Reference Manual 00809-0100-4107, Rev CA July 2017

Rosemount[™] 2051 Pressure Transmitter

with HART[®] Revision 5 and 7 Selectable Protocol

Rosemount[™] 2051 Pressure Transmitter

NOTICE

Read this manual before working with the product. For personal and system safety, and for optimum product performance, make sure you thoroughly understand the contents before installing, using, or maintaining this product.

For technical assistance, contacts are listed below:

Customer Central

Technical support, quoting, and order-related questions. United States - 1-800-999-9307 (7:00 am to 7:00 pm CST)

Asia Pacific- 65 777 8211

Europe/Middle East/Africa - 49 (8153) 9390

North American Response Center

Equipment service needs.

1-800-654-7768 (24 hours-includes Canada)

Outside of these areas, contact your local Emerson[™] representative.

ACAUTION

The products described in this document are NOT designed for nuclear-qualified applications. Using non-nuclear qualified products in applications that require nuclear-qualified hardware or products may cause inaccurate readings.

For information on Rosemount nuclear-qualified products, contact your local Emerson Sales Representative.

Contents

Section 1: Introduction

1.1	Using this manual	1
1.2	Models covered	2
	1.2.1 Rosemount 2051C Coplanar Pressure Transmitter	2
	1.2.2 Rosemount 2051T in-line Pressure Transmitter	2
	1.2.3 Rosemount 2051L Level Transmitter	2
	1.2.4 Rosemount 2051CF Series Flowmeter	2
1.3	HART installation flowchart	3
1.4	Transmitter overview	4
1.5	Service support	5
1.6	Product recycling/disposal	6

Section 2: Configuration

2.1	Config	uration overview	.7
2.2	Safety	messages	. 7
2.3	System	n readiness	. 8
	2.3.1	Confirm correct Device Driver	. 8
2.4	Config	uration basics	. 9
	2.4.1	Configuring on the bench	. 9
	2.4.2	Configuration tools	. 9
	2.4.3	Setting the loop to manual	11
2.5	Verify o	configuration	11
	2.5.1	Verifying configuration with Field Communicator	11
	2.5.2	Verifying configuration with AMS Device Manager	12
	2.5.3	Verifying configuration with LOI	12
	2.5.4	Verifying process variables configuration	12
2.6	Basic s	etup of the transmitter	12
	2.6.1	Setting pressure units	13
	2.6.2	Setting transmitter output (transfer function)	13
	2.6.3	Rerange the transmitter	14
	2.6.4	Damping	17
2.7	Config	uring the LCD display	18
2.8	Detaile	ed transmitter setup	19
	2.8.1	Configuring alarm and saturation levels	19
	2.8.2	Configuring Scaled Variable	20

2.8.3	Re-mapping device variables	23
2.9 Perfor	ming transmitter tests	24
2.9.1	Verifying alarm level	24
2.9.2	Performing an analog loop test	24
2.9.3	Simulate device variables	25
2.10 Config	guring burst mode	25
2.11 Establ	ishing multidrop communication	26
2.11.1	Changing a transmitter address	27
2.11.2	2 Communicating with a multidropped transmitter	28

Section 3: Hardware Installation

3.1	Overvi	iew
3.2	Safety	messages
3.3	Installa	ation considerations
	3.3.1	Mechanical considerations 30
	3.3.2	Environmental considerations 30
3.4	Installa	ation procedures
	3.4.1	Mount the transmitter
	3.4.2	Impulse piping
	3.4.3	Process connections
	3.4.4	In-line process connection
3.5	Rosem	nount 305, 306, and 304 Manifolds 39
	3.5.1	Rosemount 305 Integral Manifold installation procedure 39
	3.5.2	Rosemount 306 Integral Manifold installation procedure
	3.5.3	Rosemount 304 Conventional Manifold installation procedure
	3.5.4	Manifold operation
3.6	Liquid	level measurement
	3.6.1	Open vessels
	3.6.2	Closed vessels

Section 4: Electrical Installation

4.1	Overview		49
4.2	Safety message	² S	49
4.3	Local Operating	g Interface (LOI)/LCD display	49
	4.3.1 Rotating	g LOI/LCD display	50
4.4	Configure secur	rity and simulation	50
	4.4.1 Security	y switch	51
	4.4.2 HART Lo	οck	51

		4.4.3	Configuration button lock	52
		4.4.4	LOI password	53
4.	5	Setting] transmitter alarm	53
4.	6	Electri	cal considerations	54
		4.6.1	Conduit installation	54
		4.6.2	Power supply	54
		4.6.3	Wiring the transmitter	55
		4.6.4	Grounding the transmitter	56
Sectio	on	5: O	peration and Maintenance	
5.	1	Overvi	ew	61
5.	2	Safety	messages	61
5.	3	Recom	mended calibration tasks	62
5.	4	Calibra	tion overview	62
		5.4.1	Determining necessary sensor trims	63
		5.4.2	Determining calibration frequency	64
		5.4.3	Compensating for span line pressure effects (range 4 and range 5)	65
5.	5	Trim tł	ne pressure signal	66
		5.5.1	Sensor trim overview	66
		5.5.2	Perform a sensor trim	67
		5.5.3	Recall factory trim—sensor trim	68
5.	6	Trim tł	ne analog output	69
		5.6.1	Performing digital-to-analog trim (4–20 mA/1–5 V output trim)	70
		5.6.2	Performing digital-to-analog trim (4–20mA/1–5 V output trim) using other scale	71
		5.6.3	Recalling factory trim—analog output	71
5.	7	Switch	ing HART Revision	72
		5.7.1	Switching HART Revision with generic menu	72
		5.7.2	Switching HART Revision with Field Communicator	73
		5.7.3	Switching HART Revision with AMS Device Manager	73
		5.7.4	Switching HART Revision with LOI	73

Section 6: Troubleshooting

6.1	Overvi	ew
6.2	Safety	messages75
6.3	Diagno	ostic messages
	6.3.1	Diagnostic message: Failed - fix now77
	6.3.2	Diagnostic message: Maintenance - fix soon78
	6.3.3	Diagnostic message: Advisory

6.4	Disass	embly procedures	80
	6.4.1	Removing from service	80
	6.4.2	Removing terminal block	80
	6.4.3	Removing the electronics board	80
	6.4.4	Removing sensor module from the electronics housing	81
6.5	Reasse	mbly procedures	81
	6.5.1	Attaching electronics board	82
	6.5.2	Installing terminal block	82
	6.5.3	Reassembling the Rosemount 2051C Process Flange	82
	6.5.4	Installing drain/vent valve	83

Section 7: Safety Instrumented Systems Requirements

7.1	Safety	Instrumented Systems (SIS) Certification	85
	7.1.1	Rosemount 2051 safety certified identification	85
	7.1.2	Installation in SIS applications	85
	7.1.3	Configuring in SIS applications	86
	7.1.4	Rosemount 2051 SIS operation and maintenance	87
	7.1.5	Inspection	88

