Signal processing control

LOI menu path	Field Mount: Detailed Setup, Sig Processing, SP Control Wall Mount: AUX. FUNCTION, Signal Processing	
Traditional Fast Keys	1, 4, 3, 1	
Device dashboard	2, 2, 8, 6, 1	

DSP can be turned on or off. When *on* is selected, the Rosemount 8750W output is derived using a running average of the individual flow inputs. DSP is a software algorithm that examines the quality of the electrode signal against user-specified tolerances. This average is updated at the rate of 10 samples per second with a coil drive frequency of 5 Hz, and 75 samples per second with a coil drive frequency of 37 Hz. The three parameters that make up signal processing (*number of samples, percent limit,* and *time limit*) are described below.

Number of samples

LOI menu path	Field Mount: Detailed Setup, Sig Processing, SP Control, Samples Wall Mount: AUX. FUNCTION, Signal Processing	
Traditional Fast Keys	1, 4, 3, 1	
Device dashboard	2, 2, 8, 6, 2	

The *number of samples* sets the amount of time that inputs are collected and used to calculate the average value. Each second is divided into tenths with the number of samples equaling the number of increments used to calculate the average. This parameter can be configured for an integer value between 0 and 125. The default value is 90 samples.

Percent rate

LOI menu path	Field Mount: Detailed Setup, Sig Processing, SP Control, % Rate Wall Mount: AUX. FUNCTION, Signal Processing	
Traditional Fast Keys	1, 4, 3, 1	
Device dashboard	2, 2, 8, 6, 3	

This parameter will set the tolerance band on either side of the running average, referring to percent deviation from the average flow rate. Values within the limit are accepted while values outside the limit are scrutinized to determine if they are a noise spike or an actual flow change. This parameter can be configured for an integer value between 0 and 100 percent. The default value is 2 percent.

Time limit

LOI menu path	Field Mount: Detailed Setup, Sig Processing, SP Control, Time Limit Wall Mount: AUX. FUNCTION, Signal Processing	
Traditional Fast Keys	1, 4, 3, 1	
Device dashboard	2, 2, 8, 6, 4	

The *time limit* parameter forces the output and running average values to the new value of an actual flow rate change that is outside the percent limit boundaries. It thereby limits response time to flow changes to the time limit value rather than the length of the running average.

For example, if the number of samples selected is 100, then the response time of the system is 10 seconds. In some cases this may be unacceptable. By setting the time limit, you can force the Rosemount 8750W to clear the value of the running average and re-establish the output and average at the new flow rate once the time limit has elapsed. This parameter limits the response time added to the loop. A suggested time limit value of two seconds is a good starting point for most applicable process fluids. This parameter can be configured between zero and 256 seconds. The default value is two seconds.

5.5 Configure special units

Special units are used when the application requires units that are not included in the flow units available from the device. Refer to Table 2-12 on page 34 for a complete list of the available units.

5.5.1 Base volume unit

LOI menu path	Field Mount: Basic Setup, Flow Units, Special Units, Base Vol Units Wall Mount: AUX. FUNCTION, Special Units, Base Vol Units	
Traditional Fast Keys	1, 3, 2, 2,2	
Device dashboard	2, 2, 1, 6	

Base volume unit is the unit from which the conversion is being made. Set this variable to the appropriate option.

5.5.2 Conversion factor

LOI menu path	Field Mount: Basic Setup, Flow Units, Special Units, Conv Factor Wall Mount: AUX. FUNCTION, Special Units, Conv Factor	
Traditional Fast Keys	1, 3, 2, 2, 3	
Device dashboard	2, 2, 1, 6	

The special units *conversion factor* is used to convert base units to special units. For a straight conversion of units from one unit of measure to a different unit of measure, the *conversion factor* is the number of base units in the new unit.

For example, if you are converting from gallons to barrels and there are 31 gallons in a barrel, the conversion factor is 31.

5.5.3 Base time unit

LOI menu path	Field Mount: Basic Setup, Flow Units, Special Units, Base Time Unit Wall Mount: AUX. FUNCTION, Special Units, Base Time Unit	
Traditional Fast Keys	1, 3, 2, 2, 4	
Device dashboard	2, 2, 1, 6	

Base time unit provides the time unit from which to calculate the special units.

For example, if your special units is a volume per minute, select **minutes**.

5.5.4 Special volume unit

LOI menu path	Field Mount: Basic Setup, Flow Units, Special Units, Volume Unit Wall Mount: AUX. FUNCTION, Special Units, Volume Unit	
Traditional Fast Keys	1, 3, 2, 2, 1	
Device dashboard	2, 2, 1, 6	

Special volume unit enables you to display the volume unit format to which you have converted the base volume units. For example, if the special units are abc/min, the special volume variable is abc. The volume units variable is also used in totalizing the special units flow.

5.5.5 Special flow rate unit

LOI menu path	Field Mount: Basic Setup, Flow Units, Special Units, Rate Unit Wall Mount: AUX. FUNCTION, Special Units, Rate Unit	
Traditional Fast Keys	1, 3, 2, 2, 5	
Device dashboard	2, 2, 1, 6	

Flow rate unit is a format variable that provides a record of the units to which you are converting. The Field Communicator will display a special units designator as the units format for your primary variable. The actual special units setting you define will not appear. Four characters are available to store the new units designation. The Rosemount 8750W LOI will display the four character designation as configured.

Example

To display flow in acre-feet per day, and acre-foot is equal to 43560 cubic feet, the procedure would be:

- 1. Set the *volume unit* to **ACFT**.
- 2. Set the base volume unit to **ft3**.
- 3. Set the conversion factor to **43560**.
- 4. Set the *time base unit* to **Day**.
- 5. Set the *flow rate unit* to **AF/D**.

Section 6 Advanced Diagnostics Configuration

Introduction page 11
Licensing and enabling page 114
Tunable empty pipe detection page 11
Electronics temperature page 11
Ground/wiring fault detection page 112
High process noise detection page 119
Coated electrode detection page 12
4-20 mA loop verification page 122
SMART [™] Meter Verification page 124
Run manual SMART Meter Verification page 122
Continuous SMART Meter Verification page 129
SMART Meter Verification test results page 13
SMART Meter Verification measurements page 133
Optimizing the SMART Meter Verification page 130
Calibration Verification Report page 13

6.1 Introduction

Rosemount[™] Magnetic Flowmeters provide device diagnostics that detect and warn of abnormal situations throughout the life of the meter - from Installation to Maintenance and Meter Verification. With flowmeter diagnostics enabled, plant availability and throughput can be improved, and costs through simplified installation, maintenance and troubleshooting can be reduced.

Diagnostic name	Diagnostic category	Product capability	
Basic diagnostics			
Tunable Empty Pipe	Process	Standard	
Electronics Temperature	Maintenance	Standard	
Coil Fault	Maintenance	Standard	
Transmitter Fault	Maintenance	Standard	
Reverse Flow	Process	Standard	
Electrode Saturation ⁽¹⁾	Process	Standard	
Coil Current ⁽¹⁾	Maintenance	Standard	
Coil Power ⁽¹⁾	Maintenance	Standard	
Advanced diagnostics			
High Process Noise	Process	Suite 1 (DA1)	
Grounding and Wiring Fault	Installation	Suite 1 (DA1)	
Coated Electrode Detection ⁽¹⁾	Process	Suite 1 (DA1)	

Table 6-1. Diagnostics Availability

Table 6-1. Diagnostics Availability

Diagnostic name	Diagnostic category	Product capability	
Advanced diagnostics			
Commanded Meter Verification	Meter Health	Suite 2 (DA2)	
Continuous Meter Verification ⁽¹⁾	Meter Health	Suite 2 (DA2)	
4-20 mA Loop Verification ⁽¹⁾	Installation	Suite 2 (DA2)	

1. Only available on Field Mount Transmitter.

Options for accessing diagnostics

Rosemount Magmeter Diagnostics can be accessed through the Local Operator Interface (LOI), a HART[®] Field Communicator, AMS[™] Suite: Intelligent Device Manager, and ProLink[™]. Contact your local Rosemount representative to activate diagnostics or for diagnostic availability on existing transmitters.

Access diagnostics through the LOI for quicker installation, maintenance, and meter verification

Rosemount Magmeter Diagnostics are available through the LOI to make maintenance of every magmeter easier.

Access diagnostics through AMS Device Manager

The value of the Diagnostics increases significantly when AMS Device Manager is used. The user will see simplified screen flow and procedures on how to respond to the diagnostics messages.

Access diagnostics through ProLink III v. 3.2 to simplify maintenance and troubleshooting practices

Use ProLink III to access diagnostics and troubleshooting information using an intuitive interface and simplified procedures. Run

SMART[™] Meter Verification, store the results, and print a report that can be filed or submitted as proof of verification.

6.2 Licensing and enabling

All advanced diagnostics are licensed by ordering option code DA1, DA2, or both. In the event that a diagnostic option is not ordered, advanced diagnostics can be licensed in the field through the use of a license key. Each transmitter has a unique license key specific to the diagnostic option code. A trial license⁽¹⁾ is also available to enable the advanced diagnostics. This temporary functionality will be automatically disabled after 30 days or when power to the transmitter is cycled, whichever occurs first. This trial code can be used a maximum of three times per transmitter. See the detailed procedures below for entering the license key and enabling the advanced diagnostics. To obtain a permanent or trial license key, contact your local Emerson[™] Process Management representative.

^{1.} Trial license is only available on the Field Mount Transmitter.

6.2.1 Licensing the Rosemount 8750W diagnostics

For licensing the advanced diagnostics, follow the steps below.

- 1. Power up the transmitter.
- 2. Verify the software version is 5.4.4 software or later.

LOI menu path	Field Mount: Detailed Setup, Device Info, Revision Num Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 6, 10, ⁽¹⁾
Device dashboard	1, 8, 2

1. This item is in a list format without numeric labels.

3. Determine the Device ID.

LOI menu path	Field Mount: Detailed Setup, Device Info, Device ID Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 6, 6
Device dashboard	1, 8, 1, 5

- 4. Obtain a License Key from the local Rosemount representative.
- 5. Enter License Key.

LOI menu path	Field Mount: Diagnostics, Advanced Diagnostics, Licensing, License Key, License Key Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 4, 2, 2
Device dashboard	1, 8, 5, 4

6. Enable Advanced Diagnostics.

LOI menu path	Field Mount: Diagnostics, Diag Controls Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3
Device dashboard	2, 2, 5, 1

6.3 Tunable empty pipe detection

The *tunable empty pipe detection* provides a means of minimizing issues and false readings when the pipe is empty. This is most important in batching applications where the pipe may run empty with some regularity. If the pipe is empty, this diagnostic will activate, set the flow rate to zero, and deliver an alert.

Turning empty pipe on/off

LOI menu path	Field Mount: Diagnostics, Diag Controls, Empty Pipe Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 1, 1
Device dashboard	2, 2, 5, 1, 1

The *tunable empty pipe detection* diagnostic can be turned on or off as required by the application. The empty pipe diagnostic is shipped turned "On" by default.

6.3.1 Tunable empty pipe parameters

The *tunable empty pipe* diagnostic has one read-only parameter, and two parameters that can be custom configured to optimize the diagnostic performance.

Empty pipe (EP) value

LOI menu path	Field Mount: Diagnostics, Variables, Empty Pipe Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 2, 4, 1
Device dashboard	2, 2, 5, 3, 1

This parameter shows the current *empty pipe value*. This is a read-only value. This number is a unit-less number and is calculated based on multiple installation and process variables such as sensor type, line size, process fluid properties, and wiring. If the empty pipe value exceeds the empty pipe trigger level for a specified number of updates, then the empty pipe diagnostic alert will activate.

Empty pipe (EP) trigger level

LOI menu path	Field Mount: Diagnostics, Basic Diagnostics, Empty Pipe, EP Trig Level Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 2, 4, 2
Device dashboard	2, 2, 5, 3, 2

Limits: 3 to 2000

Empty pipe trigger level is the threshold limit that the empty pipe value must exceed before the empty pipe diagnostic alert activates. The default setting from the factory is 100.

Empty pipe (EP) counts

LOI menu path	Field Mount: Diagnostics, Basic Diagnostics, Empty Pipe, EP Counts Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 2, 4, 3
Device dashboard	2, 2, 5, 3, 3

Limits: 2 to 50

Empty pipe counts is the number of consecutive updates that the transmitter must receive where the empty pipe value exceeds the empty pipe trigger level before the empty pipe diagnostic alert activates. The default setting from the factory is 5.

6.3.2 Optimizing tunable empty pipe

The *tunable empty pipe* diagnostic is set at the factory to properly diagnose most applications. If this diagnostic activates, the following procedure can be followed to optimize the empty pipe diagnostic for the application.

Example

1. Record the *empty pipe value* with a full pipe condition.

Example: Full reading = 0.2

2. Record the *empty pipe value* with an empty pipe condition.

Example: Empty reading = 80.0

3. Set the *empty pipe trigger level* to a value between the full and empty readings. For increased sensitivity to empty pipe conditions, set the trigger level to a value closer to the full pipe value.

Example: Set the trigger level to 25.0

4. Set the *empty pipe counts* to a value corresponding to the desired sensitivity level for the diagnostic. For applications with entrained air or potential air slugs, less sensitivity may be desired.

Example: Set the counts to 10

6.4 Electronics temperature

The Rosemount 8750W continuously monitors the temperature of the internal electronics. If the measured *electronics temperature* exceeds the operating limits of -40 to 140 °F (-40 to 60 °C) the transmitter will go into alarm and generate an alert.

6.4.1 Turning electronics temperature on/off

LOI menu path	Field Mount: Diagnostics, Diag Controls, Elect Temp Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 1, 1, ⁽¹⁾
Device dashboard	2, 2, 5, 1, 4

1. This item is in a list format without numeric labels.

The *electronics temperature* diagnostic can be turned on or off as required by the application. The *electronics temperature* diagnostic will be turned on by default.

6.4.2 Electronics temperature parameters

The *electronics temperature* diagnostic has one read-only parameter. It does not have any configurable parameters.

Electronics temperature

LOI menu path	Field Mount: Diagnostics, Variables, Elect Temp Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 4, 2
Device dashboard	2, 2, 5, 7

This parameter shows the current temperature of the electronics. This is a read-only value.

6.5 Ground/wiring fault detection

The transmitter continuously monitors signal amplitudes over a wide range of frequencies. For the *ground/wiring fault detection* diagnostic, the transmitter specifically looks at the signal amplitude at frequencies of 50 Hz and 60 Hz which are the common AC cycle frequencies found throughout the world. If the amplitude of the signal at either of these frequencies exceeds 5 mV, that is an indication that there is a ground or wiring issue and that stray electrical signals are getting into the transmitter. The diagnostic alert will activate indicating that the ground and wiring of the installation should be carefully reviewed.

The ground/wiring fault detection diagnostic provides a means of verifying installations are done correctly. If the installation is not wired or grounded properly, this diagnostic will activate and deliver an alert. This diagnostic can also detect if the grounding is lost over-time due to corrosion or another root cause.

6.5.1 Turning ground/wiring fault on/off

LOI menu path	Field Mount: Diagnostics, Diag Controls, Ground/Wiring Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 1, 1, ⁽¹⁾
Device dashboard	2, 2, 5, 1, 3

1. This item is in a list format without numeric labels.

The ground/wiring fault detection diagnostic can be turned on or off as required by the application. If the advanced diagnostics suite 1 (DA1 Option) was ordered, then the ground/wiring fault detection diagnostic will be turned on. If DA1 was not ordered or licensed, this diagnostic is not available.

6.5.2 Ground/wiring fault parameters

The *ground/wiring fault detection* diagnostic has one read-only parameter. It does not have any configurable parameters.

Line noise

LOI menu path	Field Mount: Diagnostics, Variables, Line Noise Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 4, 3
Device dashboard	2, 2, 5, 4, 1

The *line noise* parameter shows the amplitude of the line noise. This is a read-only value. This number is a measure of the signal strength at 50/60 Hz. If the *line noise* value exceeds 5 mV, then the *ground/wiring fault* diagnostic alert will activate.

6.6

High process noise detection

The *high process noise* diagnostic detects if there is a process condition causing an unstable or noisy reading that is not an actual flow variation. A common cause of high process noise is slurry flow, like pulp stock or mining slurries. Other conditions that cause this diagnostic to activate are high levels of chemical reaction or entrained gas in the liquid. If unusual noise or flow variation is seen, this diagnostic will activate and deliver an alert. If this situation exists and is left without remedy, it will add additional uncertainty and noise to the flow reading.

6.6.1 Turning high process noise on/off

LOI menu path	Field Mount: Diagnostics, Diag Controls, Process Noise Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 1, 1, ⁽¹⁾
Device dashboard	2, 2, 5, 1, 2

1. This item is in a list format without numeric labels.

The *high process noise* diagnostic can be turned on or off as required by the application. If the advanced diagnostics suite 1 (DA1 Option) was ordered, then the *high process noise* diagnostic will be turned on. If DA1 was not ordered or licensed, this diagnostic is not available.

6.6.2 High process noise parameters

The *high process noise* diagnostic has two read-only parameters. It does not have any configurable parameters. This diagnostic requires that flow be present in the pipe and the velocity be greater than 1 ft/s (0.3 m/s).

5 Hz signal to noise ratio (SNR)

LOI menu path	Field Mount: Diagnostics, Variables, 5Hz SNR Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 4, 4
Device dashboard	2, 2, 5, 5, 1

This parameter shows the value of the signal to noise ratio at the coil drive frequency of 5 Hz. This is a read-only value. This number is a measure of the signal strength at 5 Hz relative to the amount of process noise. If the transmitter is operating in 5 Hz mode, and the signal to noise ratio remains below 25 for one minute, then the *high process noise* diagnostic alert will activate.

37 Hz signal to noise ratio (SNR)

LOI menu path	Field Mount: Diagnostics, Variables, 37Hz SNR Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 4, 5
Device dashboard	2, 2, 5, 5, 2

This parameter shows the current value of the signal to noise ratio at the coil drive frequency of 37 Hz. This is a read-only value. This number is a measure of the signal strength at 37 Hz relative to the amount of process noise. If the transmitter is operating in 37 Hz mode, and the signal to noise ratio remains below 25 for one minute, then the *high process noise* diagnostic alert will activate.

6.7 Coated electrode detection

The *coated electrode detection* diagnostic provides a means of monitoring insulating coating buildup on the measurement electrodes. If coating is not detected, buildup over time can lead to a compromised flow measurement. This diagnostic can detect if the electrode is coated and if the amount of coating is affecting the flow measurement. There are two levels of electrode coating (EC). This diagnostic is only available on the Field Mount Transmitter.

Limit 1 indicates when coating is starting to occur, but has not compromised the flow measurement.

Limit 2 indicates when coating is affecting the flow measurement and the meter should be serviced immediately.

6.7.1 Turning coated electrode detection on/off

LOI menu path	Field Mount: Diagnostics, Diag Controls, Elec Coating Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 1
Device dashboard	2, 2, 5, 1, 5

The coated electrode detection diagnostic can be turned on or off as required by the application. If the advanced diagnostics suite 1 (DA1 option) was ordered, then the coated electrode detection diagnostic will be turned on. If DA1 was not ordered or licensed, this diagnostic is not available.

6.7.2 Coated electrode parameters

The *coated electrode detection* diagnostic has four parameters. Two are read-only and two are configurable parameters. The electrode coating parameters need to be initially monitored to accurately set the electrode coating limit levels for each application.

EC value

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Elec Coating, EC Current Val Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 1, 1
Device dashboard	2, 2, 5, 6, 1

The *electrode coating value* reads the value of the coated electrode detection diagnostic.

Electrode coating (EC) level 1 limit

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Elec Coat, EC Limit 1 Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 1, 2
Device dashboard	2, 2, 5, 6, 2

Set the criteria for the *electrode coating limit 1* which indicates when coating is starting to occur, but has not compromised the flow measurement. The default value for this parameter is 1000 k Ohm.

Electrode coating (EC) level 2 limit

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Elec Coat, EC Limit 2 Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 1, 3
Device dashboard	2, 2, 5, 6, 3

Set the criteria for the *electrode coating limit 2* which indicates when coating is affecting the flow measurement and the meter should be serviced immediately. The default value for this parameter is 2000 k Ohm.

Maximum electrode coating (EC)

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Elec Coat, EC Max Value Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 1, 4
Device dashboard	2, 2, 5, 6, 4

The maximum electrode coating value reads the maximum value of the coated electrode detection diagnostic since the last maximum value reset.

Clear maximum electrode value

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Elec Coat, Reset Max Val Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 1, 5
Device dashboard	2, 2, 5, 6, 5

Use this method to reset the maximum electrode coating value.

6.8 4-20 mA loop verification

The 4-20 mA loop verification diagnostic provides a means of verifying the analog output loop is functioning properly. This is a manually initiated diagnostic test. This diagnostic checks the integrity of the analog loop and provides a health status of the circuit. If the verification does not pass, this will be highlighted in the results given at the end of the check. This diagnostic is only available on the Field Mount Transmitter.

The 4-20 mA loop verification diagnostic is useful for testing the analog output when errors are suspected. The diagnostic tests the analog loop at five different mA output levels:

- 4 mA
- 12 mA
- 20 mA
- Low alarm level
- High alarm level

6.8.1 Initiating 4-20 mA loop verification

LOI menu path	Field Mount: Diagnostics, Advanced Diag, 4-20mA Verify, 4-20mA Verify Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 3, 1
Device dashboard	3, 4, 3, 1

The 4-20 mA loop verification diagnostic can be initiated as required by the application. If the advanced diagnostics suite 2 (DA2 Option) was ordered, then the 4-20 mA loop verification diagnostic will be available. If DA2 was not ordered or licensed, this diagnostic is not available.

6.8.2 4-20 mA loop verification parameters

The 4-20 mA loop verification diagnostic has five read-only parameters plus an overall test result. It does not have any configurable parameters.

4-20 mA loop verification test result

LOI menu path	Field Mount: Diagnostics, Advanced Diag, 4-20mA Verify, View Results Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 3, 2
Device dashboard	3, 4, 3

Shows the results of the 4-20 mA loop verification test as either passed or failed.

4 mA measurement

LOI menu path	N/A
Traditional Fast Keys	N/A
Device dashboard	3, 4, 3, 2

Shows the measured value of the 4 mA loop verification test.

12 mA measurement

LOI menu path	N/A
Traditional Fast Keys	N/A
Device dashboard	3, 4, 3, 3

Shows the measured value of the 12 mA loop verification test.

20 mA measurement

LOI menu path	N/A
Traditional Fast Keys	N/A
Device dashboard	3, 4, 3, 4

Shows the measured value of the 20 mA loop verification test.

Low alarm measurement

LOI menu path	N/A
Traditional Fast Keys	N/A
Device dashboard	3, 4, 3, 5

Shows the measured value of the low alarm verification test.

High alarm measurement

LOI menu path	N/A
Traditional Fast Keys	N/A
Device dashboard	3, 4, 3, 6

Shows the measured value of the high alarm verification test.

6.9 SMART[™] Meter Verification

The SMART Meter Verification diagnostic provides a means of verifying the flowmeter is within calibration without removing the sensor from the process. This diagnostic test

provides a review of the transmitter and sensor's critical parameters as a means to document verification of calibration. The results of this diagnostic provide the deviation amount from expected values and a pass/fail summary against user-defined criteria for the application and conditions. The *SMART Meter Verification* diagnostic can be configured to run continuously in the background during normal operation, or it can be manually initiated as required by the application.

6.9.1 Sensor baseline (signature) parameters

The SMART Meter Verification diagnostic functions by taking a baseline sensor signature and then comparing measurements taken during the verification test to these baseline results.

The sensor signature describes the magnetic behavior of the sensor. Based on Faraday's law, the induced voltage measured on the electrodes is proportional to the magnetic field strength. Thus, any changes in the magnetic field will result in a calibration shift of the sensor. Having the transmitter take an initial sensor signature when first installed will provide the baseline for the verification tests that are done in the future. There are three specific measurements that are stored in the transmitter's non-volatile memory that are used when performing the calibration verification.

Coil circuit resistance

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Values, Coil Resist Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 3, 2, 3, 1, 1
Device dashboard	2, 2, 6, 1, 1

The *coil circuit resistance* is a measurement of the coil circuit health. This value is used as a baseline to determine if the coil circuit is still operating correctly.

Coil inductance (signature)

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Values, Inductance Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 3, 2, 3, 1, 2
Device dashboard	2, 2, 6, 1, 2

The *coil inductance* is a measurement of the magnetic field strength. This value is used as a baseline to determine if a sensor calibration shift has occurred.

Electrode circuit resistance

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Values, Electrode Res Wall Mount: XMTR INFO
Traditional Fast Keys	1, 2, 3, 2, 3, 1, 3
Device dashboard	2, 2, 6, 1, 3

The *electrode circuit* resistance is a measurement of the electrode circuit health. This value is used as a baseline to determine if the electrode circuit is still operating correctly.

6.9.2 Establishing the sensor baseline (signature)

The first step in running the *SMART Meter Verification* test is establishing the reference signature that the test will use as the baseline for comparison. This is accomplished by having the transmitter take a signature of the sensor.

Reset baseline (re-signature meter)

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Reset Baseline Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 2, 3, 2
Device dashboard	2, 2, 6, 1, 4

Having the transmitter take an initial sensor signature when first installed will provide the baseline for the verification tests that are done in the future. The sensor signature should be taken during the start-up process when the transmitter is first connected to the sensor, with a full line, and ideally with no flow in the line. Running the sensor signature procedure when there is flow in the line is permissible, but this may introduce some noise into the *electrode circuit resistance* measurement. If an empty pipe condition exists, then the sensor signature should only be run for the coils.

Once the sensor signature process is complete, the measurements taken during this procedure are stored in non-volatile memory to prevent loss in the event of a power interruption to the meter. This initial sensor signature is required for both manual and continuous SMART Meter Verification.

Recall values (recall last saved)

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Sensr Baseline, Recall Values Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 2, 3, 3
Device dashboard	2, 2, 6, 1, 5

In the event that the sensor baseline was reset accidentally or incorrectly, this function will restore the previously saved sensor baseline values.

6.9.3 SMART Meter Verification test criteria

The SMART Meter Verification diagnostic provides the ability to customize the test criteria to which the verification must be tested. The test criteria can be set for each of the flow conditions discussed above.

No flow limit

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Test Criteria, No Flow Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 2, 4, 1
Device dashboard	2, 2, 6, 3, 1

Set the test criteria for the no flow condition. The factory default for this value is set to five percent with limits configurable between one and ten percent. This parameter applies to manually initiated test only.

Flowing full limit

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Test Criteria, Flowing Full Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 2, 4, 2
Device dashboard	2, 2, 6, 3, 2

Set the test criteria for the flowing, full condition. The factory default for this value is set to five percent with limits configurable between one and ten percent. This parameter applies to manually initiated tests only.

Empty pipe limit

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Test Criteria, Empty Pipe Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 2, 4, 3
Device dashboard	2, 2, 6, 3, 3

Set the test criteria for the empty pipe condition. The factory default for this value is set to five percent with limits configurable between one and ten percent. This parameter applies to manually initiated test only.

Continuous limit

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Test Criteria, Continual
•	Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 2, 4, 4
Device dashboard	2, 2, 6, 4, 1

Set the test criteria for the *continuous SMART Meter Verification* diagnostic. The factory default for this value is set to five percent with limits configurable between two and ten percent. If the tolerance band is set too tightly, under empty pipe conditions or noisy flowing conditions, a false failure of the transmitter test may occur.

6.10 Run manual SMART Meter Verification

LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Run Meter Ver Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 3, 2, 1
Device dashboard	1,6

The *SMART Meter Verification* diagnostic will be available if the advanced diagnostic suite (DA2) was ordered. If DA2 was not ordered or licensed, this diagnostic will not be available. This method will initiate the manual meter verification test.

6.10.1 Test conditions

SMART Meter Verification can be initiated under three possible test conditions. This parameter is set at the time that the *sensor baseline* or SMART Meter Verification test is manually initiated.

No flow

Run the *SMART Meter Verification* test with a full pipe and no flow in the line. Running the *SMART Meter Verification* test under this condition provides the most accurate results and the best indication of magnetic flowmeter health.

Flowing full

Run the *SMART Meter Verification* test with a full pipe and flow in the line. Running the *SMART Meter Verification* test under this condition provides the ability to verify the magnetic flowmeter health without shutting down the process flow in applications when a shutdown is not possible. Running the diagnostic under flowing conditions can cause a false test failure if there is significant process noise present.

Empty pipe

Run the *SMART Meter Verification* test with an empty pipe. Running the *SMART Meter Verification* test under this condition provides the ability to verify the magnetic flowmeter health with an empty pipe. Running the verification diagnostic under empty pipe conditions will not check the electrode circuit health.

6.10.2 Test scope

The manually initiated *SMART Meter Verification* test can be used to verify the entire flowmeter installation or individual parts such as the transmitter or sensor. This parameter is set at the time that the *SMART Meter Verification* test is manually initiated. There are three test scopes from which to choose.

All

Run the *SMART Meter Verification* test and verify the entire flowmeter installation. This parameter results in the diagnostic performing the transmitter calibration verification, sensor calibration verification, coil health check, and electrode health check. Transmitter calibration and sensor calibration are verified to the percentage associated with the test condition selected when the test was initiated. This setting applies to manually initiated tests only.

Transmitter

Run the *SMART Meter Verification* test on the transmitter only. This results in the verification test only checking the transmitter calibration to the limits of the test criteria selected when the verification test was initiated. This setting applies to manually initiated tests only.

Sensor

Run the *SMART Meter Verification* test on the sensor only. This results in the verification test checking the sensor calibration to the limits of the test criteria selected when the *SMART Meter Verification* test was initiated, verifying the coil circuit health, and the electrode circuit health. This setting applies to manually initiated tests only.

6.11 Continuous SMART Meter Verification

LOI menu path	Field Mount: Diagnostics, Diag Controls, Cont Meter Ver Wall Mount: N/A
Traditional Fast Keys	1, 2, 1, 3
Device dashboard	2, 2, 6, 4

Continuous SMART Meter Verification can be used to monitor and verify the health of the flowmeter system. The continuous SMART Meter Verification will not report results until 30 minutes after powering up to ensure the system is stable and to avoid false failures. Continuous SMART Meter Verification is only available on the Field Mount Transmitter.

6.11.1 Test scope

Continuous SMART Meter Verification can be configured to monitor the sensor coils, electrodes, transmitter calibration, and analog output. All of these parameters can be individually enabled or disabled. These parameters apply to continuous SMART Meter Verification only.

Coils

LOI menu path	Field Mount: Diagnostics, Diag Controls, Cont Meter Ver, Coils Wall Mount: N/A
Traditional Fast Keys	1, 2, 1, 3, 1
Device dashboard	2, 2, 6, 4, 2, 1

Continuously monitor the sensor coil circuit by enabling this continuous SMART Meter Verification parameter.

Electrodes

LOI menu path	Field Mount: Diagnostics, Diag Controls, Cont Meter Ver, Electrodes Wall Mount: N/A
Traditional Fast Keys	1, 2, 1, 3, 2
Device dashboard	2, 2, 6, 4, 2, 2

Continuously monitor the electrode resistance by enabling this continuous SMART Meter Verification parameter.

Transmitter

LOI menu path	Field Mount: Diagnostics, Diag Controls, Cont Meter Ver, Transmitter Wall Mount: N/A
Traditional Fast Keys	1, 2, 1, 3, 3
Device dashboard	2, 2, 6, 4, 2, 3

Continuously monitor the transmitter calibration by enabling this continuous SMART Meter Verification parameter.

Analog output

LOI menu path	Field Mount: Diagnostics, Diag Controls, Cont Meter Ver, Analog Output Wall Mount: N/A	
Traditional Fast Keys	1, 2, 1, 3, 4	
Device dashboard	2, 2, 6, 4, 2, 4	

Continuously monitor the analog output signal by enabling this continuous SMART Meter Verification parameter.

6.12 SMART Meter Verification test results

If the SMART Meter Verification test is manually initiated, the transmitter will make several measurements to verify the transmitter calibration, sensor calibration, coil circuit health, and electrode circuits health. The results of these tests can be reviewed and recorded on the "Calibration Verification Report" on page 137. This report can be used to validate that the meter is within the required calibration limits to comply with governmental regulatory agencies.

Depending on the method used to view the results, they will be displayed in either a menu structure, as a method, or in the report format. When using the HART Field Communicator, each individual component can be viewed as a menu item. When using the LOI, the parameters are viewed as a method using the left arrow key to cycle through the results. In AMS Device Manager, the "Calibration Verification Report" on page 137 is populated with the necessary data eliminating the need to manually complete the report.

When using AMS Device Manager, there are two possible methods that can be used to print the report.

Method one involves using the print functionality within the EDDL screen. This print functionality essentially prints a screen shot of the report. If using a standard DD, then a screen capture will need to be taken using the "Print Screen" button on the keyboard and pasting the image into a word document.

Method two involves using the print feature within AMS Device Manager while on the status screen. This will result in a printout of all of the information stored on the status tabs. Page two of the report will contain all of the necessary calibration verification result data.

The results are displayed in the order found in the table below. Each parameter displays a value used in the *SMART Meter Verification* diagnostic evaluation of the meter health.

	Parameter	Field mount LOI menu path (Diagnostics, Variables, MV Results, Manual Results)	Traditional Fast Keys	Device Dashboard Fast Keys
1	Test Condition	Test Condition	1, 2, 3, 2, 2, 1, 1	3, 4, 1, 5, 4, 1
2	Test Criteria	Test Criteria	1, 2, 3, 2, 2, 1, 2	3, 4, 1, 3
3	8714i Test Result	MV Results	1, 2, 3, 2, 2, 1, 3	3, 4, 1, 5, 4, 2
4	Simulated Velocity	Sim Velocity	1, 2, 3, 2, 2, 1, 4	3, 4, 1, 5, 3, 1
5	Actual Velocity	Actual Velocity	1, 2, 3,2, 2, 1, 5	3, 4, 1, 5, 3, 2
6	Velocity Deviation	Flow Sim Dev	1, 2, 3, 2, 2, 1, 6	3, 4, 1, 5, 3, 3
7	Xmtr Cal Test Result	Xmtr Cal Verify	1, 2, 3, 2, 2, 1, 7	3, 4, 1, 5, 3, 4
8	Sensor Cal Deviation	Sensor Cal Dev	1, 2, 3, 2, 2, 1, 8	3, 4, 1, 5, 2, 3
9	Sensor Cal Test Result	Sensor Cal	1, 2, 3, 2, 2, 1, 9	3, 4, 1,5, 2, 4
10	Coil Circuit Test Result	Coil Circuit	1, 2, 3, 2, 2, 1, ⁽¹⁾	3, 4, 1, 5, 1, 3
11	Electrode Circuit Test Result	Electrode Ckt	1, 2, 3, 2, 2, 1,(1)	3, 4, 1, 5, 1, 6

Table 6-2. Manual Smart Meter Verification Test Result Parameters

Table 6-3. Continuous Smart Meter Verification Test Result Parameters⁽¹⁾

	Parameter	Field mount LOI menu path (Diagnostics, Variables, MV Results, Continual Res,)	Traditional Fast Keys	Device Dashboard Fast Keys
1	Continuous Limit	Test Criteria	1, 2, 3, 2, 2, 2, 1	3, 4, 2, 2
2	Simulated Velocity	Sim Velocity	1, 2, 3, 2, 2, 2, 2	3, 2, 4, 3, 1
3	Actual Velocity	Actual Velocity	1, 2, 3, 2, 2, 2, 3	3, 2, 4, 3, 2
4	Velocity Deviation	Flow Sim Dev	1, 2, 3, 2, 2, 2, 4	3, 2, 4, 3, 3
5	Coil Signature	Coil Inductance	1, 2, 3, 2, 2, 2, 5	3, 2, 4, 2, 2
6	Sensor Cal Deviation	Sensor Cal Dev	1, 2, 3, 2, 2, 2, 6	3, 2, 4, 2, 3
7	Coil Resistance	Coil Resist	1, 2, 3, 2, 2, 2, 7	3, 2, 4, 2, 1
8	Electrode Resistance	Electrode Res	1, 2, 3, 2, 2, 2, 8	3, 2, 4, 2, 4
9	mA Expected	4-20 mA Expect	1, 2, 3, 2, 2, 2, 9	3, 2, 4, 4, 1
10	mA Actual	4-20 mA Actual	1, 2, 3, 2, 2, 2, ⁽²⁾	3, 2, 4, 4, 2
11	mA Deviation	AO FB Dev	1, 2, 3, 2, 2, 2,(2)	3, 2, 4, 4, 3

1. Only available on Field Mount Transmitter.

2. To get to this value, use the down arrow to scroll through the menu list.
6.13 SMART Meter Verification measurements

The SMART Meter Verification test will make measurements of the coil resistance, coil signature, and electrode resistance and compare these values to the values taken during the sensor signature process to determine the sensor calibration deviation, the coil circuit health, and the electrode circuit health. In addition, the measurements taken by this test can provide additional information when troubleshooting the meter.

Coil circuit resistance

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual Measure, Coil Resist Wall Mount: XMTR INFO	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, Coil Resist Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 2, 5, 1, 1	1, 2, 3, 2, 5, 2, 1
Device dashboard	3, 4, 1, 3, 1	3, 2, 4, 2, 1

The *coil circuit resistance* is a measurement of the coil circuit health. This value is compared to the coil circuit resistance baseline measurement taken during the sensor signature process to determine coil circuit health. This value can be continuously monitored using *continuous SMART Meter Verification*.

Coil signature

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual Measure, Coil Inductance; Wall Mount: XMTR INFO	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, Coil Inductance Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 2, 5, 1, 2	1, 2, 3, 2, 5, 2, 2
Device dashboard	3, 4, 1, 3, 2	3, 2, 4, 2, 2

The *coil signature* is a measurement of the magnetic field strength. This value is compared to the coil signature baseline measurement taken during the sensor signature process to determine sensor calibration deviation. This value can be continuously monitored using *continuous SMART Meter Verification*.

Electrode circuit resistance

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual Measure, Electrode Res Wall Mount: XMTR INFO	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, Electrode Res Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 2, 5, 1, 3	1, 2, 3, 2, 5, 2, 3
Device dashboard	3, 4, 1, 3, 3	3, 2, 4, 2, 4

The *electrode circuit resistance* is a measurement of the electrode circuit health. This value is compared to the electrode circuit resistance baseline measurement taken during the sensor signature process to determine electrode circuit health. This value can be continuously monitored using *continuous SMART Meter Verification*.

Actual velocity

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Manual Measure, Actual Velocity Wall Mount: XMTR INFO	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, Actual Velocity Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 2, 2, 1, 5	1, 2, 3, 2, 5, 2, 4
Device dashboard	3, 4, 1, 5, 3, 2	3, 2, 4, 3, 2

The *actual velocity* is a measurement of the simulated velocity signal. This value is compared to the simulated velocity to determine transmitter calibration deviation. This value can be continuously monitored using *continuous SMART Meter Verification*.

Flow simulation deviation

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Variables, MV Results, Manual Results, Flow Sim Dev Wall Mount: XMTR INFO	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, Flow Sim Dev Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 2, 2, 1, 6	1, 2, 3, 2, 2, 2, 4
Device dashboard	3, 4, 1, 5, 3, 3	3, 2, 4, 3, 3

The flow simulation deviation is a measurement of the percent difference between the simulated velocity and the actual measured velocity from the transmitter calibration verification test. This value can be continuously monitored using *continuous SMART Meter Verification*.

4-20 mA expected value

	Manual	Continuous	
LOI menu path	Field Mount: Diagnostics, Advanced Diag, 4-20 mA Verify, View Results	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, 4-20 mA Expect	
	waii wount. N/A	waii wount. N/A	
Traditional Fast Keys	1, 2, 3, 3, 2	1, 2, 3, 2, 5, 2, 5	
Device dashboard	N/A	3, 2, 4, 4, 1	

The 4-20 mA expected value is the simulated analog signal used for the 4-20 mA meter verification test. This value is compared to the actual analog signal to determine analog output deviation. This value can be continuously monitored using *continuous SMART Meter Verification*.

4-20 mA actual value

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Advanced Diag, 4-20 mA Verify, View Results	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, 4-20 mA Actual
Traditional Fast Keys	ys 1, 2, 3, 3, 2 1, 2, 3, 2, 5, 2, 6	
Device dashboard	N/A	3, 2, 4, 4, 1

The 4-20 mA actual value is the measured analog signal used for the 4-20 mA meter verification test. This value is compared to the simulated analog signal to determine analog output deviation. This value can be continuously monitored using *continuous SMART Meter Verification*.

4-20 mA deviation

	Manual	Continuous
LOI menu path	Field Mount: Diagnostics, Advanced Diag, 4-20 mA Verify, View Results Wall Mount: N/A	Field Mount: Diagnostics, Advanced Diag, Meter Verify, Measurements, Continual Meas, AO FB Dev Wall Mount: N/A
Traditional Fast Keys	1, 2, 3, 3, 2	1, 2, 3, 2, 2, 2,(1)
Device dashboard	N/A	3, 2, 4, 4, 1

1. To get to this value, the down arrow must be used to scroll through the menu list.

The 4-20 mA deviation is a measurement of the percent difference between the simulated analog signal and the actual measured analog signal from the analog output verification test. This value can be continuously monitored using *continuous SMART Meter Verification*.

6.14 Optimizing the SMART Meter Verification

The SMART Meter Verification diagnostic can be optimized by setting the test criteria to the desired levels necessary to meet the compliance requirements of the application. The following examples below will provide some guidance on how to set these levels.

Example

An effluent meter must be certified annually to comply with environmental regulations. This example regulation requires that the meter be certified to five percent.

Since this is an effluent meter, shutting down the process may not be viable. In this instance the *SMART Meter Verification* test will be performed under flowing conditions. Set the *test criteria* for *flowing, full* to five percent to meet the requirements of the governmental agencies.

Example

A pharmaceutical company requires bi-annual verification of meter calibration on a critical feed line for one of their products. This is an internal standard, and the plant requires a calibration record be kept on-hand. Meter calibration on this process must meet two percent. The process is a batch process so it is possible to perform the calibration verification with the line full and with no flow.

Since the *SMART Meter Verification* test can be run under no flow conditions, set the *test criteria* for *no flow* to two percent to comply with the necessary plant standards.

Example

A food and beverage company requires an annual calibration of a meter on a product line. The plant standard calls for the accuracy to be three percent or better. They manufacture this product in batches, and the measurement cannot be interrupted when a batch is in process. When the batch is complete, the line goes empty.

Since there is no means of performing the *SMART Meter Verification* test while there is product in the line, the test must be performed under empty pipe conditions. The *test criteria* for *empty pipe* should be set to three percent, and it should be noted that the electrode circuit health cannot be verified.

6.14.1 Optimizing continuous SMART Meter Verification

Example

For continuous SMART Meter Verification, there is only one test criteria value to configure, and it will be used for all flow conditions. The factory default is set to five percent to minimize the potential for false failures under empty pipe conditions. For best results, set the criteria to match the maximum value of the three test criteria set during manual meter verification (*no flow, flowing full, and empty pipe*).

For example, a plant might set the following manual meter verification test criteria: two percent for *no flow*, three percent for *flowing full*, and four percent for *empty pipe*. In this case, the maximum test criterion is four percent, so the test criteria for *continuous SMART Meter Verification* should be set to four percent. If the tolerance band is set too tightly, under empty pipe conditions or noisy flowing conditions, a false failure of the transmitter test may occur.

6.15 Calibration Verification Report

Calibration verification report parameters				
User Name:	Calibration Conditions:	🗖 Internal	External	
Tag Number:	Test Conditions:	Gamma Flowing	□ No Flow, Full Pipe	Empty Pipe
Flowmeter	r information and co	nfiguratior	ı	
Software Tag:	PV URV (20 mA scale):			
Calibration Number:	PV LRV (4 mA scale):			
Line Size:	PV Damping:			
Transmitter calibration verification results	Sensor	calibration	verification result	S
Simulated Velocity:	Sensor Deviation %:			
Actual Velocity:	Sensor Test:	D PASS /	FAIL / NOT TES	STED
Deviation %:	Coil Circuit Test:	D PASS /	FAIL / NOT TES	STED
Transmitter: D PASS / D FAIL / D NOT TESTED	Electrode Circuit Test:	D PASS /	FAIL / NOT TES	STED
Summary of calibration verification results				
Verification Results: The result of the flowmeter verification test is: 🗖 PASSED / 🛛 FAILED				
Verification Criteria: This meter was verified to be func	tioning within	% of dev	viation from the original	test parameters.
Signature:	Date:			

Section 7 Digital Signal Processing

Introduction	page 139
Safety messages	page 139
Process noise profiles	page 140
High process noise diagnostic	page 140
Optimizing flow reading in noisy applications	page 141
Explanation of signal processing algorithm	page 145

7.1 Introduction

Magmeters are used in applications that can create noisy flow readings. The Rosemount[™] 8750W Magnetic Flowmeter has the capability to deal with difficult applications that have previously manifested themselves in a noisy output signal. In addition to selecting a higher coil drive frequency (37 Hz vs. 5 Hz) to isolate the flow signal from the process noise, the Rosemount 8750W microprocessor has digital signal processing capable of rejecting the noise specific to the application. This section explains the different types of process noise, provides instructions for optimizing the flow reading in noisy applications, and provides a detailed description of the digital signal processing functionality.

7.2 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Read the following safety messages before performing any operation described in this section.

AWARNING

Explosions could result in death or serious injury.

- Verify the operating atmosphere of the sensor and transmitter is consistent with the appropriate hazardous locations certifications.
- Do not remove transmitter cover in explosive atmospheres when the circuit is alive.
- Before connecting a HART[®]-based communicator in an explosive atmosphere, make sure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.

Failure to follow safe installation and servicing guidelines could result in death or serious injury.

- Make sure only qualified personnel perform the installation.
- Do not perform any service other than those contained in this manual unless qualified.
- Process leaks could result in death or serious injury.
- High voltage that may be present on leads could cause electrical shock.
- Avoid contact with leads and terminals.

7.3 **Process noise profiles**

7.3.1 1/f noise

This type of noise has higher amplitudes at lower frequencies, but generally degrades over increasing frequencies. Potential sources of 1/f noise include chemical mixing and slurry flow particles rubbing against the electrodes.

7.3.2 Spike noise

This type of noise generally results in a high amplitude signal at specific frequencies which can vary depending on the source of the noise. Common sources of spike noise include chemical injections directly upstream of the flowmeter, hydraulic pumps, and slurry flows with low concentrations of particles in the stream. The particles bounce off of the electrode generating a "spike" in the electrode signal. An example of this type of flow stream would be a recycle flow in a paper mill.

7.3.3 White noise

This type of noise results in a high amplitude signal that is relatively constant over the frequency range. Common sources of white noise include chemical reactions or mixing that occurs as the fluid passes through the flowmeter and high concentration slurry flows where the particulates are constantly passing over the electrode head. An example of this type of flow stream would be a basis weight stream in a paper mill.