Appendix A: Specifications and Reference Data

A.1	Perform	nance specifications
	A.1.1	Conformance to specification (±3s [Sigma]) 91
	A.1.2	Reference accuracy
	A.1.3	Flow performance
	A.1.4	Dynamic performance
A.2	Functio	onal specifications
	A.2.1	Range and sensor limits
	A.2.2	Service
	A.2.3	4–20 mA (output code A)
	A.2.4	HART 1–5 Vdc low power (output code M)
	A.2.5	Overpressure limits
	A.2.6	Static pressure limit
	A.2.7	Burst pressure limits
	A.2.8	Failure mode alarm 98
	A.2.9	Process
	A.2.10	Humidity limits
	A.2.11	Volumetric displacement
	A.2.12	Damping

A.3	Physic	al specifications	
	A.3.1	Material selection	
	A.3.2	Electrical connections	
	A.3.3	Process connections	
	A.3.4	Rosemount 2051C process wetted parts	
	A.3.5	Rosemount 2051L Process wetted parts	100
	A.3.6	Non-wetted parts	
	A.3.7	Shipping weights	
A.4	Dimen	nsional drawings	
A.5	Orderi	ng information	113
	A.5.1	Rosemount 2051C Coplanar Pressure Transmitter	113
	A.5.2	Rosemount 2051T In-Line Pressure Transmitter	120
	A.5.3	Rosemount 2051CF Flowmeter Series	124
	A.5.4	Rosemount 2051L Level Transmitter	137
A.6	Optior	אר s	142
A.7	Spare	parts	

Appendix B: Product Certifications

B.1	European Directive Information	149
B.2	Ordinary Location Certification	149
B.3	North America	149
B.4	Europe	150
B.5	International	151
B.6	Brazil	153
B.7	China	153
B.8	Japan	155
B.9	Technical Regulations Customs Union (EAC)	155
	B.9.1 Combinations	155
B.10	OAdditional Certifications	155
B.11	1 Approval drawings	157

Appendix C: Field Communicator Menu Trees and Fast Keys

C.1	Field Communicator menu trees	179
C.2	Field Communicator Fast Keys	184

Appendix D: Local Operator Interface

D.1	LOI Menu Tree	185
D.2	LOI Menu Tree - Extended Menu	186
D.3	Number entry	187
D.4	Text entry	188

Section 1 Introduction

1.1 Using this manual

The sections in this manual provide information on installing, operating, and maintaining the Rosemount[™] 2051Pressure Transmitter. The sections are organized as follows:

- Section 2: Configuration provides instruction on commissioning and operating Rosemount 2051. Information on software functions, configuration parameters, and online variables is also included.
- Section 3: Hardware Installation contains mechanical installation instructions, and field upgrade options.
- Section 4: Electrical Installation contains electrical installation instructions, and field upgrade options.
- Section 5: Operation and Maintenance provides detailed information on calibrating and changing HART[®] Revisions.
- Section 6: Troubleshooting provides troubleshooting techniques for the most common operating problems.
- Section 7: Safety Instrumented Systems Requirements provides identification, installation, configuration, operation and maintenance, and inspection information for Safety Instrumented Systems.
- Appendix A: Specifications and Reference Data supplies reference and specification data, as well as
 ordering information.
- Appendix B: Product Certifications contains intrinsic safety approval information, European ATEX directive information, and approval drawings.
- Appendix C: Field Communicator Menu Trees and Fast Keys provides full menu trees and abbreviated Fast Key sequences for commissioning tasks.
- Appendix D: Local Operator Interface provides detailed LOI menu trees.

1.2 Models covered

The following Rosemount 2051 are covered by this manual:

1.2.1 Rosemount 2051C Coplanar Pressure Transmitter

Measures differential and gage pressure up to 2000 psi (137,9 bar).

1.2.2 Rosemount 2051T in-line Pressure Transmitter

• Measures gage/absolute pressure up to 10000 psi (689,5 bar).

1.2.3 Rosemount 2051L Level Transmitter

• Measures level and specific gravity up to 300 psi (20,7 bar).

1.2.4 Rosemount 2051CF Series Flowmeter

• Measures flow in line sizes from 1/2-in. (15 mm) to 96-in. (2400 mm).

Note

For Rosemount 2051 with FOUNDATION[™] Fieldbus, see Rosemount 2051 Pressure Transmitter with FOUNDATION Fieldbus Protocol <u>Reference Manual</u>. For Rosemount 2051 with PROFIBUS [®] PA, see Rosemount 2051 Pressure Transmitter with PROFIBUS PA Protocol <u>Reference Manual</u>.

1.3 HART installation flowchart

Figure 1-1. HART Installation Flowchart

1.4 Transmitter overview

The Rosemount 2051C Coplanar[™] design is offered for Differential Pressure (DP) and Gage Pressure (GP) measurements. The Rosemount 2051C utilizes capacitance sensor technology for DP and GP measurements. The Rosemount 2051T utilizes piezoresistive sensor technology for AP and GP measurements.

The major components of the Rosemount 2051 are the sensor module and the electronics housing. The sensor module contains the oil filled sensor system (isolating diaphragms, oil fill system, and sensor) and the sensor electronics. The sensor electronics are installed within the sensor module and include a temperature sensor, a memory module, and the analog to digital signal converter (A/D converter). The electrical signals from the sensor module are transmitted to the output electronics in the electronics housing contains the output electronics board, the optional external configuration buttons, and the terminal block. The basic block diagram of the Rosemount 2051CD is illustrated in Figure 1-3 on page 5.

For the Rosemount 2051, pressure is applied to the isolating diaphragm(s). The oil deflects the sensor which then changes its capacitance or voltage signal. This signal is then changed to a digital signal by the Signal Processing. The microprocessor then takes the signals from the Signal Processing and calculates the correct output of the transmitter. This signal is then sent to the D/A converter, which converts the signal back to the analog signal, then superimposes the HART signal on the 4–20 mA output.

An optional LCD can be ordered that connects directly to the interface board which maintains direct access to the signal terminals. The display indicates output and abbreviated diagnostic messages. A glass display cover is provided. For 4–20 mA HART output, the LCD Display features a two-line display. The first line displays the actual measured value, the second line of six characters displays the engineering units. The LCD can also display diagnostic messages.

Note

LCD Display utilizes a 5 x 6 character display and can display output and diagnostic messages. The LOI Display uses an 8 x 6 character display and can display output, diagnostic messages, and LOI menu screens. The LOI Display comes with two buttons mounted on the front of the display board. See below figure.

Figure 1-2. LOI/LCD Display LCD Display

LOI Display

1.5 Service support

Within the United States, call the Emerson Instrument and Valve Response Center using the 1-800-654-RSMT (7768) toll-free number. This center, available 24 hours a day, will assist you with any needed information or materials.

The center will ask for product model and serial numbers, and will provide a Return Material Authorization (RMA) number. The center will also ask for the process material to which the product was last exposed.

For inquiries outside of the United States, contact the nearest Emerson representative for RMA instructions.