7.4 High process noise diagnostic

The transmitter continuously monitors signal amplitudes over a wide range of frequencies. For the high process noise diagnostic, the transmitter specifically looks at the signal amplitude at frequencies of 2.5 Hz, 7.5 Hz, 32.5 Hz, and 42.5 Hz. The transmitter uses the values from 2.5 and 7.5 Hz and calculates an average noise level. This average is compared to the amplitude of the signal at 5 Hz. If the signal amplitude is not 25 times greater than the noise level, and the coil drive frequency is set at 5 Hz, the *high process noise diagnostic* will trip indicating that the flow signal may be compromised. The transmitter performs the same analysis around the 37.5 Hz coil drive frequency using the 32.5 Hz and 42.5 Hz values to establish a noise level.

7.5 Optimizing flow reading in noisy applications

If the flow reading of the Rosemount 8750W is unstable, first check the wiring, grounding, and process reference associated with the magnetic flowmeter system. Ensure the following conditions are met:

- Ground straps are attached to the adjacent flange or ground ring
- Grounding rings, lining protectors, or a process reference electrode are being used in lined or non-conductive piping

The causes of unstable transmitter output can usually be traced to extraneous voltages on the measuring electrodes. This "process noise" can arise from several causes including electrochemical reactions between the fluid and the electrode, chemical reactions in the process itself, free ion activity in the fluid, or some other disturbance of the fluid/electrode capacitive layer. In such noisy applications, an analysis of the frequency spectrum reveals process noise that typically becomes significant below 15 Hz.

In some cases, the effects of process noise may be sharply reduced by elevating the coil drive frequency above the 15 Hz region. The Rosemount 8750W coil drive mode is selectable between the standard 5 Hz and the noise-reducing 37 Hz. The 37 Hz coil drive frequency should only be used on sensor sizes 16-in. and smaller.

7.5.1 Coil drive frequency

LOI menu path	Field Mount: Device Setup, Detailed Setup, Additional Params, Coil Drive Freq Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 1, 1
Device dashboard	2, 2, 8, 3

This parameter changes the pulse rate of the magnetic coils.

5 Hz

The standard coil drive frequency is 5 Hz, which is sufficient for nearly all applications.

37 Hz

If the process fluid causes a noisy or unstable flow reading, increase the coil drive frequency to 37 Hz. If the 37 Hz mode is selected, perform the auto zero function for optimum performance.

7.5.2 Auto zero

LOI menu path	Field Mount: Device Setup, Diagnostics, Trims, Auto Zero Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 5, 4
Device dashboard	2, 2, 8, 4

To ensure optimum accuracy when using 37 Hz coil drive mode, there is an auto zero function that should be initiated. When using 37 Hz coil drive mode it is important to zero the system for the specific application and installation.

The auto zero procedure should be performed only under the following conditions:

- With the transmitter and sensor installed in their final positions. This procedure is not applicable on the bench.
- With the transmitter in 37 Hz coil drive mode. Never attempt this procedure with the transmitter in 5 Hz coil drive mode.
- With the sensor full of process fluid at zero flow.

These conditions should cause an output equivalent to zero flow.

Set the loop to manual if necessary and begin the auto zero procedure. The transmitter completes the procedure automatically in about 90 seconds. A clock symbol will appear in the lower right-hand corner of the display to indicate that the procedure is running.

Note

Failure to complete an *auto zero* may result in a flow velocity error of 5 to 10% at 1 ft/s (0.3 m/s). While the output level will be offset by the error, the repeatability will not be affected.

7.5.3 Digital signal processing (DSP)

LOI menu path	Field Mount: Device Setup, Detailed Setup, Signal Processing Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 4
Device dashboard	2, 2, 8, 6

The Rosemount 8750W contains several advanced functions that can be used to stabilize erratic outputs caused by process noise. The signal processing menu contains this functionality.

If the 37 Hz coil drive frequency has been set, and the output is still unstable, the damping and signal processing function should be used. It is important to set the coil drive frequency to 37 Hz to increase the flow sampling rate.

The Rosemount 8750W provides an easy and straightforward start-up, and also incorporates the capability to deal with difficult applications that have previously manifested themselves in a noisy output signal. In addition to selecting a higher coil drive frequency (37 Hz vs. 5 Hz) to isolate the flow signal from the process noise, the Rosemount 8750W microprocessor can actually scrutinize each input based on three user-defined parameters to reject the noise specific to the application.

Operating mode

LOI menu path	Field Mount: Device Setup, Detailed Setup, Signal Processing, Operating Mode
	Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 4, 1
Device dashboard	2, 2, 8, 5

The operating mode should be used only when the signal is noisy and gives an unstable output. *Filter mode* automatically uses 37 Hz coil drive mode and activates signal processing at the factory set default values. When using *filter mode*, perform an *auto zero* with no flow and a full sensor. Either of the parameters, coil drive mode or signal processing, may still be changed individually. Turning signal processing off or changing the coil drive frequency to 5 Hz will automatically change the *operating mode* from *filter mode* to *normal mode*.

This software technique, known as signal processing, "qualifies" individual flow signals based on historic flow information and three user-definable parameters, plus an on/off control. These parameters are described below.

Status

LOI menu path	Field Mount: Device Setup, Detailed Setup, Signal Processing, Main Config DSP, Status
	Wall Mount: N/A
Traditional Fast Keys	1, 4, 4, 2, 1
Device dashboard	2, 2, 8, 6, 1

Enable or disable the DSP capabilities. When ON is selected, the Rosemount 8750W output is derived using a running average of the individual flow inputs. Signal processing is a software algorithm that examines the quality of the electrode signal against user-specified tolerances. The three parameters that make up signal processing (number of samples, maximum percent limit, and time limit) are described below.

Number of samples

LOI menu path	Field Mount: Device Setup, Detailed Setup, Signal Processing, Main Config DSP, Samples
	Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 4, 2, 2
Device dashboard	2, 2, 8, 6, 2

The *number of samples* sets the amount of time that inputs are collected and used to calculate the average value. Each second is divided into tenths with the number of samples equaling the number of increments used to calculate the average. This parameter can be configured for an integer value between 1 and 125. The default value is 90 samples.

For example:

- A value of 1 averages the inputs over the past 1/10 second
- A value of 10 averages the inputs over the past 1 second
- A value of 100 averages the inputs over the past 10 seconds
- A value of 125 averages the inputs over the past 12¹/₂ seconds

Percent limit

LOI menu path	Field Mount: Device Setup, Detailed Setup, Signal Processing, Main Config DSP, % Limit
	Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 4, 2, 3
Device dashboard	2, 2, 8, 6, 3

This parameter will set the tolerance band on either side of the running average, referring to percent deviation from the average. Values within the limit are accepted while value outside the limit are scrutinized to determine if they are a noise spike or an actual flow change. This parameter can be configured for an integer value between 0 and 100 percent. The default value is 2 percent.

Time limit

LOI menu path	Field Mount: Device Setup, Detailed Setup, Signal Processing, Main Config DSP, Time Limit Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 4, 4, 2, 4
Device dashboard	2, 2, 8, 6, 4

The *time limit* parameter forces the output and running average values to the new value of an actual flow rate change that is outside the *percent limit* boundaries. It thereby limits response time to flow changes to the time limit value rather than the length of the running average.

If the number of samples selected is 100, then the response time of the system is 10 seconds. In some cases this may be unacceptable. Setting the *time limit* forces the Rosemount 8750W to clear the value of the running average and re-establish the output and average at the new flow rate once the time limit has elapsed. This parameter limits the response time added to the loop. A suggested time limit value of two seconds is a good starting point for most applicable process fluids. This parameter can be configured for a value between 0.6 and 256 seconds. The default value is 2 seconds.

7.6 Explanation of signal processing algorithm

An example plotting flow rate versus time is given below to help visualize the signal processing algorithm.

X. Input flow signal from sensor

O. Average flow signals and transmitter output, determined by the number of samples parameter

Tolerance band, determined by the *percent limit* parameter.

- Upper value = average flow + [(percent limit/100) average flow]
- Lower value = average flow [(percent limit/100) average flow]
- 1. This scenario is that of a typical non-noisy flow. The input flow signal is within the percent limit tolerance band, therefore qualifying itself as a good input. In this case the new input is added directly into the running average and is passed on as a part of the average value to the output.
- 2. This signal is outside the tolerance band and therefore is held in memory until the next input can be evaluated. The running average is provided as the output.
- 3. The previous signal currently held in memory is simply rejected as a noise spike since the next flow input signal is back within the tolerance band. This results in complete rejection of noise spikes rather than allowing them to be "averaged" with the good signals as occurs in the typical analog damping circuits.
- 4. As in number 2 above, the input is outside the tolerance band. This first signal is held in memory and compared to the next signal. The next signal is also outside the tolerance band (in the same direction), so the stored value is added to the running average as the next input and the running average begins to slowly approach the new input level.
- 5. To avoid waiting for the slowly incrementing average value to catch up to the new level input, an algorithm is provided. This is the "time limit" parameter. The user can set this parameter to eliminate the slow ramping of the output toward the new input level.

Section 8 Maintenance

Introduction	page 147
Safety information	page 147
Installing a Local Operator Interface (LOI)	page 148
Replacing the Rosemount 8750W Transmitter electronics stack	page 149
Replacing the terminal block	page 151
Trims	page 152
Review	page 155

8.1 Introduction

This section covers basic transmitter maintenance. Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Read the following safety messages before performing any operation described in this section. Refer to these warnings when appropriate throughout this section.

8.2 Safety information

AWARNING

Failure to follow these guidelines could result in death or serious injury.

- Installation and servicing instructions are for use by qualified personnel only. Do
 not perform any servicing other than that contained in the operating instructions,
 unless qualified.
- Verify the operating environment of the sensor and transmitter is consistent with the appropriate hazardous area approval.
- Do not connect a Rosemount[™] 8750W Magnetic Flowmeter to a non-Rosemount sensor that is located in an explosive atmosphere.
- Mishandling products exposed to a hazardous substance may result in death or serious injury. If the product being returned was exposed to a hazardous substance as defined by OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous substance identified must be included with the returned goods.

8.3 Installing a Local Operator Interface (LOI)

- 1. If the transmitter is installed in a control loop, secure the loop.
- 2. Remove power from the transmitter.
- 3. Remove the cover on the electronics compartment of the transmitter housing. If the cover has a cover jam screw, loosen it before removing the cover. See Figure 2-16 on page 19 for details on the cover jam screw.
- 4. On the electronics stack, locate the serial connection labeled "DISPLAY". See Figure 8-1.
- 5. Plug the serial connector from the back of the LOI into the receptacle on the electronics stack. The LOI can be rotated in 90 degree increments to provide the best viewing position. Rotate the LOI to the desired orientation, taking care to not exceed 360 degrees of rotation. Exceeding 360 degrees of rotation could damage the LOI cable and/or connector.
- 6. Once the serial connector is installed on the electronics stack, and the LOI is oriented in the desired position, tighten the three mounting screws.
- 7. Install the extended cover with the glass viewing pane and tighten to metal-to-metal contact. If the cover has a cover jam screw, this must be tightened to comply with installation requirements. Return power to the transmitter and verify that it is functioning correctly and reporting the expected flow rate.
- 8. If installed in a control loop, return the loop to automatic control.

8.4 Replacing the Rosemount 8750W Transmitter electronics stack

8.4.1 Field mount transmitter

Prior to installing the replacement electronics stack, it is important to verify the transmitter housing you have is the Rosemount 8750WM Transmitter.

Follow the steps below to confirm the transmitter housing is compatible with this electronics kit.

1. Verify the model number is Rosemount 8750WM. If the transmitter model is not Rosemount 8750WM, then these electronics are not compatible. See Figure 8-2 for the location of the model number. Consult the Rosemount 8750W Product Data Sheet (document number 00813-0100-4750) for details on ordering a new transmitter.

Figure 8-2. Field Mount – Transmitter Nameplate Location

2. Verify the electronics board inside the housing is green and looks like the board pictured on the left in Figure 8-3. If the board is not green, or does not look like the board pictured, then the electronics are not compatible.

- 3. Confirm the electronics stack is for an Rosemount 8750W Transmitter. Refer to the picture on the left in Figure 8-4.

Figure 8-4. Field Mount – Electronics Stack Identification

8.5 **Replacing the terminal block**

8.5.1 Removing the terminal block

- 1. Disconnect power to the transmitter and the remote cabling connected to the terminal block.
- 2. To disconnect the terminal block from the junction box housing, remove the two mounting screws and the two divider mounting screws (if applicable).
- 3. Remove the coil and electrode wire clips.

8.5.2 Installing the terminal block

- 1. Connect the coil and electrode clips to the new terminal block.
- 2. Press the terminal block into its keyed position, and tighten the two mounting screws. Install the divider with the two mounting screws (if applicable).
- 3. Reconnect remote cabling and replace junction box cover.
- 4. Reconnect power to the transmitter.

A. Terminal block

Figure 8-5. Terminal Block

A. Terminal block B. Coil and electrode lead wires

8.6 Trims

LOI menu path	Field Mount: Diagnostics, Trims Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 5
Device dashboard	3, 4

Trims are used to calibrate the analog loop, calibrate the transmitter, re-zero the transmitter, and calibrate the transmitter with another manufacturer's sensor. Proceed with caution whenever performing a trim function.

8.6.1 D/A trim

LOI menu path	Field Mount: Diagnostics, Trims, D/A Trim Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 5, 1
Device dashboard	3, 4, 4, 5

The *D/A trim* is used to calibrate the 4-20mA analog loop output from the transmitter. For maximum accuracy, the analog output should be trimmed for your system loop. Use the following steps to complete the output trim function.

- 1. Set the loop to manual, if necessary.
- 2. Connect a precision ammeter in the 4-20mA loop.
- 3. Initiate the *D*/*A trim* function.
- 4. Enter the 4mA meter value when prompted to do so.
- 5. Enter the 20mA meter value when prompted to do so.
- 6. Return the loop to automatic control, if necessary.

The 4-20mA trim is now complete. The *D*/*A* trim can be repeated to check the results. Alternatively, the analog output test can also be used to verify loop performance.

8.6.2 Scaled D/A trim

LOI menu path	Field Mount: Device Setup, Diagnostics, Trims, Scaled D/A Trim Wall Mount: N/A
Traditional Fast Keys	1, 2, 5, 2 or 1, 4, 2, 1, 7
Device dashboard	3, 4, 4, 6

A *scaled D/A trim* enables calibration of the flowmeter analog output using a different scale than the standard 4-20mA output scale. Non-scaled D/A trimming (described above), is typically performed using an ammeter where calibration values are entered in units of milliamperes. Scaled D/A trimming enables trimming of the flowmeter using a scale that may be more convenient based upon the method of measurement.

For example, it may be more convenient to make current measurements by direct voltage readings across the loop resistor. If the loop resistor is 500 ohms, and calibration of the meter will be done using voltage measurements across this resistor, the trim points can be rescaled from 4-20mA to 4-20mA x 500 ohm or 2-10VDC. Once the scaled trim points have been entered as 2 and 10, calibration of the flowmeter can be done by entering voltage measurements directly from the voltmeter.

8.6.3 Digital trim

LOI menu path	Field Mount: Device Setup, Diagnostics, Trims, Digital Trim Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 5, 3
Device dashboard	3, 4, 5

Digital trim is the function by which the factory calibrates the transmitter. This procedure is rarely needed by users. It is only necessary if the Rosemount 8750W is suspected to be no longer accurate. A Rosemount 8714D Calibration Standard is required to complete a *digital trim*. Attempting a *digital trim* without a Rosemount 8714D Calibration Standard may result in an inaccurate transmitter or an error message. The *digital trim* must be performed with the coil drive mode set to 5Hz and with a nominal sensor calibration number stored in the memory.

Note

Attempting a *digital trim* without a Rosemount 8714D Calibration Standard may result in an inaccurate transmitter, or a "DIGITAL TRIM FAILURE" message may appear. If this message occurs, no values were changed in the transmitter. Simply cycle power on the Rosemount 8750W to clear the message.

To simulate a nominal sensor with the Rosemount 8714D Calibration Standard, change/verify the following five parameters in the Rosemount 8750W:

- 1. Calibration Number-100001501000000
- 2. Units-ft/s
- 3. PV URV-20mA = 30.00 ft/s
- 4. PV LRV-4mA = 0 ft/s
- 5. Coil Drive Frequency-5Hz

Note

Before changing any of the configuration parameters, be sure to record the original values so that the transmitter can be returned to the original configuration prior to being placed back into operation. Failure to return the settings to the original configuration will result in incorrect flow and totalizer readings.

The instructions for changing the calibration number, units, PV URV, and PV LRV are located in "Basic setup" on page 32. Instructions for changing the coil drive frequency can be found on "Coil drive frequency" on page 106.

Set the loop to manual (if necessary) and then complete the following steps:

- 1. Power down the transmitter.
- 2. Connect the transmitter to a Rosemount 8714D Calibration Standard.
- 3. Power up the transmitter with the Rosemount 8714D connected and read the flow rate. The electronics need about a 5-minute warm-up time to stabilize.
- 4. Set the 8714D Calibration Standard to the 30 ft/s (9.1 m/s) setting.
- 5. The flow rate reading after warm-up should be between 29.97 (9.1 m/s) and 30.03 ft/s (9.2 m/s).
- 6. If the reading is within the range, return the transmitter to the original configuration parameters.
- 7. If the reading is not within this range, initiate a digital trim with the LOI or Field Communicator. The digital trim takes about 90 seconds to complete. No transmitter adjustments are required.

8.6.4 Universal trim

LOI menu path	Field Mount: Device Setup, Diagnostics, Trims, Universal Trim Wall Mount: AUX. FUNCTION
Traditional Fast Keys	1, 2, 5, 5
Device dashboard	2, 4, 1

The universal auto trim function enables the Rosemount 8750W to calibrate sensors that were not calibrated at the Rosemount factory. The function is activated as one step in a procedure known as in-process calibration. If a Rosemount sensor has a 16-digit calibration number, in-process calibration is not required. If it does not, or if the sensor is made by another manufacturer, complete the following steps for in-process calibration. Refer to Appendix D: Implementing a Universal Transmitter.

1. Determine the flow rate of the process fluid in the sensor.

Note

The flow rate in the line can be determined by using another sensor in the line, by counting the revolutions of a centrifugal pump, or by performing a bucket test to determine how fast a given volume is filled by the process fluid.

2. Complete the universal auto trim function.

When the routine is completed, the sensor is ready for use.

8.7 Review

LOI menu path	Field Mount: Device Setup, Review Wall Mount: XMTR INFO
Traditional Fast Keys	1, 5
Device dashboard	N/A

The 8750W includes a capability to review the configuration variable settings.

The flowmeter configuration parameters set at the factory should be reviewed to ensure accuracy and compatibility with the particular application of the flowmeter.

Note

If the LOI is used to review variables, each variable must be accessed as if changing its setting. The value displayed on the LOI screen is the configured value of the variable.

Section 9 Troubleshooting

Introduction	page 157
Safety messages	page 157
Installation check and guide	page 158
Diagnostic messages	page 160
Basic troubleshooting	page 170
Sensor troubleshooting	page 174
Technical support	page 178
Service	page 178

9.1 Introduction

This section covers basic transmitter and sensor troubleshooting. Problems in the magnetic flowmeter system are usually indicated by incorrect output readings from the system, error messages, or failed tests. Consider all sources when identifying a problem in the system. If the problem persists, consult the local Emerson[™] Process Management representative to determine if the material should be returned to the factory. Emerson offers several diagnostics that aid in the troubleshooting process. Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Read the following safety messages before performing any operation described in this section. Refer to these warnings when appropriate throughout this section.

The Rosemount[™] 8750W performs self-diagnostics on the entire magnetic flowmeter system: the transmitter, the sensor, and the interconnecting wiring. By sequentially trouble-shooting each individual piece of the magmeter system, it becomes easier to identify the problem and make the appropriate adjustments.

If there are problems with a new magmeter installation, see "Installation check and guide" below for a quick guide to solve the most common installation problems. For existing magmeter installations, Table 9-7 on page 170 lists the most common magmeter problems and corrective actions.

9.2 Safety messages

AWARNING

Failure to follow these guidelines could result in death or serious injury.

- Installation and servicing instructions are for use by qualified personnel only. Do
 not perform any servicing other than that contained in the operating instructions,
 unless qualified. Verify the operating environment of the sensor and transmitter is
 consistent with the appropriate hazardous area approval.
- Mishandling products exposed to a hazardous substance may result in death or serious injury. If the product being returned was exposed to a hazardous substance as defined by OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous substance identified must be included with the returned goods.

9.3 Installation check and guide

Use this guide to check new installations of Rosemount magnetic flowmeter systems that appear to malfunction.

9.3.1 Transmitter

Before applying power to the magnetic flowmeter system, perform the following transmitter checks:

- 1. Record the transmitter model number and serial number.
- 2. Visually inspect the transmitter for any damage including the terminal block.
- 3. Verify the proper wiring connections have been made for the power and outputs.

Apply power to the magnetic flowmeter system before making the following transmitter checks:

- 1. Check for an active error message or status alert. Refer to "Diagnostic messages".
- 2. Verify the correct sensor calibration number is entered in the transmitter. The calibration number is listed on the sensor nameplate.
- 3. Verify the correct sensor line size is entered in the transmitter. The line size value is listed on the sensor nameplate.
- 4. Verify the analog range of the transmitter matches the analog range in the control system.
- 5. Verify the forced analog output and forced pulse output of the transmitter produces the correct output at the control system.
- 6. If desired, use a Rosemount 8714D to verify the transmitter calibration.

9.3.2 Sensor

Be sure that power to magnetic flowmeter system is removed before beginning the following sensor checks:

- 1. Record the sensor model number and serial number.
- 2. Visually inspect the sensor for any damage including inside the remote junction box, if applicable.
- 3. For horizontal flow installations, ensure the electrodes remain covered by process fluid. For vertical or inclined installations, ensure the process fluid is flowing up into the sensor to keep the electrodes covered by process fluid.
- 4. Verify the flow arrow is pointing in the same direction as forward flow.
- 5. Ensure the grounding straps on the sensor are connected to grounding rings or the adjacent pipe flanges. Improper grounding will cause erratic operation of the system. Sensors with a ground electrode will not require the grounding straps to be connected.

9.3.3 Remote wiring

- 1. The electrode signal and coil drive wires must be separate cables, unless Rosemount specified combo cable is used. See "Wiring the transmitter" on page 19.
- 2. The electrode signal wire and coil drive wire must be twisted shielded cable. Rosemount recommends 20 AWG twisted shielded cable for the electrode signal and 14 AWG twisted shielded cable for the coil drive. See "Wiring the transmitter" on page 19.
- 3. See Appendix B: Product Certifications regarding wiring installation requirements.
- 4. See Appendix C: Wiring Diagrams for component and/or combination cable wiring.
- 5. Verify there is minimal exposed wiring and shielding. Less than 1-in. (25 mm) is recommended.
- 6. The single conduit that houses both the electrode signal and coil drive cables should not contain any other wires. This includes wires from other magmeters.

Note

For installations requiring intrinsically safe electrodes, the signal and coil drive cables must be run in Individual conduits.

9.3.4 Process fluid

- 1. The process fluid should have a minimum conductivity of 5 microsiemens/cm (5 micro mhos/cm).
- 2. The process fluid must be free of air and gases.
- 3. The sensor must be full of process fluid.
- 4. The process fluid must be compatible with the wetted materials liner, electrodes, ground rings, and lining protectors. Refer to the Rosemount Technical Note titled "Rosemount Magnetic Flowmeter Material Selection Guide" (document number 00816-0100-3033) for details.

9.4 Diagnostic messages

Problems in the magnetic flowmeter system are usually indicated by incorrect output readings from the system, error messages, or failed tests. Consider all sources in identifying a problem in the system.

 Table 9-1. Basic Diagnostic Messages

Error message	Potential cause	Corrective action	
Empty Pipe	Empty pipe	None - message will clear when pipe is full	
	Wiring error	Check that wiring matches appropriate wiring diagrams	
	Electrode error	• Perform sensor tests - see Table 9-8 on page 175	
	Conductivity less than 5 microsiemens per cm	 Increase conductivity to greater than or equal to 5 microsiemens per cm 	
	Intermittent diagnostic	Adjust tuning of empty pipe parameters - see Section 8.4.1	
Coil Open Circuit	Improper wiring	• Check coil drive wiring and sensor coils Perform sensor tests - see Table 9-8 on page 175	
	Other manufacturer's sensor	 Change coil current to 75 mA - set calibration numbers to 10000550100000030 Perform a universal auto-trim to select the proper coil current 	
	Electronics board failure	Replace 8750W electronics stack	
	Coil circuit open fuse	Return the unit to the factory for fuse replacement	
Auto Zero Failure	Flow is not set to zero	• Force flow to zero, perform auto zero trim	
	Unshielded cable in use	Change wire to shielded cable	
	Moisture problems	See Table 9-8 on page 175	
Auto-Trim Failure	No flow in pipe while performing Universal Auto Trim	• Establish a known flow rate, and perform universal auto-trim calibration	
	Wiring error	• Check that wiring matches appropriate wiring diagrams - see "Implementing a Universal Transmitter" on page 221	
	Flow rate is changing in pipe while performing Universal Auto-Trim routine	• Establish a constant flow rate, and perform universal auto-trim calibration	
	Flow rate through sensor is significantly different than value entered during Universal Auto-Trim routine	• Verify flow in sensor and perform universal auto-trim calibration	
	Incorrect calibration number entered into transmitter for Universal Auto-Trim routine	• Replace sensor calibration number with 1000005010000000	
	Wrong sensor size selected	Correct sensor size setting - see "Line size" on page 33	
	Sensor failure	Perform sensor tests - see Table 9-8 on page 175	
Electronics Failure	Electronics self check failure	Cycle power to see if diagnostic message clearsReplace Electronics stack	
Electronics Temp Fail	Ambient temperature exceeded the electronics temperature limits	• Move transmitter to a location with an ambient temperature range of -40 to 140 °F (-40 to 60 °C)	

Table 9-1. Basic Diagnostic Messages

Error message	Potential cause	Corrective action
Reverse Flow	Electrode or coil wires reverse	Verify wiring between sensor and transmitter
	Flow is reverse	• Turn ON Reverse Flow Enable to read flow
	Sensor installed backwards	• Install sensor correctly, or switch either the electrode wires (18 and 19) or the coil wires (1 and 2)
PZR Activated (Positive Zero Return)	External voltage applied to terminals 5 and 6	• Remove voltage to turn PZR off
Pulse Out of Range	The transmitter is trying to generate a frequency greater than allowed	 Standard pulse - increase pulse scaling to prevent pulse output from exceeding 11,000 Hz Intrinsically safe pulse - Increase pulse scaling to prevent pulse output from exceeding 5,500 Hz Pulse output is in fixed pulse mode and is trying to generate a frequency greater than the pulse width can support - see "Pulse width" on page 89 Verify the sensor calibration number and line size are correctly entered in the electronics
Analog Out of Range	Flow rate is greater than analog output range	 Reduce flow, adjust URV and LRV values Verify the sensor calibration number and line sizes are correctly entered in the electronics
Flowrate > 43 ft/sec	Flow rate is greater than 43 ft/sec	• Lower flow velocity, increase pipe diameter
	Improper wiring	 Check coil drive wiring and sensor coils Perform sensor tests - see Table 9-8 on page 175
Digital Trim Failure (Cycle power to	The calibrator (8714B/C/D) is not connected properly	Review calibrator connections
clear messages, no changes were made)	Incorrect calibration number entered into transmitter	• Replace sensor calibration number with 1000015010000000
	Calibrator is not set to 30 FPS	Change calibrator setting to 30 FPS
	Bad calibrator or calibrator cable	Replace calibrator and/or calibrator cable
Coil Over Current ⁽¹⁾	Improper wiring	• Check coil drive wiring and sensor coils Perform sensor tests - see Table 9-8 on page 175
	Transmitter failure	Replace the electronics stack
Coil Power Limit ⁽¹⁾	Improper wiring	• Check coil drive wiring and sensor coils Perform sensor tests - see Table 9-8 on page 175
	Incorrect calibration number	• Verify configured calibration number matches sensor tag
	Transmitter connected to other manufacturer's sensor	 Change coil current to 75 mA - set calibration number to 10000550100000030 Perform a universal auto-trim to select the proper coil current
	Coil drive frequency set to 37 Hz	• Sensor may not be compatible with 37 Hz. Switch coil drive frequency to 5 Hz.
	Sensor failure	• Perform sensor tests - see Table 9-8 on page 175

Table 9-1. Basic Diagnostic Messages

Error message	Potential cause	Corrective action
No AO Power ⁽¹⁾	Improper wiring	• Check the analog loop wiring - see "Wiring the transmitter" on page 19
	No external loop power	 Verify the analog power switch position (internal/external) For externally powered loop, verify power supply requirements see "Powering the transmitter" on page 28
	No loop resistance (open loop)	 Install resistance across the analog output terminals Disable message using LOI Error Mask parameter
	Transmitter failure	Replace the electronics stack
Electrode Saturation ⁽¹⁾	Improper wiring	• See "Wiring the transmitter" on page 19
	Improper process reference	• See "Process reference connection" on page 17
	Improper earth grounding	• Verify earth ground connections - see "Wiring the transmitter" on page 19
	Application requires special transmitter	• Replace transmitter with transmitter that includes special option F0100

1. Only available on the Field Mount Transmitter.

Error message	Potential cause	Corrective action
Grounding/Wiring Fault	Improper installation of wiring	• See "Wiring the transmitter" on page 19
	Coil/electrode shield not connected	• See "Wiring the transmitter" on page 19
	Improper process grounding	See "Process reference connection" on page 17
	Faulty ground connection	• Check wiring for corrosion, moisture in the terminal block -see "Process reference connection" on page 17
	Sensor not full	Verify sensor is fullEnable empty pipe detection
High Process Noise	Slurry flows - mining/pulp stock	 Decrease the flow rate below 10 ft/s (3 m/s) Complete the possible solutions listed under "Troubleshooting high process noise" on page 166
	Chemical additives upstream of the sensor	 Move injection point downstream of the sensor or move the sensor to a new location Complete the possible solutions listed under "Troubleshooting high process noise" on page 166
	Electrode not compatible with the process fluid	Refer to the Rosemount Magnetic Flowmeter Material Selection Guide (document number 00816-0100-3033)
	Gas/air in line	 Move the sensor to another location in the process line to ensure that it is full under all conditions
	Electrode coating	 Enable coated electrode detection diagnostic Use bullet-nose electrodes Downsize sensor to increase flowrate above 3 ft/s (1 m/s) Periodically clean sensor
	Styrofoam or other insulating particles	 Complete the possible solutions listed under "Troubleshooting high process noise" on page 166 Consult factory
	Low conductivity fluids (below 10 microsiemens/cm)	 Trim electrode and coil wires - see "Sensor location" on page 12 Use integral mount transmitter Set coil drive frequency to 37 Hz
Electrode Coating Level 1 ⁽¹⁾	Coating is starting to buildup on electrode and interfering with measurement signal	 Schedule maintenance to clean electrode Use bullet nose electrodes Downsize sensor to increase flow rate above 3 ft/s (1 m/s)
	Process fluid conductivity has changed	Verify process fluid conductivity
Electrode Coating Level 2 ⁽¹⁾	Coating has built-up on electrode and is interfering with measurement signal	 Schedule maintenance to clean electrode Use bullet nose electrodes Downsize sensor to increase flow rate above 3 ft/s (1 m/s)
	Process fluid conductivity has changed	Verify process fluid conductivity

Table 9-2. Advanced Process Diagnostic Messages

1. Only available on the Field Mount Transmitter.

Error message	Potential cause	Corrective action
8714i Failed	Transmitter calibration verification test failed	 Verify pass/fail criteria Rerun SMART[™] Meter Verification (8714i) under no flow conditions Verify calibration using 8714 Calibration Standard Perform digital trim Replace electronics board
	Sensor calibration test failed	 Verify pass/fail criteria Rerun SMART Meter Verification (8714i) Perform sensor tests - see Table 9-8 on page 175
	Sensor coil circuit test failed	 Verify pass/fail criteria Rerun SMART Meter Verification (8714i) Perform sensor tests - see Table 9-8 on page 175
	Sensor electrode circuit test failed	 Verify electrode resistance has a baseline (signature) value from a full pipe baseline Verify test condition was selected properly Verify pass/fail criteria Rerun SMART Meter Verification (8714i) Perform sensor tests - see Table 9-8 on page 175
4-20 mA loop verification failed ⁽¹⁾	Analog loop not powered	 Check 4-20 mA internal/external loop power switch - see "Internal/external analog power" on page 38 Check external supply voltage to the transmitter Check for parallel paths in the current loop
	Transmitter failure	 Perform transmitter self test Perform manual analog loop test and D/A trim if necessary Replace the electronics board
Continuous Meter Verification Error ⁽¹⁾	Transmitter calibration verification test failed	 Verify pass/fail criteria Run manual SMART Meter Verification (8714i) under no flow conditions Verify calibration using 8714D Calibration Standard Perform digital trim Replace electronics stack
	Sensor calibration test failed	 Run manual SMART Meter Verification (8714i) Perform sensor tests - see Table 9-8 on page 175
	Sensor coil circuit test failed	 Run manual SMART Meter Verification (8714i) Perform sensor tests - see Table 9-8 on page 175
	Sensor electrode circuit test failed	 Run manual SMART Meter Verification (8714i) Perform sensor tests - see Table 9-8 on page 175 Verify electrode resistance has a signature value from a full pipe baseline
Simulated Velocity Out of Spec ⁽¹⁾	Unstable flow rate during the verification test or noisy process	• Run manual transmitter verification test with no flow and a full pipe
	Transmitter drift or faulty electronics	 Verify transmitter electronics with 8714D Calibration Standard. The dial on the 8714D should be set to 30 ft/s (9.14 m/s). The transmitter should be set up with the nominal calibration number (1000015010000000) and 5 Hz coil drive frequency. Perform an electronics trim using the 8714 If the electronics trim doesn't correct the issue, replace the electronics

Table 9-3. Advanced Meter Verification Messages

Error message	Potential cause	Corrective action
Coil Resistance Out of Spec ⁽¹⁾	Moisture in the terminal block of the sensor or shorted coil	 Perform sensor tests - see Table 9-8 on page 175 If the problem persists, replace the sensor
Coil Signature Out of Spec ⁽¹⁾	Moisture in the terminal block of the sensor or shorted coil	 Perform sensor tests - see Table 9-8 on page 175 If the problem persists, replace the sensor
	Calibration shift caused by heat cycling or vibration	 Perform sensor tests - see Table 9-8 on page 175 If the problem persists, replace the sensor
Electrode Resistance Out of Spec ⁽¹⁾	Moisture in the terminal block of the sensor	 Perform sensor tests - see Table 9-8 on page 175 If the problem persists, replace the sensor
	Electrode coating	 Enable coated electrode detection diagnostic Use bullet-nose electrodes Downsize sensor to increases flowrate above 3 ft/s (1 m/s) Periodically clean sensor
	Shorted electrodes	 Perform sensor tests - see Table 9-8 on page 175 If the problem persists, replace the sensor
Analog Output Out of Spec ⁽¹⁾	Unstable flow rate during the verification test or noisy process	• Run manual transmitter verification test with no flow and a full pipe
	Analog output is no longer within accuracy specifications	• Check the analog loop wiring. Excessive loop resistance can cause an invalid test

Table 9-3. Advanced Meter Verification Messages

1. Only available on the Field Mount Transmitter.

9.4.1 Troubleshooting empty pipe

The following actions can be taken if empty pipe detection is unexpected:

- 1. Verify the sensor is full.
- 2. Verify the sensor has not been installed with a measurement electrode at the top of the pipe.
- 3. Decrease the sensitivity by setting the *empty pipe trigger level* to a value of at least 20 counts above the *empty pipe value* read with a full pipe.
- 4. Decrease the sensitivity by increasing the *empty pipe counts* to compensate for process noise. The *empty pipe counts* is the number of consecutive *empty pipe value* readings above the *empty pipe trigger level* required to set the *empty pipe diagnostic*. The count range is 2-50, factory default set at 5.
- 5. Increase process fluid conductivity above 50 microsiemens/cm.
- 6. Properly connect the wiring between the sensor and the transmitter. Corresponding terminal block numbers in the sensor and transmitter must be connected.
- 7. Perform the sensor electrical resistance tests. For more detailed information, consult Table 9-8 on page 175.

9.4.2 Troubleshooting ground/wiring fault

If transmitter detects high levels (greater than 5mV) 50/60 Hz noise caused by improper wiring or poor process grounding:

- 1. Verify the transmitter is earth grounded.
- 2. Connect ground rings, grounding electrode, or grounding straps. Grounding diagrams can be found in "Process reference connection" on page 17.
- 3. Verify the sensor is full.
- 4. Verify wiring between sensor and transmitter is prepared properly. Shielding should be stripped back less than 10-in. (25 mm).
- 5. Use separate shielded twisted pairs for wiring between sensor and transmitter.
- 6. Properly connect the wiring between the sensor and the transmitter. Corresponding terminal block numbers in the sensor and transmitter must be connected.

9.4.3 Troubleshooting high process noise

The transmitter detected high levels of process noise. If the signal to noise ratio is less than 25 while operating in 5 Hz mode, proceed with the following steps:

1. Increase transmitter coil drive frequency to 37 Hz⁽¹⁾ (refer to "Coil drive frequency" on page 106) and, if possible, perform auto zero function ("Auto zero" on page 141).

- 2. Verify sensor is electrically connected to the process with process reference electrode, grounding rings with grounding straps, or lining protector with grounding straps.
- 3. If possible, redirect chemical additions downstream of the magmeter.
- 4. Verify process fluid conductivity is above 10 microsiemens/cm.

If the signal to noise ratio is less than 25 while operating in 37 Hz mode, proceed with the following steps:

- 1. Turn on the Digital Signal Processing (DSP) technology and follow the setup procedure (see Section 7: Digital Signal Processing). This will minimize the level of damping in the flow measurement and control loop while also stabilizing the reading to minimize valve actuation.
- 2. Increase damping to stabilize the signal (refer to "PV damping" on page 108). This will add response time to the control loop.
- 3. Move to a Rosemount High-Signal flowmeter system. This flowmeter will deliver a stable signal by increasing the amplitude of the flow signal by ten times to increase the signal to noise ratio. For example if the signal to noise ratio (SNR) of a standard magmeter is 5, the High-Signal would have a SNR of 50 in the same application. The Rosemount High-Signal system is comprised of the 8707 sensor which has modified coils and magnetics and the 8712H High-Signal transmitter.

Note

In applications where very high levels of noise are a concern, it is recommended that a dual-calibrated Rosemount High-Signal 8707 sensor be used. These sensors can be calibrated to run at lower coil drive current supplied by the standard Rosemount transmitters, but can also be upgraded by changing to the 8712H High-Signal transmitter.

1/f noise

This type of noise has higher amplitudes at lower frequencies, but generally degrades over increasing frequencies. Potential sources of 1/f noise include chemical mixing and slurry flow particles rubbing against the electrodes. This type of noise can be mitigated by switching to the 37 Hz coil drive frequency.

Spike noise

This type of noise generally results in a high amplitude signal at specific frequencies which can vary depending on the source of the noise. Common sources of spike noise include chemical injections directly upstream of the flowmeter, hydraulic pumps, and slurry flows with low concentrations of particles in the stream. The particles bounce off of the electrode generating a "spike" in the electrode signal. An example of this type of flow stream would be a recycle flow in a paper mill. The type of noise can be mitigated by switching to the 37 Hz coil drive frequency and enabling the digital signal processing.

White noise

This type of noise results in a high amplitude signal that is relatively constant over the frequency range. Common sources of white noise include chemical reactions or mixing that occurs as the fluid passes through the flowmeter and high concentration slurry flows where the particulates are constantly passing over the electrode head. An example of this type of flow stream would be a basis weight stream in a paper mill. This type of noise can be mitigated by switching to the

37 Hz coil drive frequency and enabling the digital signal processing.

9.4.4 Troubleshooting coated electrode detection

In the event that electrode coating is detected, use the following table to determine the appropriate course of action.

Table 9-4. Troubleshooting the Electrode Coating Diagnostic⁽¹⁾

Error message	Potential causes of error	Steps to correct
Electrode Coating Level 1	 Insulating coating is starting to build up on the electrode and may interfere with the flow measurement signal Process fluid conductivity has decreased to a level close to operational limits of the meter 	 Verify process fluid conductivity Schedule maintenance to clean the electrodes Use bullet nose electrodes Replace the meter with a smaller diameter meter to increase the flow velocity to above 3 ft/s (1 m/s)
Electrode Coating Level 2	 Insulating coating has built up on the electrodes and is interfering with the flow measurement signal Process fluid conductivity has decreased to a level below the operational limits of the meter 	 Verify process fluid conductivity Schedule maintenance to clean the electrodes Use bullet nose electrodes Replace the meter with a smaller diameter meter to increase the flow velocity to above 3 ft/s (1 m/s)

1. Only available with Field Mount Transmitter.

9.4.5 Troubleshooting 4-20 mA loop verification

In the event that the 4-20 mA Loop Verification fails, use the following table to determine the appropriate course of action.

Table 9-5. Troubleshooting the Analog Loop Verification Diagnostic⁽¹⁾

Test	Potential cause	Corrective action
4-20 mA Loop Verification Failure	• Analog loop not powered	 Check analog loop wiring Check loop resistance Check analog loop power switch – see "Powering the transmitter" on page 28 Check external supply voltage to the transmitter Check for parallel paths in the current loop
	• Analog drift	• Perform D/A trim
	• Transmitter failure	 Perform transmitter self-test Perform manual analog loop test Replace the electronics stack

1. Only available with Field Mount Transmitter.
9.4.6 Troubleshooting the SMART Meter Verification test

In the event that the SMART Meter Verification test fails, use the following table to determine the appropriate course of action. Begin by reviewing the SMART Meter Verification results to determine the specific test that failed.

 Table 9-6. Troubleshooting the SMART Meter Verification Diagnostic

Test	Potential cause	Corrective action		
Transmitter Verification Test	 Unstable flow reading during the test Noise in the process Transmitter drift Faulty electronics 	 Rerun SMART Meter Verification (8714i) under No Flow conditions. Check the transmitter calibration with the 8714D Calibration Standard. Perform a digital trim. Replace the electronics stack. 		
Sensor Calibration Verification	 Moisture in the sensor terminal block Calibration shift caused by heat cycling or vibration 	 Rerun SMART Meter Verification (8714i). Perform the sensor checks detailed in "Sensor" on page 158. Remove the sensor and send back for evaluation and/or 		
Coil Circuit Health	 Moisture in the sensor terminal block Shorted coil 	recalibration.		
Electrode Circuit Health	 Electrode resistance baseline was not taken after installation Test condition was not selected properly Moisture in the sensor terminal block Coated electrodes Shorted electrodes 			

9.5 Basic troubleshooting

When troubleshooting a magmeter, it is important to identify the issue. Table 9-7 below provides common symptoms displayed by a magmeter that is not functioning properly. This table provides potential causes and suggested corrective actions for each symptom.

Symptom	Potential cause	Corrective action	
Output at 0 mA	No power to transmitter	• Check power source and connections to the transmitter.	
	 Analog output improperly configured 	Check the analog power switch position.Verify wiring and analog power.	
	• Electronics failure	 Verify transmitter operation with an 8714D Calibration Standard or replace the electronic stack. 	
	• Blown fuse	 Check the fuse and replace with an appropriately rated fuse, if necessary. 	
Output at 4 mA	• Transmitter in multidrop mode	• Configure Poll Address to 0 to take transmitter out of multidrop mode.	
	Low Flow Cutoff set too high	• Configure Low Flow Cutoff to a lower setting or increase flow to a value above the low flow cutoff.	
	• PZR Activated	• Open PZR switch at terminals 5 and 6 to deactivate the PZR.	
	• Flow is in reverse direction	• Enable Reverse Flow function.	
	Shorted coil	• Coil check – perform sensor test.	
	• Empty pipe	• Fill pipe.	
	• Electronics failure	• Verify transmitter operation with an 8714D Calibration Standard or replace the electronics stack.	
Output will not reach 20 mA	• Loop resistance is greater than 600 ohms	 Reduce loop resistance to less than 600 ohms. Perform analog loop test. 	
	 Insufficient supply voltage to analog output 	Verify analog output supply voltage.Perform analog loop test.	
Output at 20.8 mA	Transmitter not ranged properly	 Reset the transmitter range values – see "URV (Upper Range Value)" on page 33. Check tube size setting in transmitter and make sure it matches the actual tube size – see "Line size" on page 33. 	

Table 9-7. Common Magmeter Issues

Symptom	Potential cause	Corrective action	
Output at alarm level	• Electronics failure	• Cycle power. If alarm is still present, verify transmitter operation with an 8714 D Calibration Standard or replace the electronics stack.	
	• Open coil circuit	• Check coil drive circuit connections at the sensor and at the transmitter.	
	• Analog output diagnostic alarm is active	• See "AO diagnostic alarm" on page 87.	
	• Coil power or coil current is over limit	 Check coil drive circuit connections at the sensor and at the transmitter. Cycle power. If alarm is still present, verify transmitter operation with an 8714 D Calibration Standard or replace the electronics stack. 	
	 Connected to incompatible sensor 	• See "Implementing a Universal Transmitter" on page 221.	
Pulse output at zero, regardless of flow	• Wiring error	• Check pulse output wiring at terminals 3 and 4. Refer to wiring diagram for pulse counter and pulse output. See "Connect pulse output" on page 40.	
	• PZR activated	• Remove signal at terminals 5 and 6 to deactivate the PZR.	
	• No power to transmitter	 Check pulse output wiring at terminals 3 and 4. Refer to wiring diagram for pulse counter and pulse output. Power the transmitter. 	
	• Reverse flow	• Enable Reverse Flow function.	
	• Electronics failure	• Verify transmitter operation with an 8714D Calibration Standard or replace the electronics stack.	
	 Pulse output incorrectly configured 	• Review configuration and correct as necessary.	
Communication problems with	• 4–20 mA output configuration	 Check analog power switch (internal/external). The Field Communicator requires a 4–20 mA output to function. 	
Communicator	Communication interface wiring problems	 Incorrect load resistance (250 Ohm minimum, 600 Ohm maximum);check appropriate wiring diagram. 	
	• Low batteries in the Field Communicator	 Replace the batteries in the Field Communicator – see the communicator manual for instructions. 	
	• Old revision of software in the Field Communicator	• Consult your Emerson Process Management representative about updating to the latest revision of software.	
Error Messages on LOI or Field Communicator	 Many possible causes depending upon the message 	• See Table 9-1 on page 160, Table 9-2 on page 163, and Table 9-3 on page 164 for the LOI or Field Communicator messages.	
Discrete input does not register	 Input signal does not provide enough counts 	 Verify the discrete input provided meets the requirements in "Connect discrete output" on page 44. Perform a loop test to validate the analog control loop. Perform a D/A trim. This allows the calibration of the analog output with an external reference at operating endpoints of the analog output. 	