To expedite the return process outside of the United States, contact the nearest Emerson representative.

ACAUTION

Individuals who handle products exposed to a hazardous substance can avoid injury if they are informed of and understand the hazard. The product being returned will require a copy of the required Material Safety Data Sheet (MSDS) for each substance must be included with the returned goods.

Emerson Instrument and Valve Response Center representatives will explain the additional information and procedures necessary to return goods exposed to hazardous substances.

1.6 Product recycling/disposal

Recycling of equipment and packaging should be taken into consideration and disposed of in accordance with local and national legislation/regulations.

Section 2 Configuration

Configuration overview	page 7
Safety messages	page 7
System readiness	page 8
Configuration basics	page 9
Verify configuration	page 11
Basic setup of the transmitter	page 13
Configuring the LCD display	page 18
Detailed transmitter setup	page 19
Performing transmitter tests	page 24
Configuring burst mode	page 25
Establishing multidrop communication	page 26

2.1 Configuration overview

This section contains information on commissioning and tasks that should be performed on the bench prior to installation, as well as tasks performed after installation as described in "Performing transmitter tests" on page 24.

Field Communicator, AMS[™] Device Manager, and Local Operator Interface (LOI) instructions are given to perform configuration functions. For convenience, Field Communicator Fast Key sequences are labeled "Fast Keys," and abbreviated LOI menus are provided for each function below.

Full Field Communicator menu trees and Fast Key sequences are available in Appendix C: Field Communicator Menu Trees and Fast Keys. LOI menu trees are available in Appendix D: Local Operator Interface.

2.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a

warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of the Rosemount^m 2051 reference manual for any restrictions associated with a safe installation.

- Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an explosion-proof/flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

 Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

System readiness 2.3

- If using HART[®] based control or asset management systems, confirm the HART Protocol capability of such systems prior to commissioning and installation. Not all systems are capable of communicating with HART Revision 7 devices.
- For instructions on how to change the HART revision of your transmitter, see "Switching HART Revision" on page 72.

2.3.1 **Confirm correct Device Driver**

- 1. Verify the latest Device Driver (DD/DTM[™]) is loaded on your systems to ensure proper communications.
- 2. Reference Emerson.com or FieldCommGroup.org for the latest DD.
- 3. In the browse by member dropdown menu, select Rosemount business unit of Emerson[™].
- 4. Select desired Product
 - a. Within Table 2-1, use the HART Universal Revision and Device Revision numbers to find the correct Device Driver

Table 2-1. Rosemount 2051 Device Revisions and Files

	Identify device Find Device Driver		Review instructions	Review functionality		
Software release date	NAMUR software revision ⁽¹⁾	HART software revision ⁽²⁾	HART universal revision	Device revision ⁽³⁾	Reference manual	Changes to software
August 2012	100	01	7	10	Rosemount 2051	(4)
August 2012	1.0.0	01	5	9	<u>Reference Manual</u>	. ,
January 1998	N/A	178	5	3	Rosemount 2051 <u>Reference Manual</u>	N/A

1. NAMUR Software Revision is located on the hardware tag of the device

^{2.}

HART Software Revision can be read using a HART capable configuration tool. Device Driver file names use Device and DD Revision, e.g. 10_01. HART Protocol is designed to enable legacy device driver revisions to 3. continue to communicate with new HART devices. To access new functionality, the new Device Driver must be downloaded. It is recommended to download new Device Driver files to ensure full functionality.

4. HART Revision 5 and 7 Selectable, Safety Certified, Local Operator Interface, Scaled Variable, Configurable Alarms, Expanded Engineering Units.

2.4 Configuration basics

ACAUTION

Set all transmitter hardware adjustments during commissioning to avoid exposing the transmitter electronics to the plant environment after installation.

The Rosemount 2051 can be configured either before or after installation. Configuring the transmitter on the bench using either a Field Communicator, AMS Device Manager, or LOI ensures all transmitter components are in working order prior to installation. Verify that the security switch is set in the unlock position (γ_n) in order to proceed with configuration. See Figure 4-2 on page 51 for switch location.

2.4.1 Configuring on the bench

To configure on the bench, required equipment includes a power supply, and a Field Communicator, AMS Device Manager, or an LOI (option M4). Wire equipment as shown in figure below. To ensure successful HART communication, a resistance of at least 250 Ω s must be present between the transmitter and the power supply, see "Power supply" on page 54 for details. Connect the Field Communicator leads to the terminals labeled "COMM" on the terminal block or 1–5 V configuration, wire as shown in Figure 2-1 on page 9. The Field communicator is connected to the terminals labeled VOUT/COMM.

2.4.2 Configuration tools

Figure 2-2. Wiring the Transmitter (1–5 Vdc Low Power)

Configuring with a Field Communicator

Figure 2.2 Device Dashboard

There are two interfaces available with the Field Communicator: Traditional and dashboard interfaces. All steps using a Field Communicator will be described using Dashboard interfaces. Figure 2-3 on page 10 shows the Device Dashboard interface. As stated in System readiness, it is critical that the latest DD's are loaded into the Field Communicator. Visit <u>Emerson.com</u> or <u>FieldCommGroup.org</u> to download latest DD library.

Field Communicator menu trees and Fast Keys are available in Appendix C: Field Communicator Menu Trees and Fast Keys.

igure 2-3. Device Dasirboard		
	>>> 🖹 🗙	
Online		
 Overview Configure Service Tools 		
SAVE		

Configuring with AMS Device Manager

Full configuration capability with AMS Device Manager requires loading the most current DD for this device. Download the latest DD at <u>Emerson.com</u> or <u>FieldCommGroup.org</u>.

All steps using AMS Device Manager will be described using version 11.5.

Note

Configuring with a LOI

The LOI requires option code M4 to be ordered. To activate the LOI push either configuration button. Configuration buttons are located on the LCD display (must remove housing cover to access), or underneath the top tag of the transmitter. See Table 2-2 for configuration button functionality and Figure 2-4 for configuration button location. When using the LOI for configuration, several features require multiple screens for a successful configuration. Data entered will be saved on a screen-by-screen basis; the LOI will indicate this by flashing "SAVED" on the LCD display each time.

LOI menu trees are available in Appendix D: Local Operator Interface.

Table 2-2. LOI Button Operation

	ÉXİT MENUP No yes	ÉXÎT Menu	
Button			
Left	No	SCROLL	
Right	Yes	ENTER	

2.4.3 Setting the loop to manual

Whenever sending or requesting data that would disrupt the loop or change the output of the transmitter, set the process application loop to manual control. The Field Communicator, AMS Device Manager, or the LOI will prompt you to set the loop to manual when necessary. The prompt is only a reminder; acknowledging this prompt does not set the loop to manual. It is necessary to set the loop to manual control as a separate operation.

2.5 Verify configuration

It is recommended that various configuration parameters are verified prior to installation into the process. The various parameters are detailed out for each configuration tool. Depending on what configuration tool(s) are available follow the steps listed relevant to each tool.