Table 9-7. Common Magmeter Issues

Table 9-7. Common Magmeter Issues

Symptom	Potential cause	Corrective action
Reading does not appear to be within rated accuracy	• Transmitter, control system, or other receiving device not configured properly	 Check all configuration variables for the transmitter, sensor, communicator, and/or control system Check these other transmitter settings: Sensor calibration number Units Line size Perform a loop test to check the integrity of the circuit
	• Electrode Coating	 Enable Coated Electrode Detection diagnostic Use bullet-nose electrodes Downsize sensor to increase flow rate above 3 ft/s Periodically clean sensor
	• Gas/air in line	 Move the sensor to another location in the process line to ensure that it is full under all conditions
	Moisture problem	• Perform the sensor tests - see Table 9-8 on page 175
	 Insufficient upstream/downstream pipe diameter 	 Move sensor to a new location with five pipe diameters upstream and two pipe diameters downstream if possible
	• Cables for multiple magmeters run through same conduit	• Use dedicated conduit run for each sensor and transmitter
	• Improper wiring	• If electrode shield and electrode signal wires are switched, flow indication will be about half of what is expected. Check wiring diagrams.
	 Flow rate is below 1 ft/s (specification issue) 	• See accuracy specification for specific transmitter and sensor
	 Auto zero was not performed when the coil drive frequency was changed from 5 Hz to 37 Hz 	• Set the coil drive frequency to 37 Hz, verify the sensor is full, verify there is no flow, and perform the auto zero function
	 Sensor failure–shorted electrode 	• Perform the sensor tests - see Table 9-8 on page 175
	• Sensor failure–shorted or open coil	• Perform the sensor tests - see Table 9-8 on page 175
	• Transmitter failure	 Verify transmitter operation with a Rosemount 8714 Calibration Standard or replace the electronics board

Table 9-7. Common Magmeter Issues

Symptom	Potential cause	Corrective action		
Noisy process	• Chemical additives upstream of magnetic flowmeter	 See "Troubleshooting high process noise" on page 166 Move injection point downstream of magnetic flowmeter, or move magnetic flowmeter 		
	• Sludge flows-mining/coal/ sand/slurries (other slurries with hard particles)	• Decrease flow rate below 10 ft/s		
	 Styrofoam or other insulating particles in process 	 See "Troubleshooting high process noise" on page 166 Consult factory 		
	• Electrode coating ⁽¹⁾	 Enable Coated Electrode Detection diagnostic Use a smaller sensor to increase flow rate above 3 ft/s Periodically clean sensor 		
	• Gas/air in line	• Move the sensor to another location in the process line to ensure that it is full under all conditions		
	• Low conductivity fluids (below 10 microsiemens/cm)	 Trim electrode and coil wires – see "Cable preparation" on page 23 Keep flow rate below 3 FPS Integral mount transmitter Use component cable - see Table 2-12 on page 34 		
Meter output is unstable	• Medium to low conductivity fluids (10–25 microsiemens/cm) combined with cable vibration or 60 Hz interference	 Eliminate cable vibration Move cable to lower vibration run Tie down cable mechanically Use an integral mount Trim electrode and coil wires - see "Cable preparation" on page 23 Route cable line away from other equipment powered by 60 Hz Use component cable - see Table 2-12 on page 34 		
	• Electrode incompatibility	• Check the Technical Data Sheet, Magnetic Flowmeter Material Selection Guide (document number 00816-0100-3033), for chemical compatibility with electrode material		
	• Improper grounding	• Check ground wiring – see "Process reference connection" on page 48 for wiring and grounding procedures		
	 High local magnetic or electric fields 	• Move magnetic flowmeter (20- to 25-ft. away is usually acceptable)		
	Control loop improperly tuned	Check control loop tuning		
	 Sticky valve (look for periodic oscillation of meter output) 	Service valve		
	Sensor failure	• Perform the sensor tests - see Table 9-8 on page 175		
	• Analog output loop problem	Check that the 4 to 20 mA loop matches the digital value Perform analog output test		

1. Only available with Field Mount Transmitter.

9.6 Sensor troubleshooting

This section describes manual tests that can be performed on the sensor to verify the health of individual components. The tests will require the use of a digital multimeter capable of measuring conductance in nanosiemens and an LCR meter. A sensor circuit diagram is shown in Figure 9-1. The tests described below will check for continuity or isolation of the internal components of the sensor.

- A. Electrodes B. Coils
- c. Sensor housing

9.6.1 Installed sensor tests

If a problem with an installed sensor is identified, refer to Table 9-8 on page 175 to assist in troubleshooting the sensor. Disconnect or turn off power to the transmitter before performing any of the sensor tests. Always check the operation of test equipment before each test.

If possible, take all readings from the lead wire clips (removal of terminal block is required for access). If the lead wire clips are inaccessible, take measurements at the sensor terminal block or through remote cabling as close to the sensor as possible. Readings taken through remote cabling that is more than 100-ft. (30 m) in length may provide incorrect or inconclusive information and should be avoided.

The expected values in the test below assume the measurements have been taken directly at the clips. Refer to Figure 9-2 on page 176 for electrode and coil wire keyed positions in the clips.

Test	Sensor location	Required equipment	Measuring at connections	Expected value	Potential cause	Corrective action
A. Sensor coil	Installed or uninstalled	Multimeter	1 and 2 = R	$2 \Omega \le R \le 18 \Omega$	• Open or shorted coil	Remove and replace sensor
B. Shields to case	Installed or uninstalled	Multimeter	17 and 3 3 and case ground 17 and case ground	< 0.3 Ω	 Moisture in terminal block Leaky electrode Process behind liner 	 Clean terminal block Remove sensor
C. Coil to coil shield	Installed or uninstalled	Multimeter	1 and 3 2 and 3	∞Ω (< 1nS) ∞Ω (< 1nS)	 Process behind liner Leaky electrode Moisture in terminal block 	 Remove sensor and dry Clean terminal block Confirm with sensor coil test
D. Electrode to electrode shield	Installed	LCR (Set to Resistance and 120 Hz)	18 and 17 = R ₁ 19 and 17 = R ₂	$ R_1 \text{ and } R_2 \text{ should}$ be stable $ R_1 - R_2 \le 300 \Omega$	 Unstable R₁ or R₂ values confirm coated electrode Shorted electrode Electrode not in contact with process Empty pipe Low conductivity Leaky electrode Process reference ground not connected properly 	 Remove coating from sensor wall Use bullet-nose electrodes Repeat measurement Remove sensor and complete tests in Table 9-9 Connect process reference ground per "Process reference connection" on page 17
E. Electrode to electrode	Installed	LCR (set to resistance and 120 Hz)	18 and 19	Should be stable and same relative magnitude of R_1 and R_2 from Test D	• See Test D above	• See Test D above

Table 9-8. Sensor Tests and Expected Values

To test the sensor, a multimeter capable of measuring conductance in nanosiemens is preferred. Conductance is the reciprocal of resistance.

A. Electrode lead wire B. Coil lead wire C. Open slot

9.6.2 Uninstalled sensor tests

Sensor troubleshooting can also be performed on an uninstalled sensor. If test results from installed sensor tests are inconclusive, the next step is remove the sensor and perform the tests outlined in Table 9-9. Take measurements from the feed-through pins and directly on the electrode head inside the sensor. The measurement electrodes, 18 and 19, are on opposite sides in the inside diameter of the sensor. If applicable, the third process reference electrode is between the two measurement electrodes.

The expected values in the test below assume the measurements have been taken directly at the pins.

Test	Sensor location	Required equipment	Measuring at connections	Expected value	Potential cause	Corrective action
A. Terminal to front electrode	Uninstalled	Multimeter	18 and electrode 18 ⁽¹⁾	≤1Ω	Shorted electrodeOpen electrodeCoated electrode	 Replace sensor Remove coating from sensor wall
B. Terminal to back electrode	Uninstalled	Multimeter	19 and electrode 19 ⁽¹⁾	≤1Ω	Shorted electrodeOpen electrodeCoated electrode	 Replace sensor Remove coating from sensor wall
C. Terminal to reference electrode	Uninstalled	Multimeter	17 and process reference electrode ⁽²⁾	≤ 0.3 Ω	Shorted electrodeOpen electrodeCoated electrode	 Replace sensor Remove coating from sensor wall
D. Terminal to case ground	Uninstalled	Multimeter	17 and safety ground	≤0.3Ω	 Moisture in terminal block Leaky electrode Process behind liner 	 Clean terminal block Replace terminal block Replace sensor
E. Electrode to electrode shield	Uninstalled	Multimeter	18 and 17	∞Ω (<1 nS)	 Shorted electrode Leaky electrode Moisture in terminal block 	 Replace sensor Clean terminal block Replace terminal block
			19 and 17	∞Ω (<1 nS)	 Shorted electrode Leaky electrode Moisture in terminal block 	 Replace sensor Clean terminal block Replace terminal block
F. Electrode shield to coil	Uninstalled	Multimeter	17 and 1	∞Ω (<1 nS)	 Process in coil housing Moisture in terminal block 	 Replace sensor Clean terminal block Replace terminal block

Table 9-9. Uninstalled Sensor Tests and Expected Values

 When the connection head is in the vertical upright position and the flow arrow (see Figure 2-7 on page 11) on the connection head flange points to the right, the front of the meter will be facing towards you. Electrode 18 is on the front of the meter. If you cannot determine the front of the meter, measure both electrodes. One electrode should result in an open reading, while the other electrode should be less than 1 Ω.

2. Only valid if the sensor has a process reference electrode.

9.7 Technical support

Email addresses:

Worldwide: flow.support@emerson.com

Asia-Pacific: APflow.support@emerson.com

Middle East and Africa: FlowTechnicalSupport@emerson.com

North and South America		Europe and Middle East		Asia Pacific	
United States	800-522-6277	U.K.	0870 240 1978	Australia	800 158 727
Canada	+1 303-527-5200	The Netherlands	+31 (0) 318 495 555	New Zealand	099 128 804
Mexico	+41 (0) 41 7686 111	France	0800 917 901	India	800 440 1468
Argentina	+54 11 4837 7000	Germany	0800 182 5347	Pakistan	888 550 2682
Brazil	+55 15 3238 3677	Italy	8008 77334	China	+86 21 2892 9000
Venezuela	+58 26 1731 3446	Central & Eastern	+41 (0) 41 7686 111	Japan	+81 3 5769 6803
		Russia/CIS	+7 495 981 9811	South Korea	+82 2 3438 4600
		Egypt	0800 000 0015	Singapore	+65 6 777 8211
		Oman	800 70101	Thailand	001 800 441 6426
		Qatar	431 0044	Malaysia	800 814 008
		Kuwait	663 299 01		
		South Africa	800 991 390		
		Saudi Arabia	800 844 9564		
		UAE	800 0444 0684		

9.8 Service

To expedite the return process outside the United States, contact the nearest Rosemount representative.

Within the United States and Canada, call the North American Response Center using the 800-654-RSMT (7768) toll-free number. The Response Center, available 24 hours a day, will assist you with any needed information or materials.

The center will ask for product, model, and serial numbers and will provide a Return Material Authorization (RMA) number. The center will also ask for the name of the process material to which the product was last exposed.

Mishandling products exposed to a hazardous substance may result in death or serious injury. If the product being returned was exposed to a hazardous substance as defined by OSHA, a copy of the required Material Safety Data Sheet (MSDS) for each hazardous substance identified must be included with the returned goods.

The North American Response Center will detail the additional information and procedures necessary to return goods exposed to hazardous substances.

Appendix A Specifications and Reference Data

Field mount transmitter specifications	page 179
Wall mount transmitter specifications	page 183
Sensor specifications	page 187

A.1 Field mount transmitter specifications

A.1.1 Functional specifications

Transmitter coil drive current

500 mA

Flow rate range

Capable of processing signals from fluids that are traveling between 0.04 and 39 ft/s (0.01 to 12 m/s) for both forward and reverse flow in all sensor sizes. Full scale continuously adjustable between -39 and 39 ft/s (-12 to 12 m/s).

Conductivity limits

Process liquid must have a conductivity of 5 microsiemens/cm (5 micromhos/cm) or greater.

Power supply

90 - 250 VAC, 50/60 Hz or 12 - 42 VDC

Line power fuses

90-250 VAC systems

1A, 250V, $I^2t \ge 1.5 A^2s$ Rating, Fast Acting Bussman AGC-1, Littelfuse 31201.5HXP

12-42 VDC systems

3 Amp, 250V, $l^2t \ge 14 A^2s$ Rating, Fast Acting Bel Fuse 3AG 3-R, Littelfuse 312003P, Schurter 0034.5135

Power consumption

15 W maximum - DC 40 VA maximum - AC

Switch-on current

AC: Maximum 35.7 A (< 5ms) at 250 VAC DC: Maximum 42 A (< 5ms) at 42 VDC

AC power supply requirements

Units powered by 90 - 250 VAC have the following power requirements.

Figure A-1. Field Mount Transmitter AC Power Requirements

Reference Manual

00809-0300-4750, Rev CA

DC supply current requirements

Units powered by 12 VDC power supply may draw up to 1.2 A of current steady state.

Figure A-2. Field Mount Transmitter DC Power Requirements

Ambient temperature limits

Operating

–40 to 140 $^\circ\text{F}$ (–40 to 60 $^\circ\text{C}) without local operator interface$

-4 to 140 °F (-20 to 60 °C) with local operator interface

The Local Operator Interface (LOI) will not display at temperatures below -20°C

Storage

–40 to 185 $^\circ\text{F}$ (–40 to 85 $^\circ\text{C}) without local operator interface$

-22 to 176 °F (-30 to 80 °C) with local operator interface $^{(1)}$

Humidity limits

0-95% RH to 140 °F (60 °C)

Altitude

2000 meters maximum

Enclosure rating

Type 4X, IEC 60529, IP66 (transmitter)

Transient protection rating

Built in transient protection that conforms to:

- IEC 61000-4-4 for burst currents
- IEC 61000-4-5 for surge currents.
- IEC 611185-2.2000, Class 3 up to 2 kV and up to 2 kA protection.

Turn-on time

- Five minutes to rated accuracy from power up
- Five seconds from power interruption

Start-up time

50ms from zero flow

Low flow cut-off

Adjustable between 0.01 and 38.37 ft/s (0.003 and 11.7 m/s). Below selected value, output is driven to the zero flow rate signal level.

Overrange capability

Signal output will remain linear until 110% of upper range value or 44 ft/s (13 m/s). The signal output will remain constant above these values. Out of range message displayed on LOI and the Field Communicator.

Damping

Adjustable between 0 and 256 seconds

A.1.2 Advanced diagnostics capabilities

Basic

Self test Transmitter faults Analog output test Pulse output test Tunable empty pipe Reverse flow Coil circuit fault Electronics temperature Coil current Electrode saturation

Process diagnostics (DA1)

Ground/wiring fault High process noise Electrode coating diagnostic

Specifications and Reference Data

March 2016

SMART[™] Meter Verification (DA2)

SMART Meter Verification (continuous or on-demand) 4-20 mA loop verification

A.1.3 Output signals

Analog output adjustment

4–20 mA, switch-selectable as internally or externally powered.

Analog loop load limitations

Internally powered 24 VDC max, 500 ohms max loop resistance

Externally powered 10.8 - 30 VDC max.

Loop resistance is determined by the voltage level of the external power supply at the transmitter terminals.

The analog output is automatically scaled to provide 4mA at lower range value and 20 mA at upper range value. Full scale continuously adjustable between -39 and 39 ft/s (-12 to 12 m/sec), 1 ft/s (0.3 m/s) minimum span.

HART[®] communications is a digital flow signal. The digital signal is superimposed on the 4–20 mA signal and is available for the control system interface. A minimum of 250 Ohms loop resistance is required for HART communications.

Scalable pulse frequency adjustment

0-10,000 Hz, switch-selectable as internally or externally powered. Pulse value can be set to equal desired volume in selected engineering units. Pulse width adjustable from 0.1 to 650 ms.

Internally powered: Outputs up to 12 VDC

Externally powered: Input 5 - 28 VDC

Output testing

Analog output test

Transmitter may be commanded to supply a specified current between 3.5 and 23 mA.

Pulse output test

Transmitter may be commanded to supply a specified frequency between 1 and 10,000 Hz.

Optional discrete output function (AX option)

Externally powered at 5 - 28 VDC, 240 mA max, solid state switch closure to indicate either:

Reverse flow

Activates switch closure output when reverse flow is detected.

Zero flow

Activates switch closure output when flow goes to 0 ft/s or below low flow cutoff.

Empty pipe

Activates switch closure output when an empty pipe condition is detected.

Transmitter faults

Activates switch closure output when a transmitter fault is detected.

Flow limit 1, Flow limit 2

Activates switch closure output when the transmitter measures a flow rate that meets the conditions established for this alert. There are two independent flow limit alerts that can be configured as discrete outputs.

Totalizer limit

Activates switch closure output when the transmitter measures a total flow that meets the conditions established for this alert.

Diagnostic status

Activates switch closure output when the transmitter detects a condition that meets the configured criteria of this output.

Optional discrete input function (AX option)

Externally powered at 5 - 28 VDC, 1.4 - 20 mA to activate switch closure to indicate either:

Net total reset

Resets the net totalizer value to zero.

Positive zero return (PZR)

Forces outputs of the transmitter to zero flow.

Security lockout

Security lockout switch on the electronics board can be set to deactivate all LOI and HART-based communicator functions to protect configuration variables from unwanted or accidental change.

LOI lockout

The display can be manually locked to prevent unintentional configuration changes. The display lock can be activated through a HART communication device, or by holding the UP arrow for 3 seconds and then following the on-screen instructions. When the display lock is activated, a lock symbol will appear in the lower right hand corner of the display. To deactivate the display lock, hold the UP arrow for 3 seconds and follow the on-screen instructions.

Display auto lock can be configured from the LOI with the following settings: OFF, 1 Minute, or 10 Minutes

A.1.4 Sensor compensation

Rosemount Sensors are calibrated in a flow lab at the factory and are assigned a calibration number. The calibration number must be entered into the transmitter, enabling interchangeability of sensors without calculations or a compromise in standard accuracy.

Rosemount 8750W transmitters and other manufacturers' sensors can be calibrated at known process conditions or at the Rosemount NIST-Traceable Flow Facility. Transmitters calibrated on site require a two-step procedure to match a known flow rate. This procedure can be found in the operations manual.

A.1.5 Performance specifications

System specifications are given using the frequency output and with the unit at reference conditions.

Accuracy

Includes the combined effects of linearity, hysteresis, and repeatability.

Standard system accuracy is $\pm 0.5\%$ of rate from 1 to 39 ft/s (0.3 to 12 m/s). Accuracy is ± 0.005 ft/s (0.0015 m/s) from the low flow cutoff to 1 ft/s (0.3 m/s).

Optional high accuracy is $\pm 0.25\%$ of rate from 3 to 39 ft/s (1 to 12 m/s).

Other manufacturers' sensors

When calibrated in the Rosemount Flow Facility, system accuracies as good as 0.5% of rate can be attained.

There is no accuracy specification for other manufacturers' sensors calibrated in the process line.

A.1.6 Analog output effects

Analog output has the same accuracy as frequency output plus an additional $\pm 4 \ \mu A$ at room temperature.

Repeatability

±0.1% of reading

Response time (Analog Output)

20 ms max response time to step change in input

Stability

±0.25% of rate over six months

Ambient temperature effect

±0.25% change over operating temperature range

A.1.7 Physical specifications

Materials of construction

Standard housing

Low copper aluminum

Type 4X and IEC 60529 IP66

Paint

Polyurethane coat (1.3 to 5 mils thick)

Optional housing

Type 4X and IEC 60529 IP66

Cover gasket

Buna-N

Electrical connections

Conduit entries: 1/2-in. NPT standard. (Optional third connection available). Thread adapters are provided when ordered with M20 conduit entry.

Terminal block screws: 6-32 (No. 6) suitable for up to 14 AWG wire.

Safety grounding screws: external stainless assembly, M5; internal 8-32 (No. 8)

Vibration rating

2G per IEC 61298

Dimensions

See Product Data Sheet.

Weight

Aluminum - approximately 7 lbs. (3.2 kg).

Add 1 pound (0.5 kg) for display option code M4 or M5.

A.2 Wall mount transmitter specifications

A.2.1 Functional specifications

Transmitter coil drive current

500 mA

Flow rate range

Capable of processing signals from fluids that are traveling between 0.04 and 39 ft/s (0.01 to 12 m/s) for both forward and reverse flow in all sensor sizes. Full scale continuously adjustable between -39 and 39 ft/s (-12 to 12 m/s).

Conductivity limits

Process liquid must have a conductivity of 5 microsiemens/cm (5 micromhos/cm) or greater.

Power supply

90 - 250 VAC, 50/60Hz or 12 - 42VDC

Line power fuses

90-250VAC systems

2 Amp, Fast Acting, Bussman AGC-2

12-42VDC systems

3 Amp, Fast Acting, Bussman AGC-3

Power consumption

15 W maximum - DC

40 VA maximum - AC

Switch-on current

AC: Maximum 35.7 A (< 5 ms) at 250 VAC

DC: Maximum 42 A (< 5 ms) at 42 VDC

AC power supply requirements

Units powered by 90 - 250 VAC have the following power requirements.

DC supply current requirements

Units powered by 12 VDC power supply may draw up to 1.2 A of current steady state.

Figure A-5. Wall Mount Transmitter DC Power Requirements

Ambient temperature limits

Operating

–40 to 165 °F (–40 to 74 °C) without local operator interface

-20 to 140 °F (-29 to 60 °C) with local operator interface

The Local Operator Interface (LOI) will not display at temperatures below -20 $^\circ\mathrm{C}$

Storage

-40 to 176 °F (-40 to 80 °C) with and without local operator interface

Humidity limits

0-95% RH to 140 °F(60 °C)

Altitude

2000 meters maximum

Enclosure rating

Type 4X, IEC 60529, IP66 (transmitter)

Transient protection rating

Built in transient protection that conforms to:

- IEC 61000-4-4 for burst currents
- IEC 61000-4-5 for surge currents

Turn-on time

- Five minutes to rated accuracy from power up
- Five seconds from power interruption

Start-up time

50ms from zero flow

Low flow cut-off

Adjustable between 0.01 and 38.37 ft/s (0.003 and 11.7 m/s). Below selected value, output is driven to the zero flow rate signal level.

Overrange capability

Signal output will remain linear until 110% of upper range value or 44 ft/s (13 m/s). The signal output will remain constant above these values. Out of range message displayed on LOI and the Field Communicator.

Damping

Adjustable between 0 and 256 seconds

A.2.2 Advanced diagnostics capabilities

Basic

Self test Transmitter faults Analog output test Pulse output test Tunable empty pipe Reverse flow Coil circuit fault Electronics temperature

Process diagnostics (DA1)

Ground/wiring fault High process noise

SMART Meter Verification (DA2)

SMART Meter Verification (on-demand) 4-20 mA loop verification

A.2.3 Output signals

Analog output adjustment

4–20 mA, switch-selectable as internally or externally powered.

Analog loop load limitations

Internally powered 24 VDC max, 500 ohms max loop resistance

Externally powered 10.8 - 30 VDC max.

Loop resistance is determined by the voltage level of the external power supply at the transmitter terminals.

Figure A-6. Analog Loop Load Limitations

The analog output is automatically scaled to provide 4mA at lower range value and 20 mA at upper range value. Full scale continuously adjustable between -39 and 39 ft/s (-12 to 12 m/sec), 1 ft/s (0.3 m/s) minimum span.

HART communications is a digital flow signal. The digital signal is superimposed on the 4–20 mA signal and is available for the control system interface. A minimum of 250 Ohms loop resistance is required for HART communications.

Scalable pulse frequency adjustment

0-10,000 Hz, switch-selectable as internally or externally powered. Pulse value can be set to equal desired volume in selected engineering units. Pulse width adjustable from 0.1 to 650 ms.

Internally powered: Outputs up to 12 VDC

Externally powered: Input 5 - 28 VDC

Output testing

Analog output test

Transmitter may be commanded to supply a specified current between 3.5 and 23 mA.

Pulse output test

Transmitter may be commanded to supply a specified frequency between 1 and 10,000 Hz.

Optional discrete output function (AX option)

Externally powered at 5 - 28 VDC, 240 mA max, solid state switch closure to indicate either:

Reverse flow

Activates switch closure output when reverse flow is detected.

Zero flow

Activates switch closure output when flow goes to 0 ft/s or below low flow cutoff.

Empty pipe

Activates switch closure output when an empty pipe condition is detected.

Transmitter faults

Activates switch closure output when a transmitter fault is detected.

Flow limit 1, Flow limit 2

Activates switch closure output when the transmitter measures a flow rate that meets the conditions established for this alert. There are two independent flow limit alerts that can be configured as discrete outputs.

Totalizer limit

Activates switch closure output when the transmitter measures a total flow that meets the conditions established for this alert.

Diagnostic status

Activates switch closure output when the transmitter detects a condition that meets the configured criteria of this output.

Optional discrete input function (AX option)

Externally powered at 5 - 28 VDC, 1.4 - 20 mA to activate switch closure to indicate either:

Net total reset

Resets the net totalizer value to zero.

Positive zero return (PZR)

Forces outputs of the transmitter to zero flow.

Security lockout

Security lockout switch on the electronics board can be set to protect configuration variables from unwanted or accidental changes.

A.2.4 Sensor compensation

Rosemount Sensors are calibrated in a flow lab at the factory and are assigned a calibration number. The calibration number must be entered into the transmitter, enabling interchangeability of sensors without calculations or a compromise in standard accuracy.

Rosemount 8750W transmitters and other manufacturers' sensors can be calibrated at known process conditions or at the Rosemount NIST-Traceable Flow Facility. Transmitters calibrated on site require a two-step procedure to match a known flow rate. This procedure can be found in the operations manual.

A.2.5 Performance specifications

System specifications are given using the frequency output and with the unit at reference conditions.

Accuracy

Includes the combined effects of linearity, hysteresis, and repeatability.

Standard system accuracy is $\pm 0.5\%$ of rate from 1 to 39 ft/s (0.3 to 12 m/s). Accuracy is ± 0.005 ft/s (0.0015 m/s) from the low flow cutoff to 1 ft/s (0.3 m/s).

Optional high accuracy is $\pm 0.25\%$ of rate from 3 to 39 ft/s (1 to 12 m/s).

Other manufacturers' sensors

When calibrated in the Rosemount Flow Facility, system accuracies as good as 0.5% of rate can be attained.

There is no accuracy specification for other manufacturers' sensors calibrated in the process line.

A.2.6 Analog output effects

Analog output has the same accuracy as frequency output plus an additional $\pm 4 \ \mu A$ at room temperature.

Repeatability

±0.1% of reading

Response time (Analog Output)

20 ms max response time to step change in input

Stability

±0.25% of rate over six months

Ambient temperature effect

±0.25% change over operating temperature range

A.2.7 Physical specifications

Materials of construction

Standard housing

Low copper aluminum

Type 4X and IEC 60529 IP66

Paint

Polyurethane coat (1.3 to 5 mils thick)

Optional housing

Type 4X and IEC 60529 IP66

Cover gasket

Silicone rubber

Electrical connections

Conduit entries: ¹/2-in. NPT standard. (Optional third connection available). Thread adapters are provided when ordered with M20 conduit entry.

Terminal block screws: 6-32 (No. 6) suitable for up to 14 AWG wire.

Vibration rating

2G per IEC 61298

Dimensions

See Product Data Sheet.

Weight

Approximately 9 lbs. (4.0 kg).

Add 1 pound (0.5 kg) for display option code M4 or M5.

A.3 Sensor specifications

A.3.1 Functional specifications

Service

Utility, water, and wastewater fluids

Line sizes

¹/2-in. to 48-in. (15 mm to 1200 mm)

Sensor coil resistance

9 - 17 Ω

Interchangeability

Rosemount 8750W Sensors are interchangeable with Rosemount 8750W Transmitters. System accuracy is maintained regardless of line size or optional features. Each sensor nameplate has a 16-digit calibration number that can be entered into a transmitter through the Local Operator Interface (LOI) or the Field Communicator.

Upper range limit

39.37 ft/s (12 m/s)

Process temperature limits

PTFE lining

–20 to 248 °F (–29 to 120 °C)

Polyurethane lining

0 to 140 °F (-18 to 60 °C)

Neoprene lining

0 to 176 °F (-18 to 80 °C)

Ambient temperature limits

-20 to 140 °F (-29 to 60 °C)

Pressure limits

See Table A-1, Table A-2 and Table A-3

Vacuum limits

PTFE lining

Full vacuum to 248 °F (120 °C) through 4-in. (100 mm) line sizes. Consult factory for vacuum applications with line sizes of 6-in. (150 mm) or larger.

All other standard sensor lining materials

Full vacuum to maximum material temperature limits for all available line sizes.

Submergence protection (IP68)

The remote mount Rosemount 8750W sensor is rated IP68 for submergence. IP68 rating requires the transmitter must be remote mount. Installer must use IP68 approved cable glands, conduit connections, and/or conduit plugs. For more details on proper installation techniques for IP68 submersible application, reference Rosemount Technical Note (document number 00840-0100-4750) available on EmersonProcess.com/Rosemount.

Conductivity limits

Process liquid must have a minimum conductivity of 5 microsiemens/cm (5 micromhos/cm) or greater.

Table A-1. Temperature vs. Pressure Limits for ASME B16.5 Class Flanges⁽¹⁾

Sensor temperature vs. pressure limits for ASME B16.5 Class Flanges (1/2- to 24-in. line sizes)						
Flange	Flange rating	Pressure				
material		@ -20 to 100 °F (-29 to 38 °C)	@ 200 °F (93 °C)	@ 300 °F (149 °C)		
Carbon Steel	Class 150	285 psi	260 psi	230 psi		
	Class 300	740 psi	675 psi	655 psi		
304 Stainless Steel	Class 150	275 psi	235 psi	205 psi		
	Class 300	720 psi	600 psi	530 psi		

1. Liner temperature limits must also be considered.

Table A-2. Temperature vs. Pressure Limits for AS2129 Flanges⁽¹⁾

Sensor temperature vs. pressure limits for AS2129 Table D and E Flanges (4- to 24-in. line sizes)

Flance	Flando	Pressure				
material	rating	@ -29 to 50 °C (-20 to 122 °F)	@ 100 °C (212 °F)	@ 150 °C (302 °F)		
Carbon	D	101.6 psi	101.6 psi	101.6 psi		
Steel	E	203.1 psi	203.1 ps.i	203.1 psi		

1. Liner temperature limits must also be considered.

Table A-3. Temperature vs. Pressure Limits for EN1092-1 Flanges⁽¹⁾

Sensor temperature vs. pressure limits for EN 1092-1 Flanges (15 mm to 600 mm line sizes)						
Flange	Flange	Pressure				
material	rating	@ -29 to 50 °C (-20 to 122 °F)	@ 100 °C (212 °F)	@ 150°C (302 °F)		
	PN 10	10 bar	10 bar	9.7 bar		
Carbon	PN 16	16 bar	16 bar	15.6 bar		
Steel	PN 25	25 bar	25 bar	24.4 bar		
	PN 40	40 bar	40 bar	39.1 bar		
	PN 10	9.1 bar	7.5 bar	6.8 bar		
304 Stainless Steel	PN 16	14.7 bar	12.1 bar	11.0 bar		
	PN 25	23 bar	18.9 bar	17.2 bar		
	PN 40	36.8 bar	30.3 bar	27.5 bar		

1. Liner temperature limits must also be considered.

Table A-4. Temperature vs. Pressure Limits for GB/T 9119 Flanges⁽¹⁾

Flance	Flange	Pressure (Mpa)			
material	rating	≤ 20 °C	@ 100 °C (212 °F)	@ 150°C (302 °F)	
Carbon	PN 10	1.00	0.92	0.88	
Steel Group3E0	PN 16	1.60	1.48	1.40	
	PN 40	4.00	3.71	3.52	
	PN 10	1.00	0.90	0.81	
304 SST Group11E0	PN 16	1.60	1.45	1.31	
	PN 40	4.00	3.63	3.27	

1. Liner temperature limits must also be considered.

Table A-5. Temperature vs. Pressure Limits for JIS B2220 Flanges⁽¹⁾

	Flange rating	Pressure (Mpa)		
Flange material		≤ 50 °C (122 °F)	@ 120 °C (248 °F)	
Carbon Steel	10K	1.4	1.4	
304 Stainless Steel (15mm to 65mm)	10K	1.4	1.4	
304 Stainless Steel (≤ 80mm)	10K	1.4	1.0	

1. Liner temperature limits must also be considered.

A.3.2 Physical specifications

Non-wetted materials

Sensor pipe

Type 304/304L SST

Flanges

Carbon steel, Type 304/304L SST

Coil housing

Rolled carbon steel

Paint

Polyurethane coat (1.3 to 5 mils thick)

Wetted process materials

Lining

PTFE, Polyurethane, Neoprene

Electrodes

316L SST, Nickel Alloy 276 (UNS N10276), Tantalum,

80% Platinum-20% Iridium, Titanium

Flat-faced flanges

Flat-faced flanges are manufactured with full-face liners. Available in Neoprene only.

Process connections

ASME B16.5

Class 150: 1/2-in. to 24-in. (15 mm to 600 mm)

Class 300: 1/2-in. to 24-in. (15 mm to 600 mm)

AWWA C207

Class D: 30-in. and 48-in. (750 mm and 1200 mm)

Class E: 40-in. and 48-in. (1000 mm and 1200 mm)

Class F: 30-in. and 36-in. (750 mm and 900 mm)

EN 1092-1

PN10: 6-in. to 24-in., 36-in., 40-in., 48-in. (150 mm to 600 mm, 900 mm, 1000 mm, 1200 mm)

PN16: 2-in. to 24-in., 36-in., 40-in. (50 mm to 600 mm, 900 mm, 1000 mm)

PN 25: 8-in. to 24-in. (200 mm to 600 mm)

PN40: 1/2-in. to 24-in. (15 mm to 600 mm)

AS2129

Table D and E: ¹/2-in. to 40-in., 48-in. (15 mm to 1000 mm, 1200 mm)

AS4087

PN16, PN21: 2-in. to 40-in., 48-in. (8-in. excluded) (50 mm to 1000 mm, 1200 mm)

PN35: 2-in. to 36-in. (8-in. excluded) (50 mm to 900 mm)

GB/T9119

PN10: 8-in. to 24-in., 36-in., 40-in., 48-in. (200 mm to 600 mm, 900 mm, 1000 mm, 1200 mm)

PN16: 4-in. to 24-in., 36-in., 40-in. (100 mm to 600 mm, 900 mm, 1000 mm)

PN40: 1/2-in. to 24-in. (15 mm to 600 mm)

JIS B2220

10K, 20K: ¹/₂-in. to 24-in. (15 mm to 600 mm)

Electrical connections

Conduit entries: 1/2-in. NPT standard

Terminal block screws: 6-32 (No. 6) suitable for up to 14 AWG wire

Safety grounding screws: external stainless assembly, M5; internal 8-32 (No. 8)

Process reference electrode - (optional)

A process reference electrode can be installed similarly to the measurement electrodes through the sensor lining on Rosemount 8750W sensors. It will be made of the same material as the measurement electrodes.

Grounding rings - (optional)

Grounding rings can be installed between the flange and the sensor face on both ends of the sensor. Single ground rings can be installed on either end of the sensor. They have an I.D. slightly larger than the sensor I.D. and an external tab to attach ground wiring. Grounding rings are available in 316L SST and Nickel Alloy 276 (UNS N10276). See Product Data Sheet.

Dimensions

See the Product Data Sheet.

Weight

See the Product Data Sheet.

Product Certifications Appendix B

European Directive Information	page 193
Certifications	page 193
IEC EC and ATEX Approval Information	page 198

Table B-1. Rosemount[™] 8750W Magnetic Flowmeter Platform Rating

Order code	Platform rating	Region	Agency	Certification number
_	Ordinary Locations ⁽¹⁾	USA, Canada, EU, CU ⁽²⁾	FM	3030548(FM) or 70030489(CSA)
Z1	ATEX Non-Sparking and Dust for Non-Flammable Fluids	EU	DEKRA	15ATEX0003 X
ND	ATEX Dust	EU	DEKRA	15ATEX0003 X
Z2	InMetro Non-Sparking and Dust for Non-Flammable Fluids	Brazil	PENDING ⁽³⁾	PENDING
Z3	NEPSI Non-Sparking and Dust for Non-Flammable Fluids	China	NEPSI	GYJ15.1228X
Z5	DIP (Dust-Ignitionproof) Class II and III, Div 1. Non-Incendive, Class I Div 2 for Non-Flammable Fluids	USA	FM	3030548
Z6	CSA, Class I Div 2 for Non-Flammable Fluids; DIP, NI	USA and Canada	CSA	70030489
Z7	IECEx Non-Sparking and Dust for Non-Flammable Fluids	Global	DEKRA	IECEx DEK 15.0001X
NF	IECEx Dust	Global	DEKRA	IECEx DEK 15.0001X
Z9	KTL Non-Sparking and Dust for Non-Flammable Fluids	Korea	KTL ⁽³⁾	PENDING

1. Complies with only the local country Product safety, Electromagnetic, Pressure and other applicable regulations. Cannot be used in a classified or zoned Azardous location environment. Custom Union (Russia, Belarus and Kazakhstan). Planned submittal or in process with Agency.

2. 3.

Table B-2. Approval Markings and Logos

Symbol ⁽¹⁾	Marking or symbol name	Region	Meaning of marking or symbol
CE	CE	European Union	Compliance with all applicable European Union Directives
(Ex)	ATEX	European Union	Compliance with Equipment and Protective systems intended for use in Potentially Explosive Atmospheres directive (ATEX) (94/9/EC)
C _{N96}	C-tick	Australia	Compliance with Australian applicable electromagnetic compatibility standards
APPROVED	FM Approved	United States	Compliance with the applicable ANSI standards
C C C C C C C C C C C C C C C C C C C	CSA	US = United States C = Canada	Indicates that the product was tested and has met the applicable certification requirements for the noted countries
EAC	Eurasian Conformity (EAC)	Eurasian Customs Union (Russia, Belarus and Kazakhstan)	Compliance with all of the applicable technical regulations of the EAC Customs Union
Segurança	INMETRO	Brazil	Compliance with all of the applicable technical regulations of Brazil
Ex NEPSI	NEPSI	China	Compliance with all of the applicable technical regulations of China
C s	KCS	Korea	Compliance with all of the applicable technical regulations of Korea

1. Ordinary Location labels will be marked with CE, C-tick, FM, CSA and EAC logos.

B.1 European Directive Information

A copy of the EC Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent revision of the EC Declaration of Conformity can be found at EmersonProcess.com/Rosemount.

B.1.1 Electro Magnetic Compatibility (EMC)(2004/108/EC) and (2014/30/EU)

EN 61326-1: 2013

B.1.2 Low Voltage Directive (LVD) (2006/95/EC) and (2014/35/EU)

EN 61010-1: 2010

B.1.3 Ingress Protection Rating for dust and water

Degree of protection, per EN-IEC 60079-0 and EN-IEC 60529: IP66⁽¹⁾

Degree of protection, per EN-IEC 60079-0 and EN-IEC 60529: IP66, IP68 (10 m, 48 h)⁽²⁾

Degree of protection, per EN-IEC 60079-0 and ISO 20653: $IP69K^{(3)}$

B.1.4 European Pressure Equipment Directive (PED) (97/23/EC) and (2014/68/EU)

PED Certification requires the "PD" option code.

CE marked models that are ordered without the "PD" option will be marked "Not Complaint to (97/23/EC)"

Mandatory CE-marking with notified body number 0575, for all flowtubes is located on the flowmeter label.

Category I assessed for conformity per module A procedures.

Categories II – III assessed for conformity per module H procedures.

QS Certificate of Assessment

EC No. 4741-2014-CE-HOU-DNV: Module H Conformity Assessment

- 1. The transmitter is rated IP66 when integral or remote mounted, it is not IP68 nor IP69K rated.
- The IP68 rating only applies to the flowtube and the remote junction box when the transmitter is remotely mounted. The IP68 rating is only valid at a depth of 10 meters for 48 hours.
- The IP69K rating only applies to the flowtube and the remote junction box when the transmitter is remotely mounted. The temperature K = 80 °C.

Product Certifications

B.1.5 Rosemount 8750W Flanged Flowtubes

Line size 40 mm to 600 mm (1¹/₂- to 24-in.)

EN 1092-1 flanges and ASME B16.5 class 150 and ASME B16.5 Class 300 flanges.

Also available in ASME B16.5 Class 600 flanges in limited line sizes.

All other Rosemount Flanged Flowtubes – line sizes of 25 mm (1-in.) and less: Sound Engineering Practice (SEP).

Flowtubes that are SEP are outside the scope of PED and cannot be marked for compliance with PED.

B.2 Certifications

B.2.1 Factory Mutual (FM)

Ordinary Location Certification for FM Approvals

As standard, the transmitter and flowtube have been examined and tested to determine that the design meets basic electrical, mechanical, and fire protection requirements by FM Approvals, a nationally recognized testing laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

Rosemount 8750W Magnetic Flowtube and Transmitter

Z5 All Flowtubes and Integral or Remote Mount Transmitters (Transmitter mount codes T or R) Non-Incendive for Class I, Division 2, Groups ABCD: T4 Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T5 -29 °C $\leq T_a \leq 60$ °C

Enclosure Type 4X, IP66/68 (IP68 flowtube only with Remote mount transmitter) Install per drawing 8750W-1052

Special Condition for Safe Use (X):

1. Flowtube to be used only in a non-flammable process.

Rosemount 8750W Magnetic Flowtube and Transmitter

Z5 All Flowtubes and Wall Mount Transmitter (Transmitter mount code W) Non-Incendive for Class I, Division 2, Groups ABCD: T4 Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T4 $-29 \degree C \le T_a \le 40 \degree C$ Enclosure Type 4X, IP66/68 (IP68 flowtube only) Install per drawing 8750W-1052

Special Condition for Safe Use (X):

1. Flowtube to be used only in a non-flammable process.

B.2.2 CSA

Ordinary Location Certification

The transmitter and flowtube have been examined and tested to determine that the design meets basic electrical, mechanical, and fire protection requirements by CSA, a nationally recognized testing laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

Rosemount 8750W Magnetic Flowtube and Transmitter

Z6 Non-Incendive for Class I, Division 2, Groups ABCD: T4 Dust-Ignition Proof for Class II/III, Division 1, Groups EFG: T4 $-29 \degree C \le T_a \le 60 \degree C$ (Transmitter mount codes T or R) $-29 \degree C \le T_a \le 40 \degree C$ (Transmitter mount code W) Enclosure Type 4X, IP66/68/69K⁽¹⁾ Install per drawing 8750W-1051

Special Condition for Safe Use (X):

1. Flowtube to be used only in a non-flammable process.

The transmitter is rated IP66 when integral or remote mounted, it is not IP68 nor IP69K rated. The IP68 rating only applies to the flowtube and the remote junction box when the transmitter is remotely mounted. The IP68 rating is only valid at a depth of 10 meters for 48 hours. The IP69K rating only applies to the flowtube and the remote junction box when the transmitter is remotely mounted. The temperature K = 80°C.

Figure B-1. Rosemount 8750W Declaration of Conformity

Management	USEMIOUNI
EC Declar	ation of Conformity RFD 1098 Rev. G
We,	
Emerson Process Manage	ement
12001 Technology Drive	
USA	
declare under our sole responsibili	ty that the product(s),
Rosemount Mode	el 8750W Magnetic Flowmeters
Community Directives, including schedule. Assumption of conformity is based technical standards and, when app	I on the application of harmonized or applicable licable or required, a European Community notified
Community Directives, including schedule. Assumption of conformity is based technical standards and, when app body certification, as shown in the	d on the application of harmonized or applicable licable or required, a European Community notified attached schedule.
Community Directives, including schedule. Assumption of conformity is based technical standards and, when app body certification, as shown in the 22 February 2016	A on the application of harmonized or applicable licable or required, a European Community notified attached schedule.
Community Directives, including schedule. Assumption of conformity is based technical standards and, when app body certification, as shown in the 22 February 2016 (date of issue)	A on the application of harmonized or applicable licable or required, a European Community notified attached schedule.
Community Directives, including Schedule. Assumption of conformity is based technical standards and, when app body certification, as shown in the 22 February 2016 (date of issue)	An contoninity with the provisions of the European the latest amendments, as shown in the attached d on the application of harmonized or applicable licable or required, a European Community notified attached schedule. Image: Community of the european community of the eur
Community Directives, including Schedule. Assumption of conformity is based technical standards and, when app body certification, as shown in the 22 February 2016 (date of issue)	An contonnity with the provisions of the European the latest amendments, as shown in the attached d on the application of harmonized or applicable licable or required, a European Community notified attached schedule.
Community Directives, including schedule. Assumption of conformity is based technical standards and, when app body certification, as shown in the 22 February 2016 (date of issue)	A no the application of harmonized or applicable licable or required, a European Community notified attached schedule. Mark Fleigle (name - printed) Vice President Technology and New Products (function name - printed)

Process Management ROSEMOUNT	E
Schedule EC Declaration of Conformity RFD 1098 Rev. G	
LVD Directive (2006/95/EC) and (2014/35/EU) as of 20 April 2016	
All Models: EN 61010-1: 2010	
EMC Directive (2004/108/EC) and (2014/30/EU) as of 20 April 2016 All Models: EN 61326-1: 2013	
PED Directive (97/23/EC) and (2014/68/EU) as of 19 July 2016 Model 8750W Magnetic Flowtube with Option "PD", in Line Sizes 1.5" – 24" Equipment without the 'PD' option is NOT PED compliant and cannot be used in the EEA without further assessment unless the installation is exempt under Article 1, paragraph 3 of the PED Directive (97/23/EC) or (2014/68/EU)	
QS Certificate of Assessment - EC No. 4741-2014-CE-HOU-DNV Module H Conformity Assessment ASME B31.3: 2010 Model 8750W in Line Sizes 0.5" – 1.0" Sound Engineering Practice ASME B31.3: 2010	
FILE ID: 8750W CE Marking Page 2 of 3 RFD10)98.docx

ROSEMOUNT CCC
Schedule EC Declaration of Conformity RFD 1098 Rev. G
ATEX Directive (94/9/EC) and (2014/34/EU) as of 20 April 2016
Model 8750W Magnetic Flow Transmitter and Flow Tubes
CERTIFICATE: DEKRA 15ATEX0003 X Equipment Marking Summary:
II 3 G Ex nA [ic] IIC T4 Gc II 3 G Ex nA ic IIC T5T4 Gc II 3 D Ex tc IIIC T 80°CT 130°C Dc
EN 60079-0: 2012 +A11:2013 EN 60079-11: 2012 EN 60079-15: 2010 EN 60079-31: 2014
PED Notified Body DNV GL [Notified Body Number: 0575] Veritasveien 1, N-1322 Hovik, Norway
Or
DNV Nemko Presafe AS [Notified Body number: 2460] P.O. Box 73, Blindern 0314 Oslo, Norway
FILE ID: 8750W CE Marking Page 3 of 3 RFD1098.docx