2.5.1 Verifying configuration with Field Communicator

Configuration parameters listed in Table 2-3 are to be reviewed prior to transmitter installation. A Full list of configuration parameters that can be reviewed and configured using a Field Communicator are located in Appendix C: Field Communicator Menu Trees and Fast Keys.

Fast Key sequences for the latest DD are shown in Table 2-3. For Fast Key sequences for legacy DD's contact your local Emerson.

Table 2-3. Rosemount 2051 Device Dashboard Fast Key Sequence

From the HOME screen, enter the Fast Key sequences listed

	Fast Key Sequence	
Function	HART 7	HART 5
Alarm and Saturation Levels	2, 2, 2, 5	2, 2, 2, 5
Damping	2, 2, 1, 1, 5	2, 2, 1, 1, 5
Primary Variable	2, 1, 1, 4, 1	2, 1, 1, 4, 1
Range Values	2, 1, 1, 4	2, 1, 1, 4
Tag	2, 2, 7, 1, 1	2, 2, 7, 1, 1
Transfer Function	2, 2, 1, 1, 6	2, 2, 1, 1, 6
Units	2, 2, 1, 1, 4	2, 2, 1, 1, 4

2.5.2 Verifying configuration with AMS Device Manager

Right click on the device and select **Configuration Properties** from the menu. Navigate the tabs to review the transmitter configuration data.

2.5.3 Verifying configuration with LOI

Select any configuration button to activate the LOI. Select **VIEW CONFIG** to review the below parameters. Use the configuration buttons to navigate through the menu. The parameters to be reviewed prior to installation include:

- Tag
 Primary variable
- Units

- Range values
- Transfer function
- Damping
- Alarm and saturation levels

2.5.4 Verifying process variables configuration

This section describes how to verify that the correct process variables are selected.

Verifying process variables with a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	3, 2, 1
----------------------------	---------

Verifying process variables with AMS Device Manager

Right click on the device and select **Overview** from the menu.

1. Select the All Variables button to display the primary, secondary, tertiary and quaternary variables.

2.6 Basic setup of the transmitter

This section goes through the necessary steps for basic setup of a pressure transmitter. When installing in DP level or DP flow applications, refer to "Configuring Scaled Variable" on page 20 for setup instructions.

2.6.1 Setting pressure units

The pressure unit command sets the unit of measure for the reported pressure.

Setting pressure units with a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 1, 1, 4
Device Dashbodi a rast keys	2, 2, 1, 1, 4

Setting pressure units with AMS Device Manager

Right click on the device and select Configure.

- 1. Select **Manual Setup** and select desired units from *Pressure Units* dropdown menu.
- 2. Select **Send** when complete.

Setting pressure units with a LOI

Follow Figure 2-5 on page 13 to select desired pressure and temperature units. Use the **SCROLL** and **ENTER** buttons to select desired unit. Save by selecting **SAVE** as indicated on the LCD display.

Figure 2-5. Selecting Units with LOI

2.6.2 Setting transmitter output (transfer function)

The Rosemount 2051 has two output settings: Linear and square root. As shown in Figure 2-7 on page 14, activating the square root options makes analog output proportional to flow, and includes a fixed low flow cutoff at five percent.

However, for DP Flow and DP Level applications it is recommended to use scaled variable. Refer to "Configuring Scaled Variable" on page 20 for setup instructions.

Setting transmitter output with a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 1, 1, 6
----------------------------	---------------

Setting transmitter output with AMS Device Manager

Right click on the device and select **Configure**.

- 1. Select Manual Setup and choose output type from analog output transfer function and select Send.
- 2. Carefully read the warning and select **Yes** if it is safe to apply the changes.

Setting transmitter output with a LOI

Reference Figure 2-6 on page 14 to select either linear or square root transfer function using the LOI.

Figure 2-6. Set Output with LOI

2.6.3 Rerange the transmitter

The Range Values command sets each of the lower and upper range analog values (4 and 20 mA/1–5 Vdc points) to a pressure. The lower range point represents zero percent of range and the upper range point represents 100 percent of range. In practice, the transmitter range values may be changed as often as necessary to reflect changing process requirements. For a complete listing of range and sensor limits, refer to "Range and sensor limits" on page 95.

Select from one of the methods below to rerange the transmitter. Each method is unique; examine all options closely before deciding which method works best for your process.

- Rerange by manually setting range points with a Field Communicator, AMS Device Manager, or LOI.
- Rerange with a pressure input source and a Field Communicator, AMS Device Manager, LOI, or local zero and span buttons.

Manually rerange the transmitter by entering range points

Entering range points with a Field Communicator

From the HOME screen, enter the Fast Key sequence

|--|

Entering range points with AMS Device Manager

Right click on the device and select Configure:

- 1. Select Manual Setup and select Analog Output.
- 2. Enter upper and lower range values in the Range Limits box and select **Send**.
- 3. Carefully read the warning and select **Yes** if it is safe to apply the changes.

Entering range points with a LOI

Reference Figure 2-8 on page 15 to rerange the transmitter using the LOI. Enter values using **SCROLL** and **ENTER** buttons.

Figure 2-8. Rerange with LOI

Rerange the transmitter with applied pressure source

Reranging using an applied pressure source is a way of reranging the transmitter without entering specific 4 and 20 mA (1–5 Vdc) points.

Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 2, 2
----------------------------	------------

Rerange with an applied pressure source using AMS Device Manager

Right click on the device, select **Configure**.

- 1. Select the Analog Output tab.
- 2. Select **Range by Applying Pressure** button and follow the screen prompts range the transmitter.

Rerange with an applied pressure source using an LOI

Use Figure 2-9 to manually rerange the device using an applied pressure source with an LOI.

Rerange with an applied pressure source using local zero and span buttons

If ordered, local zero and span buttons (option code D4) can be used to rerange the transmitter with an applied pressure. Refer to Figure 2-10 on page 17 for analog zero and span button location.

To rerange the transmitter using the span and zero buttons, perform the following procedure:

- 1. Loosen the screw holding the top tag of the transmitter housing. Rotate the label to expose the zero and span buttons.
- 2. Confirm device has local zero and span buttons by verifying blue retainer under the tag.
- 3. Apply transmitter pressure.
- 4. Rerange the transmitter.
 - a. To change the zero (4 mA/1 V point) while maintaining the span: press and hold zero button for at least two seconds then release.
 - b. To change the span (20 mA/5 V point) while maintaining the zero point: press and hold the span button for at least two seconds and then release.

Note

4 mA and 20 mA points must maintain the minimum span defined in Appendix A: Specifications and Reference Data.

- If the transmitter security is on, adjustments to the zero and span will not be able to be made. Refer to "Configure security and simulation" on page 50 for security information.
- The span is maintained when the 4 mA/1 V point is set. The span changes when the 20 mA/5 V point is set. If the lower range point is set to a value that causes the upper range point to exceed the sensor limit, the upper range point is automatically set to the sensor limit, and the span is adjusted accordingly.
- Regardless of the range points, the Rosemount 2051 will measure and report all readings within the digital limits of the sensor. For example, if the 4 and 20 mA(1–5 Vdc) points are set to 0 and 10 inH₂O, and the transmitter detects a pressure of 25 inH₂O, it digitally outputs the 25 inH₂O reading and a 250 percent of range reading.

2.6.4 Damping

The damping command changes the response time of the transmitter; higher values can smooth variations in output readings caused by rapid input changes. Determine the appropriate damping setting based on the necessary response time, signal stability, and other requirements of the loop dynamics within your system. The damping command utilizes floating point configuration allowing the user to input any damping value within 0.0–60.0 seconds.

Damping with a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 1, 1, 5
----------------------------	---------------

Enter desired Damping Value and select APPLY.

Damping with AMS Device Manager

Right select on the device and select **Configure**.

- 1. Select Manual Setup.
- 2. Within the *Pressure Setup* box, enter desired damping value and select **Send**.
- 3. Carefully read the warning and select **Yes** if it is safe to apply the changes.

Damping with a LOI

Reference Figure 2-11 to enter damping values using an LOI.

2.7 Configuring the LCD display

The LCD display configuration command allows customization of the LCD display to suit application requirements. The LCD display will alternate between the selected items.

- Pressure units
 Sensor temperature
- % of range mA/Vdc output
- Scaled variable

In the following instructions, the LCD display can also be configured to display configuration information during the device startup. Select **Review Parameters at Startup** to enable or disable this functionality.

Reference Figure 1-2 on page 4 LCD display with LOI for image of LCD screen.

Configuring LCD Display with a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys

2, 2, 4

Configuring LCD display with AMS Device Manager

Right click on the device and select Configure.

- 1. Select Manual Setup, select the Display tab.
- 2. Select desired display options and select Send.

Configuring LCD display with a LOI

Refer to Figure 2-12 for LCD display configuration using a LOI.

Figure 2-12. Display with LOI

2.8 Detailed transmitter setup

2.8.1 Configuring alarm and saturation levels

In normal operation, the transmitter will drive the output in response to pressure from the lower to upper saturation points. If the pressure goes outside the sensor limits, or if the output would be beyond the saturation points, the output will be limited to the associated saturation point.

The Rosemount 2051 Transmitter automatically and continuously performs self-diagnostic routines. If the self-diagnostic routines detect a failure, the transmitter drives the output to configured alarm and value based on the position of the alarm switch. See "Setting transmitter alarm" on page 53.

Table 2-4. Rosemount Alarm and Saturation Values

Level	4–20 mA saturation	4–20 mA alarm
Low	3.9 mA (0.97 V)	≤ 3.75 mA (0.95 V)
High	20.8 mA (5.2 V)	\geq 21.75 mA (5.4 V)

Table 2-5. NAMUR-Compliant Alarm and Saturation Values

Level	4–20 mA saturation	4–20 mA alarm
Low	3.8 mA (0.95 V)	\leq 3.6 mA (0.9 V)
High	20.5 mA (5.125 V)	\geq 22.5 mA (5.625 V)

Table 2-6. Custom Alarm and Saturation Values

Level	4–20 mA saturation	4–20 mA alarm
Low	3.7 mA to 3.9 mA	3.6 mA to 3.8 mA
High	20.1 mA to 22.9 mA	20.2 mA to 23.0 mA

Failure mode alarm and saturation levels can be configured using a Field Communicator, AMS Device Manager, and the LOI. The following limitations exist for custom levels:

- Low alarm level must be less than the low saturation level
- High alarm level must be higher than the high saturation level
- Alarm and saturation levels must be separated by at least 0.1 mA

The configuration tool will provide an error message if the configuration rule is violated.

Note

Transmitters set to HART multidrop mode send all saturation and alarm information digitally; saturation and alarm conditions will not affect the analog output. See also "Establishing multidrop communication" on page 26.

Configuring alarm and saturation levels using a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 2, 5
----------------------------	------------

Configuring alarm and saturation levels with AMS Device Manager

Right click on the device, and select **Configure**.

- 1. Select Configure Alarm and Saturation Levels button.
- 2. Follow screen prompts to configure Alarm and Saturation Levels.

Configuring alarm and saturation levels using LOI

Refer to Figure 2-13 for instructions to configure alarm and saturation levels.

2.8.2 Configuring Scaled Variable

The Scaled Variable configuration allows the user to create a relationship/conversion between the pressure units and user-defined/custom units. There are two use cases for scaled variable. The first use case is to allow custom units to be displayed on the transmitter's LOI/LCD display. The second use case is to allow custom units to drive the transmitter's 4–20 mA output.

If the user desires custom units to drive the 4–20 mA (1–5 Vdc) output, scaled variable must be re-mapped as the primary variable. Refer to "Re-mapping device variables" on page 23.

The scaled variable configuration defines the following items:

- Scaled Variable units custom units to be displayed.
- Scaled data options defines the transfer function for the application
 - Linear
 - Square root
- Pressure value position 1 lower known value point with consideration of linear offset.
- Scaled Variable value position 1 custom unit equivalent to the lower known value point.
- Pressure value position 2 upper known value point.
- Scaled Variable value position 2 custom unit equivalent to the upper known value point
- Linear offset the value required to zero out pressures effecting the desired pressure reading.
- Low flow cutoff point at which output is driven to zero to prevent problems caused by process noise. It is highly recommended to use the low flow cutoff function in order to have a stable output and avoid problems due to process noise at a low flow or no flow condition. A low flow cutoff value that is practical for the flow element in the application should be entered.

Configuring scaled variable using a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 1, 4, 7
----------------------------	------------

- 1. Follow the screen prompts to configure Scaled Variable.
 - a. When configuring for level, select Linear under Select Scaled data options.
 - b. When configuring for flow, select **Square Root** under *Select Scaled data options*.

Configuring scaled variable using AMS Device Manager

Right click on the device and, select **Configure**.

- 1. Select the Scaled Variable tab and select the Scaled Variable button.
- 2. Follow screen prompts to configure Scaled Variable
 - a. When configuring for level applications, select **Linear** under *Select Scaled data options*.
 - b. When configuring for flow applications, select **Square Root** under *Select Scaled data options*.

Configuring scaled variable using a LOI

Refer to Figure 2-14 on page 21 for instructions to configure scaled variable using a LOI.