B.3 IEC EC and ATEX Approval Information

- 1. Equipment markings:
 - a. Type Examination Certificate (ATEX): DEKRA 15ATEX0003 X
 - b. Certificate of Conformity (IECEx): IECEx DEK 15.0001X
- 2. Required documentation
 - a. 8750W-2052 Installation Drawing Model 8750W ATEX/IECEx Hazardous (Ex) Locations
- 3. Referenced documentation
 - a. 00825-0300-4750.pdf, Quick Start Guide
 - b. 00809-0300-4750.pdf, Reference Manual
 - c. 8750W-AP01, Approvals Document
 - d. 8750W-1504 Installation Drawing, 8750W Transmitter Wiring
- 4. The Required and Referenced Documents listed above address the following items:
 - a. Instructions for safety i.e.
 - i. Putting into service
 - ii. Use
 - iii. Assembling and dismantling
 - iv. Maintenance, overhaul and repair
 - v. Installation
 - vi. Adjustment
 - b. Where necessary, training instructions
 - c. Details which allow a decision to be made as to whether the equipment can be used safely in the intended area under the expected operating conditions
 - d. Electrical parameters, maximum surface temperatures and other limit values
 - i. Electrical -
 - 1. See document 8750W-2052

Rosemount 8750W Flow Transmitter

Power input	90 - 250 VAC, 0.45 A, 40 VA 12 - 42 VDC, 1.2 A, 15 W
Pulsed circuit	Internally powered (Active): Outputs up to 12 VDC, 12.1 mA, 73 mW Externally powered (Passive): Input up to 28 VDC, 100 mA, 1 W
4-20mA output circuit	Internally Powered (Active): Outputs up to 25 mA, 24 VDC, 600 mW Externally Powered (Passive): Input up to 25 mA, 30 VDC, 750 mW
Modbus®	Internally Powered (Active): Outputs up to 100 mA, 3.3 VDC, 100 mW

Um	250 V
Coil excitation	500 mA, 40 V max, 9 W max

Rosemount 8750W Flowtube⁽¹⁾

Coilexcitation input	500 mA, 40 V max, 20 W max
Electrode	5 V, 200 uA, 1 mW

1. Provided by the transmitter.

Special Conditions for Safe Use (X):

- When "Special Paint Systems" are applied, instructions for safe use regarding potential electrostatic charging hazard have to be followed.
- 2. Terminals 1, 2, 3, 4 for data communication, cannot withstand the 500 V isolation test between signal and ground, due to integral transient protection. This must be taken into account upon installation.
- 3. Conduit entries must be installed to maintain the enclosure ingress rating of IP66 (Transmitter and Flow Tube), IP68 or IP69K (Flow Tube) as applicable.
- 4. The flow tube and transmitter are not allowed to be thermally insulated
 - e. Where necessary, the essential characteristics of tools which may be fitted to the equipment
 i. No proprietary tools required.
 - f. List of the standards, including the issue date, with which the equipment is declared to comply:
 - i. ATEX EN 60079-0: 2012 + A11: 2013, EN 60079-11: 2012, EN 60079-15: 2010, EN 60079-31: 2014
 ii. IECEx - IEC 60079-0: 2011,
 - II. IECEX IEC 60079-0: 2011, IEC 60079-11: 2011, IEC 60079-15: 2010, IEC 60079-31: 2013
 - g. Supply wire requirements: Use 10 - 18 AWG wire rated for the proper temperature of the application. For wire 10 - 14 AWG, use lugs or other appropriate connectors. For connections in ambient temperatures above 122 °F (50 °C), use a wire rated for 194 °F (90 °C).
 - h. Contact address: Rosemount Inc.
 12001 Technology Drive Eden Prairie, MN 55344 United States of America

Table B-3.	Nomenclature Mad	netic Flowmeter S	ystem Model 8	750W and Elec	ctrical Data

<u>8750W</u> I	<u>R</u> <u>1</u> <u>A</u> <u>2</u> <u></u> <u>F</u> II III IV V VI	<u>005</u> VII	<u> Z1 M4 AX V1 RH50</u> VIII IX X XI IX		
Designation	Explanation	Value	Explanation		
1	Model	8750W	Flow Meter System Model 8750W		
II		R	Remote mount		
	Iransmitter mount	Т	Integral mount		
III	Transmitter a course coursely	1	AC (90 - 250 Vac, 50/60 Hz), not for Ex nA		
	Iransmitter power supply	2	DC (12 - 42 Vdc)		
IV		A	4–20 mA with digital HART Protocol and scalable pulse output		
	Transmitter outputs	М	Modbus RS-485		
		0	Spare flow tube, no transmitter		
V	Conduit ontrioc	1 or 4	¹ /2–14 NPT female		
	Conduit entries	2 or 5	CM20, M20 female		
\ <i>/</i> I	Flactradatura	A, B, E, F	Seal of electrodes comply with IEC 61010-1.		
VI	Electrode type	0	Spare transmitter, no flow tube		
VII	Line size	005 to 480	¹ /2-in. NPS (15 mm) to 48-in. NPS (1200 mm)		
		000	Spare transmitter, no flow tube		
VIII	Safety approvals	Z1 ATEX	 II 3 GEx nA [ic] IIC T4 Gc⁽¹⁾ II 3 GEx nA ic IIC T5T4 Gc⁽²⁾ II 3 DEx tc IIIC T80 °CT130 °C Dc⁽³⁾ 		
		Z7 IECEx	Ex nA [ic] IIC T4 Gc ⁽¹⁾ Ex nA ic IIC T5T4 Gc ⁽²⁾ Ex tc IIIC T80 °CT130 °C Dc ⁽³⁾		
		ND ATEX	ⓑ II 3 DEx tc IIIC T80 ℃T130 ℃ Dc ⁽³⁾		
		NF IECEx	Ex tc IIIC T80 °CT130 °C Dc ⁽³⁾		
IX	Transmitter display	M4	LOI		
		M5	Display		
x	Transmitter discrete input/output	AX	Two discrete channels (DI/DO 1, DO 2)		
XI	Specials paint	Vx	Special paint systems ⁽⁴⁾		
VII	Remote cable option	RTxx ⁽⁵⁾	Standard temperature component		
		RHxx ⁽⁵⁾	Extended temperature component		

Rosemount 8750W Transmitter DC Power Supply only.
 Rosemount 8750W Flow Tube only.
 Rosemount 8750W Transmitter AC and DC Power Supply and Rosemount 8750W Flow Tube.
 Subject to special conditions for safe use.
 Length = xx × 10-ft, max. 500-ft.

Appendix C Wiring Diagrams

Γ	<	۵	U		ш	ш	0	Т
10	<u>-</u>					2201-	MOSL8 .00 YANA MARKA	1 3/14 3/14 3/14 NT® 1:2 3/44 3/15 8750W 10/15 10/15 3/15 8750W 10/15 3/15 3/15
11	_		SOR ONLY)				-	TALLATION DRAWING ROSEMOU TALLATION DRAWING M HAZARDOUS LOCAT 10.28/14 DBAWING NO.
10	2		0 (SPARE SENS ER)					V SURFACT FINAL UNLESS C C FINAL SECTION C FILL C F
c	、 、		TRONICS), OR MOUNT) .NGED), W (WAF	S FLUIDS)				OWENDENTIAL AND PREPARTIAN PARTING AND PREPARTIAN PARTING AND PREPARTIAN PARTING AND PREPARTIAN PRESENT AND PREPARTIAN PRESENT AND PREPARTIAN A 11 BIRS AND PREPARTIAN
0			M (REV 4 ELEC .), OR W (WALL ONLY), F (FLA	AMMABLE PROCES			Ĺ	03 14 15 16 17 17 17 17 17 17 17 17 17 17 17 17 17
			LECTRONICS), AL), R (REMOTE TRANSMITTER	22 FOR NON-FL				
٢			S: E (REV 3 E T: T (INTEGRA YLE: 0 (SPARE	: Z5 (FM CI D		ANSMITTER		
u	n n		Revision) NSMITTER CLAS NSMITTER MOUN SOR (TUBE) ST	ETY APPROVALS		FLOWTUBE AND TR	ELECTRICAL	NO
7			D (TRA TRA TRA SEN	SAF		X X MAGNETIC	OR FM APPROVAL. TH INTIONAL 06.01.	OCATION APPROVAL OPRIATE TO AREA CLASS AND DIVIS
0						X X X X X X X X ADDEL STRING	WING WITHOUT PRI IN ACCORDANCE WI D ANSI/ISA-RPI2.	HAVE HAZARDOUS L E GAS GROUP APPR FOR APPROPRIATE
6						8750W X X X X 8	LISION TO THIS DRA LATION SHOULD BE NEC), NFPA-TO, ANI	ENTS REGULRED TO E APPROVED FOR TH FLCATION. 3 METHOD SUITABLE
F		1			ļ		4. NO REV 3. INSTAL	VICT B MUST B CLASSI CLASSI WIRING NOTES:
L	~	<u>ت</u>				<u>ب</u>		<u></u>

ſ		A	æ						L	ш.	ш			ى			т	
												2022	- M052	.8 Ning no:	AA 50			2052
	11 12	REVISION TABLE 0.00. APP 0.41E FI051662 FS 4.724.71 0555819100			Ambient Temperature Range)c (-29°C S Ta S 60°C)	De (-29°C S Ta S 60°C)	(-29°C s Ta s 60°C)	(-29°C ≤ Ta ≤ 60°C)						125/]360 ANGLE ①····································	ROSEMOUNT	ALLATION DRAWING 8750W. IFFE× HAZADIDIS INCATIONS	11/28/14 DRAWING NO. 8750W -2 4/24/15 DRAWING NO. 8750W -2 100 TYPE SHEET 0 5
	10	REVISION E AA RT NITIAL RELEASE	SOR ONLY)		i ng	T80°CTI30 °C [80 °C. TI30 °C	TI30 °C Dc	TI30 °C Dc		R CAPACITANCE				SURFACE FINISH UNLESS		TITLE INST.	MILLO OR 0R. J. LAGE APP 0 P. SCHILKE MED. (PR0.K) PRODUCT CODE
	σ		E SENSOR ONLY)), OR 0 (SPARE SENS FLANGED)		Dust Rat	E + + + + + + + + + + + + + + + + + + +	🕄 11 3 D Ex +e 111C T	Ex to IIIC T80 °C.	Ex to 111C T80 °C.		OM THE MANUFACTURER FOR		JOUS (Ex) AREA		CONFIDENTIAL AND PROPRIETARY INFORMATION IS CONTANCO HERRIA	ANU TUSI BE FARULEU ALLUMUTIOL UNESS OTHERNISE SPECIFIED DIMENSIONS IN INCHES AND. REMOVE ALL BURRS AND SHARP EDGES.	-DEC TOLERANCES- .x ± .1 [2.5] .xx ± .02 [0.5]	.XXX ± .010 [0.25] FRACTIONS ANGLES ± 1/32 ± 2 D0 NOT SCALE PRINT [CAD MAINTAII
	8		S), OR 0 (SPAF AOTE) XT), M (MODBUS FER ONLY), F (4 Gc (Transmitter) T4 Gc (Flowtube)	-	ransmitter) (Flowtube)			NFORMITY (COC) FI	F INSTALLATION.	ALLED IN A HAZARI	L TRANSIENT	I PMENT.	0079-14		
	-	_	 4 ELECTRONICS "EGRAL), R (REN a (4-20ma Haf PARE TRANSMITI 	ILE BELOW	Gas Rating	G Ex nA [ic] C T. G Ex nA ic C T5.	NO RATING	v Liej IIC 14 6c (1 v ie IIC T5T4 6c	NO RATING		CERTIFICATE OF CO	CONCEPT METHOD 0	FLOWTUBE IS INST	ON METERS). 10 DUE TO INTEGRA	STALLING THIS EQU	60079-14 OR IEC 6	THE GAS GROUP	_
	6		LASS: M (REV DUNT: T (INT JTPUT CODES: STYLE: 0 (S	als: see tab » transmitter		÷÷ •		ids, ExnA	o l e		TS. INCLUDE A C	FOR THE ENTITY 250V.	SAFE WHEN THE	LBS (I.2 NEWTO N TERMINALS I-	LLOWED WHEN IN:	ICAL CODE, EN	E APPROVED FOR	
	2	(Revision)	ANSMITTER CI ANSMITTER M ANSMITTER OI ANSMITTER OI NSOR (TUBE)	FETY APPROV. C flowtube and	ų	g (Ex nA)and Non-Flammable	r Non-Flammab ly	ng (Ex najana Flammable Flu	or Non-Flammal y		ECTRODE CIRCUI	ONLY REQUIRED	INTRINSICALLY	OUE IS 10.6 IN OLATION TEST O ALLATION.	ING MUST BE FO	ATIONAL ELECTR TION"	PPROVAL MUST B	CTION TYPE.
	4	0	TR TR TR TR TR TR TR SE	SA X X MAGNETI	PROTECTION TYP	n" Non-sparkir " (Dust) for Powered Only	"t" (Dust) fo DC Powered on	n non-sparki Just) for Non red Only	: "+" (Dust) f DC Powered on!		ilcally safe eli	PARAMETERS ARE JUIPMENT GENERA	3E INSTALLED AS .) OF Gc.	TIGHTENING TOR NG THE 500V IS	STALLATION DRAW	ITH LOCAL AND N STION, AND EREC	(Ex) LOCATION A	ZONE AND PROTE
	~			X X X X X X X X X X X X X X X X X X X	DESCRIPTION /	f protection " y enclosure " Fluids, DC	n by enclosure luids, AC or	r prorection closure "†" ([DC Powe	n by enclosure Fluids, AC or		TS. FOR INTRING	ER FOOT. THESE . CONNECTED TO EC	AD WIRING MUST (TION LEVEL (EPI	AXIMUM TERMINAL CAPABLE OF PASS TAKEN INTO ACC	NUFACTURER'S IN:	IN ACCORDANCE W IS DESIGN, SELEC	HAVE HAZARDOUS SSIFICATION.	OR APPROPRIATE
	2			8750W X X X X 8750W M		ATEX Type o Protection b	ATEX Protection F	recex rype o Protection by en	IECEx Protectio		SEMOUNT CABLING KI	OT & INDUCTANCE PE ITTER MUST NOT BE	ECTRODE CIRCUIT AN N EQUIPMENT PROTEC	L INSTALLATIONS MA ANSMITTER IS NOT C TION. THIS MUST BE	ATED APPARATUS MAN	LATION SHOULD BE I RICAL INSTALLATION	ENTS REQUIRED TO H RIATE TO AREA CLAS	METHOD SUITABLE F
	_		1		Safety Approval Option	1 Z	QN	Z	NF		P THE ROS	PER FOU	THE ELI	I COR ALI	4. ASSOCI	ELECTI	H Z2 COMPON	NOTES:
- 1		<	0	I U				1	L	U	I L		1	0			T	** A30 m80;

Figure C-3. IEC EC and ATEX Hazardous Area Installation

ſ		¥		c	n				U			0			ш					ш			0			т		
	12		·																		2202-	M0578	.ON DNIWARD	- AA			NS 1 DOFO	<u>zcuz - W</u>
																								یں تیک 17	° TN	3 8750W,	LOCATIO	BIC OF
	11																							ANGLE	NOW	N DRAWING	AZARDOUS RAWING ND.	DOC TYPE
-													1	,										125/ 340	ROSE	TALLATIO	11/28/14 D	4/24/15
	9	_								ion		tegral	tegral					_		-				ISE SPECIFIED	₩O.	INS	ATEX 8 J. LAGE	P. SCHILKE PRODUCT COD
-			process	чo		IB)	itegral		NF process	figurati		with In	with In			u o	+ + n							RY SURFACI REIN OTHERW VGLY.	OVE EDMOS	TITLE	B.	APP'D (AINED. (PR0/E)
	6	T AND Z	maximum	figurati		box (R.	with In		ND AND maximum	ting Con	tter	lowtube	lowtube			igurati	+ r a n em							AND PROPRIETA Contained Hei Noled Accordii	WISE SPECIFIED INCHES (mm). REN 40 SHARP EDGES	FOLERANCES- [2.5]	[0.25]	± 2% t CAD MAIN
-		Z NOLION Z	ure the	ting Con	itter	junction	Flowtube		ZI , Z7, ure the	er Moun	Transmi	RJB or F itter	RJB or F itter	RJB		ing Con	tter mounted							CONFIDENTIAL INFORMATION IS NO MUST BE HA	UNLESS OTHE DIMENSIONS IN ALL BURRS A		.XXX ± .010 .XXX ± .010 PACTIONS	1/32 NOT SCALE PRI
	8	PROVAL (to ensi	er Moun	transm	remote _	RJB or F iitter	RJB	OPTION :	r an smitt	mounted	ie with l	e with l transm	e with I		er Mount	Transmi							-		1	a	: # 8
-		AFETY AP	Veter betaken	r an smitt	mounted	be with	be with d transm	be with	PPROVAL Meter be taken	Ţ	Remote	Flowtub mounted	Flowtub mounted	Flowtub	seni	an smitte	mounted											
	7	. (An S	W Flow	F	Remote	Flowtu	Flowtu mounte	Flowtu	SAFETY A NW Flow shall	e ('C)					ion Rat	Tr	Remote 1		s durat									
-		- [E	del 8750 re, care	Code					+c) - 5 del 875(re, care	nperatur					Protect	ng			48 hour									_
	9	0 - Spark	the Mo emperatu	ication	Τ4	15	Τ4	Τ4	"+" (Ex f the Mo emperatu low.	face Ten	80	80	100	130	orrosion	EMA Rati	4 X 7 X	< >	4 A A A A A A A A A A A A A A A A A A A									
-		ž	ature o ocess te able be	Classif					LOSURES ature o ocess to able be	imum Sur					n and C	N			K s (30 fe									
	ъ	DIECTION	t temper ts of pr in the t						N BY ENC + temper ts of pr in the t) Max					rotectio AND NF	ing			or 1269 10 meter									
-		E OF PRO	ambien e effec ceeded	Process re (°C	licable		0	0	:OTECTIO ambien e effec ceeded	Process re (°C	licable	0	0	0	gress Pi 27. ND	IP Rat	1961 1961	-	, 1268 oth is									
	4	OW: TYP	ermitted avoid th s not ex	Maximum :mperatu	Not App	9	6	12	0W: PR ermitteo avoid th s not ex	Maximum emperatu	Not App	9	6	12	0W: In 0N ZI .				aence de									
		- 875	aximum p °C. To ature i	Size		_			2 - 875 3x imum p °C. To ature i	Size Te	_	_	_	_	3 - 875 3 - 875	ne Size	AII		submer.									
	-	TABLE	The mc is 60 temper	Line	AI	AI	AI	AI	TABLE The mc is 60 temper	Line	ΑI	AI	AI	AI	TABLE	, i			* IP X8									
	2																											
	-																											
		A		٥	٥							0								ш			0			т	ŧr	A38 HBDJ

	A	۵		U		0	ш	L	L _		C	9		т	
									LSOL	- MOSL	8.	ON ONI MAND	AA		051
	DATE //24./15			ILY:					L				¥ ¦		M-1
ľ	6			0										. 3	750
F				SOR										1750	.0
щ	5 <u>-</u>			SEN									₽IS	NG 8 CATI	3
[ABL				RE									€j	AW II	in a
Z -			ç	SPA										DOU	RAW IN
IISI	DESCI		INC	0								-	<u>s</u>	AZAR	19
REV			CR CR	OR -									\$> X	ALLA 64 H.	10/20
			E N S(6										C	ALES
	EASE		ы N	DBU									SPEC		N. NOF
	A A AA		PAR	IEL									HERW 1:	2	0.4
1	RE NITIA		(S	(F								-	<u>75 </u>		<u>2 8 6</u>
			R O	9									FIED FEED		AINTAL
			°.	US)	S)								PROPR TAINED ACCO ACCO S [mm].	EANCES- 51 251 251	NGLES Z
			cs)	T) FIB	DID								AL AND IS CON HANDLE HERWIS N INCHE	10111 2010 2010	A THIN
			NINC	PROI	FL.								IST BE	H + + +	ONS VEALE P
			CTR	L M U C ANGI	ESS								AND	× × ×	FRACTIL E 1/32
			Ē	WAL), (FL,	ROC							l			- 18
			4	W (BUS F	ы Ш										
			REV	OR MOD Y).	IABL										
			w	M(M(AMM										
				IOTE T), ER	14										
			105	REN. HAR ITT	NON										
			RON	R (MA NSM	OR										
			ECT	.), :-20 TRA	2 F										
_			Ц	RAL (4 RE	0 -										
			3	ITEG : A SPA	AC				_	-					
			(RE	(IN DES 0 ((CS			LTER	TION	5					
				т со т Е. со т	2 6			I I WSI				CODE			
			SS :	NT: PUT TYL	S: .			TRAN	TO	2		DE C			
			CLA	MOU OUT) S	VAL			AND	DUE	5		C C(TRIC			
			on) ER	ER UBE	PRO			18E /	EST	5		CTR I ELEC			
			i s i I T T	111.	AP			OWTL	L NC	MORI		ELE.			
			Rev NSM	NSM NSM SOR	ΕTΥ			L L L	ATIC	ING		NAL	ų.	SION	
			D (TRA	TRA TRA SEN	SAF			ET I-	I SOL	ERAT	OVAL	ATIC E CA	ROVA AREA	IVIC	
					1			MAGN	70C	GEN	APPR	HE -	APP TO	UN [
									12 1	ENT -	SA .	E E	I I ON	SS A	
					L			× ×	1 6	MIN.	OR C	WI.	OC A 1 OP R I	CLA	
								* *	SSIN	03 0	PRI	ANCE JRDA	US L APPR	ATE	
								X X	PAS	2 D	HOUT	ORD, ACCC	UP /	OPRI	
								(X)	E 01	ECTE	WITH	ACC 6.01	HAZA GRC	APPR	
								×	ABLI	NNOC	I NG	E IN 12.0 . BE	ave GAS	OR A	
								× ×	CAP	BEC	RAW	L BE - PRI HALL	THE THE	і. Ц	
								X X X	TON TON	NOT	IS D	SHAL /ISA DN S I).	ED T FOR	TABI	
				L				× " ×	LIS I	JST 1	HI (AT ICN C 22.	NED I I. I.	SUI	
								×	MENT	RML	N TC	LAT ND Z	PROV	THOD	
			l					×	IT IN	50V.	1510	STAL 0, A - INS > ART	ENTS AP	. WE .	
								750W	S EC	NSM N 25	RE V.	- 1 N: A - 7(A - 7(A - 7) A - 7(A - 7)	APONI T BE	RING	
								80	TH	TRA	NO	USA CAN CCE	∆ CON MUS CLA	, MI	E 2 :
									9	5.	4.	τ. Έ	\sim	\leq	NOT
							1								

....

C.1 Emerson[™] 775 Wireless THUM[™] Adapter

Figure C-5. Emerson 775 Wireless THUM Adapter with Field Mount Internal Analog Power

Figure C-6. Emerson 775 THUM Adapter with Field Mount External Analog Power

Wiring guide

White to XMTR (-) pin 1 Yellow to XMTR (+) pin 2 Red to 250 Ω to + 4-20 mA Black to - 4-20 mA Green to XMTR housing

C.2 475 Field Communicator

Figure C-7. 475 Field Communicator with Field Mount Internal Analog Power

A. AC neutral or DC -B. AC line or DC +

C. Transmitter power D. 475 Field Communicator

Figure C-8. 475 Field Communicator with Field Mount External Analog Power

Wiring Diagrams

Appendix D Implementing a Universal Transmitter

Safety messages page 221
Rosemount sensors page 225
Brooks Sensors page 227
Endress and Hauser Sensors page 229
Fischer and Porter Sensors page 230
Foxboro Sensors page 236
Kent Veriflux VTC Sensor page 240
Kent Sensors page 241
Krohne Sensors page 242
Taylor Sensors page 243
Yamatake Honeywell Sensors page 245
Yokogawa Sensors page 246
Generic manufacturer sensors page 247

D.1 Safety messages

Instructions and procedures in this section may require special precautions to ensure the safety of the personnel performing the operations. Read the following safety messages before performing any operation described in this section.