DP level example

A differential transmitter is used in a level application. Once installed on an empty tank and taps vented, the process variable reading is -209.4 inH₂O. The process variable reading is the head pressure created by fill fluid in the capillary. Based on Table 2-7 on page 22, the scaled variable configuration would be as follows:

Scaled variable units:	inch
Scaled data 13:	linear
Pressure value position 1:	0 inH ₂ O
Scaled Variable position 1:	12-in.
Pressure value position 2:	188 inH ₂ O
Scaled Variable position 2:	212-in.
Linear offset:	–209.4 inH ₂ O

Table 2-7. Scaled Variable Configuration for Tank Application

DP flow example

A differential pressure transmitter is used in conjunction with an orifice plate in a flow application where the differential pressure at full scale flow is $125 \text{ inH}_2\text{O}$. In this particular application, the flow rate at full scale flow is 20,000 gallons of water per hour. It is highly recommended to use the low flow cutoff function in order to have a stable output and avoid problems due to process noise at a low flow or no flow condition. A low flow cutoff value that is practical for the flow element in the application should be entered. In this particular example, the low flow cutoff value is 1000 gallons of water per hour. Based on this information, the Scaled Variable configuration would be as follows:

Table 2-8. Scaled Variable Configuration for Flow Application

Scaled Variable units:	gal/h
Scaled data options:	square root
Pressure value position 2:	125 inH ₂ O
Scaled Variable position 2:	20,000 gal/h
Low Flow Cutoff:	1000 gal/h

Note

Pressure value position 1 and Scaled Variable position 1 are always set to zero for a flow application. No configuration of these values is required.

2.8.3

Re-mapping device variables

The re-mapping function allows the transmitter primary, secondary, tertiary, and quaternary variables (PV, 2V, 3V, and 4V) to be configured as desired. The PV can be remapped with a Field Communicator, AMS Device Manager, or a LOI. Variables (2V, 3V, and 4V) can only be re-mapped via Field Communicator or AMS Device Manager.

Note

The variable assigned to the primary variable drives the 4–20 mA (1–5 Vdc) output. This value can be selected as pressure or scaled variable. The 2, 3, and 4 variables only apply if HART burst mode is being used.

Re-mapping using a Field Communicator

From the HOME screen, enter the Fast Key sequence

Fast Keys	2, 1, 1, 3
-----------	------------

Re-mapping using AMS Device Manager

Right click on the device and select Configure.

- 1. Select Manual Setup and select on the HART tab.
- 2. Assign Primary, secondary, tertiary, and quaternary variables under Variable Mapping.
- 3. Select Send.
- 4. Carefully read the warning and select **Yes** if it is safe to apply the changes.

Re-mapping using LOI

Refer to Figure 2-16 for instructions to remap the primary variable using a LOI.

Figure 2-16. Re-Mapping with LOI

2.9 Performing transmitter tests

2.9.1 Verifying alarm level

If the transmitter electronics board, sensor module, or LOI/LCD display is repaired or replaced, verify the transmitter alarm level before returning the transmitter to service. This is useful in testing the reaction of the control system to a transmitter in an alarm state. Thus ensuring the control system recognizes the alarm when activated. To verify the transmitter alarm values, perform a loop test and set the transmitter output to the alarm value (see Table 2-4, 2-5, and 2-6 on page 19, and "Verifying alarm level" on page 24).

Note

Before returning transmitter to service, verify security switch is set to the correct position. Refer to "Verify configuration" on page 11.

2.9.2 Performing an analog loop test

The analog loop test command verifies the output of the transmitter, the integrity of the loop, and the operations of any recorders or similar devices installed in the loop. It is recommended that the 4–20 mA (1–5 Vdc) points in addition to alarm levels when installing, repairing, or replacing a transmitter.

The host system may provide a current measurement for the 4–20 mA (1–5 Vdc) HART output. If not, connect a reference meter to the transmitter by either connecting the meter to the test terminals on the terminal block, or shunting transmitter power through the meter at some point in the loop. For 1–5 V output, voltage measurement is directly measured from V_{out} to (–) terminals.

Performing a analog loop test using a Field Communicator

From the HOME screen, enter the Fast Key sequence

3, 5, 1	
	3, 5, 1

Performing a analog loop test using AMS Device Manager

Right click on the device and, within the *Methods* dropdown menu, move cursor over *Diagnostics* and *Test*. In the *Diagnostics* and *Test* dropdown menu select **Loop Test**.

- 1. Select **Next** after setting the control loop to manual.
- 2. Follow screen prompts to perform a loop test.
- 3. Select **Finish** to acknowledge the method is complete.

Performing analog loop test using a LOI

To perform an analog loop test using the LOI, the 4 mA (1 V), 20 mA (5 V), and custom mA point may be set manually. Reference Figure 2-17 for instructions on how to perform a transmitter loop test using an LOI.

Figure 2-17. Performing an Analog Loop Test Using an LOI

2.9.3 Simulate device variables

It is possible to temporarily set the to a user-defined fixed value for testing purposes. Once the simulated variable method is left, the process variable will be automatically returned to a live measurement. Simulate device variables is only available in HART Revision 7 mode.

Simulate digital signal with a Field Communicator

From the HOME screen, enter the Fast Key sequence

|--|

Simulate digital signal with AMS Device Manager

Right click on the device and select **Service Tools**.

- 1. Select Simulate.
- 2. Under Device Variables select a digital value to simulate.
 - a. Pressure
 - b. Sensor Temperature
 - c. Scaled Variable
- 3. Follow the screen prompts to simulate selected digital value.

2.10 Configuring burst mode

Burst mode is compatible with the analog signal. Because the HART features simultaneous digital and analog data transmission, the analog value can drive other equipment in the loop while the control system is receiving the digital information. Burst mode applies only to the transmission of dynamic data (pressure and temperature in engineering units, pressure in percent of range, Scaled Variable, and/or analog output), and does not affect the way other transmitter data is accessed. However, when activated, bust mode can slow down communication of non-dynamic data to the host by 50 percent.

Access to information other than dynamic transmitter data is obtained through the normal poll/response method of HART Protocol communication. A Field Communicator, AMS Device Manager, or the control system may request any of the information that is normally available while the transmitter is in burst mode. Between each message sent by the transmitter, a short pause allows the Field Communicator, AMS Device Manager, or a control system to initiate a request.

Choosing burst mode options in HART 5

Message content options:

- PV only
- Percent of Range
- PV, 2V, 3V, 4V
- Process Variables
- Device Status

Choosing burst mode options in HART 7

Message content options:

- PV only
- Percent of Range
- PV, 2V, 3V, 4V
- Process Variables and Status
- Process Variables
- Device Status

Choosing a HART 7 Trigger Mode

When in HART 7 mode, the following trigger modes can be selected.

- Continuous (same as HART 5 burst mode)
- Rising
- Falling
- Windowed
- On Change

Note

Consult your host system manufacturer for burst mode requirements.

Configuring burst mode using a Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 5, 3

Configuring burst mode using AMS Device Manager

Right click on the device and select **Configure**.

- 1. Select the **HART** tab.
- 2. Enter the configuration in burst mode configuration fields.

2.11 Establishing multidrop communication

Multidropping transmitters refers to the connection of several transmitters to a single communications transmission line. Communication between the host and the transmitters takes place digitally with the analog output of the transmitters deactivated.
Multidrop installation requires consideration of the update rate necessary from each transmitter, the combination of transmitter models, and the length of the transmission line. Communication with transmitters can be accomplished with HART modems and a host implementing HART Protocol. Each transmitter is identified by a unique address and responds to the commands defined in the HART Protocol. Field Communicators and AMS Device Manager can test, configure, and format a multidropped transmitter the same way as a transmitter in a standard point-to-point installation.