AWARNING

The Rosemount[™] 8750W Magnetic Flowmeter has not been evaluated for use with other manufacturers' magnetic flowmeter sensors in hazardous (Ex or Classified) areas. Special care should be taken by the end-user and installer that the Rosemount 8750W Transmitter meets the safety and performance requirements of the other manufacturer's equipment.

D.1.1 Universal capability

The Rosemount 8750W Transmitter has the ability to drive other manufacturers' sensors and report a flow rate. In addition to providing a flow measurement, all of the diagnostic functionality is also available in a universal application. This capability can provide additional information into the installation, process, and meter health, in addition to enabling a common maintenance practice for all magnetic flowmeter installations and helping to reduce spares inventory of magnetic flowmeter transmitters.

This section will detail how to wire the transmitter to other manufacturers' sensors and to configure the universal capabilities.

D.1.2 Three-step process

There are three easy steps when implementing a universal transmitter.

- 1. Review the existing application. Verify the existing sensor is in good working order, and that it is compatible with a universal transmitter. Use Table D-1 to help verify if the Rosemount universal transmitter is compatible with the existing sensor. Verifying the sensor is functioning correctly while the Universal transmitter may be able to drive the existing sensor, if the sensor is not in good working order, the universal transmitter may not function correctly.
- 2. Connect the universal transmitter to the existing sensor using the wiring diagrams in this appendix. If the existing sensor is not listed in this appendix, contact Rosemount technical support for more details on the application of the universal capabilities.
- 3. Configure the transmitter following the guidelines in Section 4 and 5 setting up parameters as needed. One of the key configuration parameters is the sensor calibration number. There are several methods to determine the calibration number, but the most common method will be to use the universal trim capability. This functionality is detailed in this appendix. Accuracy of the meter when the universal trim is used to determine the calibration number will be dependent on the accuracy of the known flow rate used in the trim process.

In addition to the universal trim, there are two other methodologies for determining a calibration number for the sensor.

Method 1: Have the sensor sent to a Rosemount service center for determination of a calibration number compatible with the universal transmitter. This is the most accurate method for determining the calibration number and will provide a $\pm 0.5\%$ of rate measurement accuracy from 3 to 40 fps (1 to 10 m/s).

Method 2: Involves the conversion of the existing sensor calibration number / meter factors to an equivalent Rosemount 16-digit calibration number. Accuracy of the meter using this methodology is estimated to be in the range of 2-3%. Contact Rosemount technical support for more information on this method or to determine a calibration number for the existing sensor.

Once these steps are completed, the meter will begin measuring flow. Verify that the measured flow rate is within the expected range and that the mA output correctly corresponds to the measured flow rate. Also verify the reading in the control system matches the reading at the transmitter. Once these items have been verified, the loop can be placed into automatic control as needed.

Universal trim

LOI menu path	Field Mount: Device Setup, Detailed Setup, Additional Params, Universal Auto Trim Wall Mount: AUX. FUNCTION
Fast Keys	1, 2, 5, 5

The universal auto trim function enables the Rosemount 8750W Transmitter to determine a calibration number for sensors that were not calibrated at the Rosemount factory. The function is activated as one step in a procedure known as in-process calibration. If the sensor has a 16-digit Rosemount calibration number, in-process calibration is not required.

1. Determine the flow rate of the process fluid in the sensor.

Note

The flow rate in the line can be determined by using another sensor in the line, by counting the revolutions of a centrifugal pump, or by performing a bucket test to determine how fast a given volume is filled by the process fluid.

- 2. Complete the universal auto trim function.
- 3. When the routine is completed, the sensor is ready for use.

Wiring the universal transmitter

The wiring diagrams in this section illustrate the proper connections between the transmitter and most sensors currently on the market. Specific diagrams are included for most models, and where information for a particular model of a manufacturer is not available, a generic drawing pertaining to that manufacturer's sensors is provided. If the manufacturer for the existing sensor is not included, see the drawing for generic connections.

Any trademarked names used herein regarding sensors not manufactured by Rosemount are owned by the particular manufacturer of the sensor.

Rosemount transmitter	Sensor manufacturer	Page number				
Rosemount						
Rosemount 8750W	Rosemount 8750W	page 225				
Brooks						
Rosemount 8750W	Model 5000	page 227				
Rosemount 8750W	Model 7400	page 228				
Endress and Hauser		page 226				
Rosemount 8750W	Generic Wiring for Sensor	page 229				
Fischer and Porter						
Rosemount 8750W	Model 10D1418	page 230				
Rosemount 8750W	Model 10D1419	page 231				
Rosemount 8750W	Model 10D1430 (Remote)	page 232				
Rosemount 8750W	Model 10D1430	page 233				
Rosemount 8750W	Model 10D1465, 10D1475 (Integral)	page 234				
Rosemount 8750W	Generic Wiring for Sensors	page 235				
Foxboro						
Rosemount 8750W	Series 1800	page 236				
Rosemount 8750W	Series 1800 (Version 2)	page 237				
Rosemount 8750W	Series 2800	page 238				
Rosemount 8750W	Generic Wiring for Sensors	page 239				

Table D-1. Transmitter and Sensor Reference

Rosemount transmitter	Sensor manufacturer	Page number					
Kent							
Rosemount 8750W	Veriflux VTC	page 240					
Rosemount 8750W	Generic Wiring for Sensors	page 241					
Krohne							
Rosemount 8750W	Generic Wiring for Sensors	page 242					
Taylor							
Rosemount 8750W	Series 1100	page 244					
Rosemount 8750W	Generic Wiring for Sensors	page 244					
Yamatake Honeywell							
Rosemount 8750W	Generic Wiring for Sensors	page 245					
Yokogawa							
Rosemount 8750W	Generic Wiring for Sensors	page 246					
Generic manufacturer wiring							
Rosemount 8750W	Generic Wiring for Sensors	page 247					

Table D-1. Transmitter and Sensor Reference

D.2 Rosemount sensors

D.2.1 Rosemount 8750W Sensors to transmitter

Connect coil drive and electrode cables as shown in Figure D-1 on page 225.

Table D-2. Rosemount 875W Sensor Wiring Connections

Rosemount 8750W Transmitters	Rosemount 8750W Sensors
1	1
2	2
3	3
17	17
18	18
19	19

ACAUTION

D.2.2 Connecting sensors of other manufacturers

Before connecting another manufacturer's sensor to the transmitter, it is necessary to perform the following functions.

- 1. Turn off the AC power to the sensor and transmitter. Failure to do so could result in electrical shock or damage to the transmitter.
 - 2. Verify the coil drive cables between the sensor and the transmitter are not connected to any other equipment.
 - 3. Label the coil drive cables and electrode cables for connection to the transmitter.
 - 4. Disconnect the wires from the existing transmitter.
 - 5. Remove the existing transmitter. Mount the new transmitter. See "Quick Installation and Start-Up" on page 3.
 - 6. Verify the sensor coil is configured for series connection. Other manufacturers sensors may be wired in either a series or parallel circuit. All Rosemount magnetic sensors are wired in a series circuit. (Other manufacturers AC sensors (AC coils) wired for 220 V operation are typically wired in parallel and must be rewired in series.)
 - 7. Verify the sensor is in good working condition. Use the manufacturer's recommended test procedure for verification of sensor condition. Perform the basic checks:
 - 8. Check the coils for shorts or open circuits.
 - 9. Check the sensor liner for wear or damage.
 - 10. Check the electrodes for shorts, leaks, or damage.
 - 11. Connect the sensor to the transmitter in accordance with reference wiring diagrams. See Appendix C: Wiring Diagrams for specific drawings.
 - 12. Connect and verify all connections between the sensor and the transmitter, then apply power to the transmitter.
 - 13. Perform the Universal Auto Trim function.

ACAUTION

D.3 Brooks Sensors

Connect coil drive and electrode cables as shown in Figure D-2.

D.3.1 Model 5000 Sensor to Rosemount 8750W Transmitter

Figure D-2. Wiring for Brooks Sensor Model 5000 and Rosemount 8750W

A. Brooks model 5000B. Rosemount 8750W TransmitterRefer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-3. Brooks Model 5000 Sensor Wiring Connections

Rosemount 8750W	Brooks Sensors model 5000
1	1
2	2
3	3
17	17
18	18
19	19

ACAUTION

D.3.2 Model 7400 Sensor to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-3.

Figure D-3. Wiring for Brooks Sensor Model 7400 and Rosemount 8750W

A. Brooks model 7400 B. Rosemount 8750W Transmitter

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-4. Brooks Model 7400 Sensor Wiring Connections

Rosemount 8750W	Brooks Sensors model 7400						
1	Coils +						
2	Coils –						
3	3						
17	Shield						
18	Electrode +						
19	Electrode –						

ACAUTION

D.4 Endress and Hauser Sensors

Connect coil drive and electrode cables as shown in Figure D-4.

D.4.1 Endress and Hauser Sensor to Rosemount 8750W Transmitter

Figure D-4. Wiring for Endress and Hauser Sensors and Rosemount 8750W

A. Coils B. Electrodes Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-5. Endress and Hauser Sensor Wiring Connections

Rosemount 8750W	Endress and Hauser Sensors
1	41
2	42
3	14
17	4
18	5
19	7

ACAUTION

D.5 Fischer and Porter Sensors

Connect coil drive and electrode cables as shown in Figure D-5.

D.5.1 Model 10D1418 Sensor to Rosemount 8750W Transmitter

Figure D-5. Wiring for Fischer and Porter Sensor Model 10D1418 and Rosemount 8750W

Rosemount 8750W Transmitter

A. Electrode connections

B. Coil connections

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-6. Fischer and Porter Model 10D1418 Sensor Wiring Connections

Rosemount 8750W	Fischer and Porter Model 10D1418 Sensors
1	L1
2	L2
3	Chassis ground
17	3
18	1
19	2

ACAUTION

D.5.2 Model 10D1419 Sensor to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-6.

Figure D-6. Wiring for Fischer and Porter Sensor Model 10D1419 and Rosemount 8750W

Rosemount 8750W Transmitter

A. Electrode connectionsB. Coil connectionsRefer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-7. Fischer and Porter Model 10D1419 Sensor Wiring Connections

Rosemount 8750W	Fischer and Porter Model 10D1419 Sensors
1	L1
2	L2
3	3
17	3
18	1
19	2

ACAUTION

D.5.3 Model 10D1430 Sensor (Remote) to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-7.

Figure D-7. Wiring for Fischer and Porter Sensor Model 10D1430 (Remote) and Rosemount 8750W

Rosemount 8750W Transmitter

A. Electrode connections

B. Coil connections

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-8. Fischer and Porter Model 10D1430 (Remote) Sensor Wiring Connections

Rosemount 8750W	Fischer and Porter Model 10D1430 (Remote) Sensors
1	L1
2	8
3	G
17	3
18	1
19	2

ACAUTION

D.5.4 Model 10D1430 Sensor (Integral) to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-8.

Figure D-8. Wiring for Fischer and Porter Sensor Model 10D1430 (Integral) and Rosemount 8750W

Rosemount 8750W Transmitter

A. Electrode connections
 B. Coil connections
 Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Rosemount 8750WFischer and Porter Model 10D1430 (Integral) Sensors1L12L23G173181192

Table D-9. Fischer and Porter Model 10D1430 (Integral) Sensor Wiring Connections

ACAUTION

D.5.5 Model 10D1465 and Model 10D1475 Sensors (Integral) to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-9.

Figure D-9. Wiring for Fischer and Porter Sensor Model 10D1465 and Model 10D1475 (Integral) and Rosemount 8750W

Rosemount 8750W Transmitter

A. Electrode connections
B. Disconnect
C. Coil connections
Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-10. Fischer and Porter Model 10D1465 and 10D1475 Sensor Wiring Connections

Rosemount 8750W	Fischer and Porter Model 10D1465 and 10D1475 Sensors
1	MR
2	M1
3	3
17	3
18	1
19	2

ACAUTION

D.5.6 Fischer and Porter Sensor to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-10.

Figure D-10. Generic Wiring for Fischer and Porter Sensors and Rosemount 8750W

Fisc P Se	her and orter ensors	Rosemount 8750W Transmitter
A	2 —— 1 —— 3 ——	19 18 17
В	C —— M2 —— M1 ——	3 2 1
A. Electr B. Coils	odes	

C. Chassis ground Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-11. Fischer and Porter Generic Sensor Wiring Connections

Rosemount 8750W	Fischer and Porter Sensors
1	M1
2	M2
3	Chassis ground
17	3
18	1
19	2

ACAUTION

D.6 Foxboro Sensors

Connect coil drive and electrode cables as shown in Figure D-11.

D.6.1 Series 1800 sensor to Rosemount 8750W Transmitter

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-12. Foxboro Series1800 Sensor Wiring Connections

Rosemount 8750W	Foxboro Series 1800 Sensors
1	L1
2	L2
3	Chassis ground
17	Any shield
18	Black
19	White

ACAUTION

D.6.2 Series 1800 (version 2) Sensor to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-12.

Figure D-12. Wiring for Foxboro Series 1800 (Version 2) and Rosemount 8750WFoxboro Series 1800Rosemount 8750WSensor (Version 2)Transmitter

Table D-13. Foxboro Series 1800 (Version 2) Sensor Wiring Connections

Rosemount 8750W	Foxboro Series 1800 Sensors
1	L1
2	L2
3	Chassis ground
17	Any shield
18	Black
19	White

ACAUTION

D.6.3 Series 2800 Sensor to 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-13.

Table D-14. Foxboro Series 2800 Sensor Wiring Connections

Rosemount 8750W	Foxboro Series 2800 Sensors
1	L1
2	L2
3	Chassis ground
17	Any shield
18	Black
19	White

ACAUTION

D.6.4 Foxboro Sensor to 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-14.

Figure D-14. Generic Wiring for Foxboro Sensors and Rosemount 8750W

Table D-15. Foxboro Generic Sensor Wiring Connections

Rosemount 8750W	Foxboro Sensors
1	L1
2	L2
3	Chassis ground
17	Any shield
18	Black
19	White

ACAUTION

D.7 Kent Veriflux VTC Sensor

Connect coil drive and electrode cables as shown in Figure D-15.

D.7.1 Veriflux VTC Sensor to 8750W Transmitter

Figure D-15. Wiring for Kent Veriflux VTC Sensor and Rosemount 8750W		
Kent Veriflux	Rosemount 8750W	
VTC Sensor	Transmitter	

A. Electrode connectionsB. Coil connectionsRefer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-16. Kent Veriflux VTC Sensor Wiring Connections

Rosemount 8750W	Kent Veriflux VTC Sensors
1	2
2	1
3	SCR OUT
17	SCR OUT
18	SIG1
19	SIG2

ACAUTION

D.8 Kent Sensors

Connect coil drive and electrode cables as shown in Figure D-16.

D.8.1 Kent Sensor to Rosemount 8750W Transmitter

A. Electrodes

B. Coils

А

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-17. Kent Sensor Wiring Connections

Rosemount 8750W	Kent Sensors
1	1
2	2
3	SCR OUT
17	SCR OUT
18	SIG1
19	SIG2

ACAUTION

D.9 Krohne Sensors

Connect coil drive and electrode cables as shown in Figure D-17.

D.9.1 Krohne Sensor to Rosemount 8750W Transmitter

Figure D-17. Generic Wiring for Krohne Sensors and Rosemount 8750W

Krohne Rosemount 8750W Sensors Transmitter

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-18. Krohne Sensor Wiring Connections

Rosemount 8750W	Krohne Sensors
1	8
2	7
3	Coil shield
17	Electrode shield
18	2
19	3

ACAUTION

D.10 Taylor Sensors

Connect coil drive and electrode cables as shown in Figure D-18.

D.10.1 Series 1100 Sensor to Rosemount 8750W Transmitter

A. Electrode connections B. Coil connections

Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-19. Taylor Series 1100 Sensor Wiring Connections

Rosemount 8750W	Taylor Series 1100 Sensors
1	Black
2	White
3	Green
17	S1 and S2
18	E1
19	E2

ACAUTION

D.10.2 Taylor Sensor to Rosemount 8750W Transmitter

Connect coil drive and electrode cables as shown in Figure D-19.

Figure D-19. Generic Wiring for Taylor Sensors and Rosemount 8750W Taylor Sensors Rosemount 8750W Transmitter

A. Electrodes B. Coils Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-20. Taylor Sensor Wiring Connections

Rosemount 8750W	Taylor Sensors
1	Black
2	White
3	Green
17	S1 and S2
18	E1
19	E2

ACAUTION

D.11 Yamatake Honeywell Sensors

Connect coil drive and electrode cables as shown in Figure D-20.

D.11.1 Yamatake Honeywell Sensor to Rosemount 8750W Transmitter

Figure D-20. Generic Wiring for Yamatake Honeywell Sensors and Rosemount 8750W

D. Chassis ground E. Electrodes F. Coils Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-21. Yamatake Honeywell Sensor Wiring Connections

Rosemount 8750W	Yamatake Honeywell Sensors
1	Х
2	Y
3	Chassis ground
17	С
18	В
19	А

ACAUTION

Yokogawa Sensors D.12

Connect coil drive and electrode cables as shown in Figure D-21.

Yokogawa Sensor to Rosemount 8750W Transmitter D.12.1

Figure D-21. Generic Wiring for Yokogawa Sensors and Rosemount 8750W

Yokogawa Rosemount 8750W Sensors Transmitter

D. Chassis ground E. Electrodes F. Coils Refer to Figure D-1 on page 225 for actual terminal block configuration drawing.

Table D-22. Yokogawa Sensor Wiring Connections

Rosemount 8750W	Yokogawa sensors
1	EX1
2	EX2
3	Chassis ground
17	С
18	В
19	A

ACAUTION

D.13 Generic manufacturer sensors

D.13.1 Identify the terminals

First check the sensor manufacturer's manual to identify the appropriate terminals. Otherwise, perform the following procedure.

Identify coil and electrode terminals

- 1. Select a terminal and touch an ohmmeter probe to it.
- 2. Touch the second probe to each of the other terminals and record the results for each terminal.
- 3. Repeat the process and record the results for every terminal.

Coil terminals will have a resistance of approximately 3-300 ohms.

Electrode terminals will have an open circuit.

Identify a chassis ground

- 1. Touch one probe of an ohmmeter to the sensor chassis.
- 2. Touch the other probe to the each sensor terminal and the record the results for each terminal.

The chassis ground will have a resistance value of one ohm or less.

D.13.2 Wiring connections

Connect the electrode terminals to Rosemount 8750W Transmitter terminals 18 and 19. The electrode shield should be connected to terminal 17.

Connect the coil terminals to Rosemount 8750W Transmitter terminals 1, 2, and 3.

If the Rosemount 8750W Transmitter indicates a reverse flow condition, switch the coil wires connected to terminals 1 and 2.

ACAUTION

Index

Α

Analog Output	
range	
Applications/Configurations	
Auxiliary Output	179, 183, 184

В

Basic Setup	32
Bolts	
Flanged	13

С

Conductivity	
Model 8705/8707	186
Configurations/Applications	5
Cover Gasket, Materials of Construction	181, 185

D

Device Software Functions	
basic setup	

F

Flange Bolts 13
Flow Rate
units
Flowtube
Orientation
Flowtubes
Brooks Model 5000
Endress and Hauser Models
Fischer and Porter Model 10D1418
Foxboro Series 1800
Generic Flowtube 239
Kent Flowtubes 233
Kent Veriflux VTC 232
Krohne Flowtubes
Taylor Series 1100
Yamatake Honeywell Flowtubes
Yokogawa Flowtubes
-

G

-	
Gaskets	3
Grounding	
Grounding Electrodes1	8
Grounding Rings1	8
Lining Protectors1	8

l Ins

nstallation	
mechanical considerations	5
Procedures	5
Safety Messages	3

L

Lining Protectors	
Grounding	
Local Operator Interface (LOI)	
Examples	

Μ

Mechanical Considerations	5
Messages	
Safety	2

0

Options	5
Orientation	
Flowtube	
Output Signals	179, 183
Output Testing	179, 183

Ρ

Paint, Materials of Construction	.181,	185
Power Supply Load Limitations	, 179,	183
Pressure		
Model 8705/8707		185

S

Safety Messages	
-----------------	--

Specifications

Model 8705 and Model 8707
ambient temperature limits
conductivity limits
electrical connections
electrodes 187
functional specifications
grounding rings
interchangeability 185
line sizes
lining
non-wetted materials
performance specifications
physical specifications
pressure limits
process conditions
process temperature limits
process wetted materials
service
upper range limit
vacuum limits
weight
Specifications and Reference Data
Functional Specifications
Output Signals
Output Testing

Т

Tag	 . 32
Temperature	
Model 8705/8707.	 185

U

Upper Range Value (URV)	Upper Range Value (URV) .		3
-------------------------	---------------------------	--	---

W

Weight	
Model 8705/8707	188
Wiring Diagrams	
Brooks Model 5000	219
Endress and Hauser Models	218
Fisher and Porter Model 10D1418	222
Foxboro Series 1800	228
Generic Flowtube	239
Kent Flowtubes	233
Kent Veriflux VTC	232
Krohne Flowtubes	234
Taylor Series 1100	235
Yamatake Honeywell Flowtubes	237
Yokogawa Flowtubes	238
÷	

Reference Manual

00809-0300-4750, Rev CA March 2016

Global Headquarters

Emerson Process Management

6021 Innovation Blvd. Shakopee, MN 55379, USA 1 +1 800 522 6277 or +1 303 527 5200 +1 303 530 8459 Flow.Support@Emerson.com

North America Regional Office

Emerson Process Management 7070 Winchester Circle Boulder, CO 80301, USA 1 800 522 6277 or +1 303 527 5200 +1 303 530 8459 Flow.Support@Emerson.com

Latin America Regional Office

Emerson Process Management Multipark Office Center Turrubares Building, 3rd & 4th floor Guachipelin de Escazu, Costa Rica +1 506 2505 6962 +1 954 846 5121 Flow.Support@Emerson.com

Europe Regional Office

Emerson Process Management Flow B.V. Neonstraat 1 6718 WX Ede The Netherlands (a) +31 (0) 318 495555 (b) +31 (0) 318 495556 (c) Flow.Support@Emerson.com

Asia Pacific Regional Office

Emerson Process Management Asia Pacific Pte Ltd
1 Pandan Crescent
Singapore 128461
+65 6777 8211
+65 6777 0947
APFlow.Support@Emerson.com

Middle East and Africa Regional Office

Emerson Process Management Emerson FZE P.O. Box 17033,

Jebel Ali Free Zone - South 2 Dubai, United Arab Emirates +971 4 8118100 +971 4 8865465

FlowTechnicalSupport@Emerson.com

Linkedin.com/company/Emerson-Process-Management

Twitter.com/Rosemount_News

Facebook.com/Rosemount

Youtube.com/user/RosemountMeasurement

Google.com/+RosemountMeasurement

Standard Terms and Conditions of Sale can be found at: <u>Emerson.com/en-us/pages/Terms-of-Use.aspx</u> The Emerson logo is a trademark and service mark of Emerson Electric Co. Rosemount and Rosemount logotype are trademarks of Emerson Process Management SMART Meter Verification, THUM Adapter, Tri-Loop, AMS, and ProLink are trademarks of Emerson Process Management HART is a registered trademark of FieldComm Group. Modbus is a registered trademark of Gould Inc. All other marks are the property of their respective owners. © 2016 Emerson Process Management. All rights reserved.