Figure 2-18 shows a typical multidrop network. This figure is not intended as an installation diagram.

Note

A multidrop transmitter in HART Revision 7 mode has a fixed analog output of 4 mA for all but one device. Only one device is allowed to have an active analog signal.

Figure 2-18. Typical Multidrop Network (4–20 mA only)

The Rosemount 2051 is set to address zero (0) at the factory, which allows operation in the standard point-to-point manner with a 4–20 mA output signal. To activate multidrop communication, the transmitter address must be changed to a number from 1 to 15 for HART Revision 5, or 1 to 63 for HART Revision 7. This change deactivates the 4–20 mA analog output, sending it to 4 mA. It also disables the failure mode alarm signal, which is controlled by the upscale/downscale switch position. Failure signals in multidropped transmitters are communicated through HART messages.

2.11.1 Changing a transmitter address

To activate multidrop communication, the transmitter poll address must be assigned a number from 1 to 15 for HART Revision 5, and 1 to 63 for HART Revision 7. Each transmitter in a multidropped loop must have a unique poll address.

Changing transmitter address using a Field Communicator

From the HOME screen, enter the Fast Key sequence	HART Revision 5	HART Revision 7
Device Dashboard Fast Keys	2, 2, 5, 2, 1	2, 2, 5, 2, 2

Changing transmitter address using AMS Device Manager

Right click on the device and select **Configure**.

- 1. In HART Revision 5 mode:
 - a. Select on Manual Setup, select the HART tab.
 - b. In the Communication Settings box enter polling address in the **Polling Address** box, select **Send**.
- 2. In HART Revision 7 mode:
 - a. Select on Manual Setup, select the HART tab and select the Change Polling Address button.
- 3. Carefully read the warning and select **Yes** if it is safe to apply the changes.

2.11.2 Communicating with a multidropped transmitter

To communicate with a multidrop transmitter, the Field Communicator or AMS Device Manager has to be set up for Polling.

Communicating with a multidropped transmitter using a Field Communicator

- 1. Select Utility and Configure HART Application.
- 2. Select Polling Addresses.
- 3. Enter **0-63.**

Communicating with a multidropped transmitter using AMS Device Manager

Select on the HART modem icon and select Scan All Devices.

Section 3 Hardware Installation

Overview	page 29
Safety messages	page 29
Installation considerations	page 29
Installation procedures	page 30
Rosemount 305, 306, and 304 Manifolds	page 39
Liquid level measurement	page 45

3.1 Overview

The information in this section covers installation considerations for the Rosemount[™] 2051 Pressure Transmitter with PROFIBUS[®] PA. A Quick Start Guide is shipped with every transmitter to describe pipe-fitting, wiring procedures and basic configuration for initial installation.

3.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol ($\underline{\land}$). Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this reference manual for any restrictions associated with a safe installation.

 In an Explosion-Proof/Flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

• Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

3.3 Installation considerations

Measurement accuracy depends upon proper installation of the transmitter and impulse piping. Mount the transmitter close to the process and use a minimum of piping to achieve best accuracy. Keep in mind the need for easy access, personnel safety, practical field calibration, and a suitable transmitter environment. Install the transmitter to minimize vibration, shock, and temperature fluctuation.

Important

Install the enclosed pipe plug (found in the box) in unused conduit opening. Engage a minimum of five threads to comply with explosion-proof requirements. See "Conduit entry threads" on page 31 for additional requirements.

For material compatibility considerations, see Material Selection Technical Note.

3.3.1 Mechanical considerations

Steam service

For steam service or for applications with process temperatures greater than the limits of the transmitter, do not blow down impulse piping through the transmitter. Flush lines with the blocking valves closed and refill lines with water before resuming measurement.

Side mounted

When the transmitter is mounted on its side, position the coplanar flange to ensure proper venting or draining. Mount the flange as shown in Figure 3-8 on page 36, keeping drain/vent connections on the bottom for gas service and on the top for liquid service.

3.3.2 Environmental considerations

Best practice is to mount the transmitter in an environment that has minimal ambient temperature change. The transmitter electronics temperature operating limits are –40 to 185 °F (–40 to 85 °C). Refer to Appendix A: Specifications and Reference Data that lists the sensing element operating limits. Mount the transmitter so that it is not susceptible to vibration and mechanical shock and does not have external contact with corrosive materials.

3.4 Installation procedures

3.4.1 Mount the transmitter

For dimensional drawing information refer to "Dimensional drawings" on page 102.

Process flange orientation

Mount the process flanges with sufficient clearance for process connections. For safety reasons, place the drain/vent valves so the process fluid is directed away from possible human contact when the vents are used. In addition, consider the need for a testing or calibration input.

Housing rotation

To improve field access to wiring or to better view the optional LCD display:

- 1. Loosen the housing rotation set screw using a $\frac{5}{64}$ -in. hex wrench.
- 2. Turn the housing left or right maximum up to 180° from its original position⁽¹⁾. Over rotating can damage the transmitter.
- 3. Re-tighten the housing rotation set screw to no more than 7 in-lb when desired location is reached.

^{1,} The Rosemount 2051C original position aligns with "H" side; Rosemount 2051T original position is the opposite side of bracket holes.

Figure 3-1. Housing Rotation

A. Housing rotation set screw (5/64-in.)

Terminal side of electronics housing

Mount the transmitter so the terminal side is accessible. Clearance of 0.75-in. (19 mm) is required for cover removal. Use a conduit plug in the unused conduit opening.

Circuit side of electronics housing

Provide 0.75-in. (19 mm) of clearance for units with out an LCD display. If LCD display is installed, mount for clear visibility. Three inches of clearance is required for LCD display cover removal.

Conduit entry threads

For NEMA[®] 4X, IP66, and IP68 requirements, use thread seal (PTFE) tape or paste on male threads to provide a watertight seal.

Environmental seal for housing

Thread sealing (PTFE) tape or paste on male threads of conduit is required to provide a water/dust tight conduit seal and meets requirements of NEMA Type 4X, IP66, and IP68. Consult factory if other ingress protection ratings are required.

For M20 threads, install conduit plugs to full thread engagement or until mechanical resistance is met.

Always ensure a proper seal by installing electronics housing cover(s) so that metal contacts metal. Use Rosemount O-rings.

Mounting brackets

Rosemount 2051 may be panel-mounted or pipe-mounted through an optional mounting bracket. Refer to Table 3-1 for the complete offering and see Figure 3-2 through Figure 3-6 on pages 32 and 34 for dimensions and mounting configurations.

Table 3-1. Mounting Brackets

Rosemount 2051 Brackets										
	Process connections		Process connections Mounting		Materials					
Option code	Coplanar	In-line	Traditional	Pipe	Panel	Flat panel	Carbon steel bracket	Stainless steel bracket	Carbon steel bolts	Stainless steel bolts
B4	Х	Х	N/A	Х	Х	Х	N/A	Х	N/A	Х
B1	N/A	N/A	Х	Х	N/A	N/A	Х	N/A	Х	N/A
B2	N/A	N/A	Х	N/A	Х	N/A	Х	N/A	Х	N/A

Rosemount 2051 Brackets										
	Process connections		Process connections Mounting		Materials					
Option code	Coplanar	In-line	Traditional	Pipe	Panel	Flat panel	Carbon steel bracket	Stainless steel bracket	Carbon steel bolts	Stainless steel bolts
B3	N/A	N/A	Х	N/A	N/A	Х	Х	N/A	Х	N/A
B7	N/A	N/A	Х	Х	N/A	N/A	Х	N/A	N/A	Х
B8	N/A	N/A	Х	N/A	Х	N/A	Х	N/A	N/A	Х
B9	N/A	N/A	Х	N/A	N/A	Х	Х	N/A	N/A	Х
BA	N/A	N/A	Х	Х	N/A	N/A	N/A	Х	N/A	Х
BC	N/A	N/A	Х	N/A	N/A	Х	N/A	Х	N/A	Х

Table 3-1. Mounting Brackets

A. $3/8-16 \times 1^{1}/4$ -in. bolts for mounting to transmitter B. $5/16 \times 1^{1}/2$ -in. bolts for panel mounting (not supplied) Dimensions are in inches (millimeters).

Flange bolts

The Rosemount 2051 can be shipped with a coplanar flange or a traditional flange installed with four 1.75-inch flange bolts. Mounting bolts and bolting configurations for the coplanar and traditional flanges can be found on page 34. Stainless steel bolts supplied by Emerson[™] are coated with a lubricant to ease installation. Carbon steel bolts do not require lubrication. No additional lubricant should be applied when installing either type of bolt. Bolts supplied by Emerson are identified by their head markings:

1. The last digit in the F593_head marking may be any letter between A and M.

Bolt installation

- Only use bolts supplied with the Rosemount 2051 or sold by Emerson as spare parts for the Rosemount 2051 Transmitter. Use the following bolt installation procedure:
 - 1. Finger-tighten the bolts.
 - 2. Torque the bolts to the initial torque value using a crossing pattern (see Table 3-2 for torque values).
 - 3. Torque the bolts to the final torque value using the same crossing pattern.

Table 3-2. Bolt Installation Torque Values

Bolt material	Initial torque value	Final torque value
Carbon steel -ASTM-A445 standard	300 in-lb (34 N-m)	650 in-lb (73 N-m)
316 stainless steel—option L4	150 in-lb (17 N-m)	300 in-lb (34 N-m)
ASTM-A-193-B7M—option L5	300 in-lb (34 N-m)	650 in-lb (73 N-m)
Alloy 400—option L6	300 in-lb (34 N-m)	650 in-lb (73 N-m)

Figure 3-6. Traditional Flange Bolt Configurations

Figure 3-7. Mounting Bolts and Bolt Configurations for Coplanar Flange

Transmitter with
flange boltsTransmitter with
flange adapters and
flange/adapter boltsImage: dapter bolts<

Dimensions are in inches (millimeters).

Description	Size in. (mm)
Flange bolts	1.75 (44)
Flange/adapter bolts	2.88 (73)
Manifold/flange bolts	2.25 (57)

Note

Rosemount 2051T Transmitters are direct mount and do not require bolts for process connection.

3.4.2 Impulse piping

Mounting requirements

Impulse piping configurations depend on specific measurement conditions. Refer to Figure 3-8 for examples of the following mounting configurations:

Liquid flow measurement

- 1. Place taps to the side of the line to prevent sediment deposits on the transmitter's process isolators.
- 2. Mount the transmitter beside or below the taps so gases can vent into the process line.
- 3. Mount drain/vent valve upward to allow gases to vent.

Gas flow measurement

- 1. Place taps in the top or side of the line.
- 2. Mount the transmitter beside or above the taps so liquid will drain into the process line.

Steam flow measurement

- 1. Place taps to the side of the line.
- 2. Mount the transmitter below the taps to ensure that the impulse piping will stay filled with condensate.
- 3. In steam service above 250 °F (121 °C), fill impulse lines with water to prevent steam from contacting the transmitter directly and to ensure accurate measurement start-up.

Note

For steam or other elevated temperature services, it is important that temperatures at the process connection do not exceed the transmitter's process temperature limits.

Best practices

The piping between the process and the transmitter must accurately transfer the pressure to obtain accurate measurements. There are five possible sources of error: pressure transfer, leaks, friction loss (particularly if purging is used), trapped gas in a liquid line, liquid in a gas line, and density variations between the legs.

The best location for the transmitter in relation to the process pipe is dependent on the process. Use the following guidelines to determine transmitter location and placement of impulse piping:

- Keep impulse piping as short as possible.
- For liquid service, slope the impulse piping at least 1-in/ft (8 cm/m) upward from the transmitter toward the process connection.
- For gas service, slope the impulse piping at least 1-in/ft (8 cm/m) downward from the transmitter toward the process connection.
- Avoid high points in liquid lines and low points in gas lines.
- Make sure both impulse legs are the same temperature.
- Use impulse piping large enough to avoid friction effects and blockage.
- Vent all gas from liquid piping legs.
- When using a sealing fluid, fill both piping legs to the same level.
- When purging, make the purge connection close to the process taps and purge through equal lengths
 of the same size pipe. Avoid purging through the transmitter.
- Keep corrosive or hot (above 250 °F [121 °C]) process material out of direct contact with the sensor module and flanges.

- Prevent sediment deposits in the impulse piping.
- Maintain equal leg of head pressure on both legs of the impulse piping.
- Avoid conditions that might allow process fluid to freeze within the process flange.

3.4.3 Process connections

Coplanar or traditional process connection

Install and tighten all four flange bolts before applying pressure, or process leakage will result. When properly installed, the flange bolts will protrude through the top of the sensor module housing. Do not attempt to loosen or remove the flange bolts while the transmitter is in service.

▲ Flange adapters

Rosemount 2051DP and GP process connections on the transmitter flanges are 1/4-18 NPT. Flange adapters are available with standard 1/2-14 NPT Class 2 connections. The flange adapters allow users to disconnect from the process by removing the flange adapter bolts. Use plant-approved lubricant or sealant when making the process connections. Refer to "Dimensional drawings" on page 102 for the distance between pressure connections. This distance may be varied $\pm 1/8$ -in. (3.2 mm) by rotating one or both of the flange adapters.

To install adapters to a coplanar flange, perform the following procedure:

- 1. Remove the flange bolts.
- 2. Leaving the flange in place, move the adapters into position with the O-ring installed.
- 3. Clamp the adapters and the coplanar flange to the transmitter sensor module using the larger of the bolts supplied.
- 4. Tighten the bolts. Refer to "Flange bolts" on page 33 for torque specifications.

Whenever you remove flanges or adapters, visually inspect the PTFE O-rings. Replace with O-ring designed for Rosemount transmitter if there are any signs of damage, such as nicks or cuts. Undamaged O-rings may be reused. If you replace the O-rings, retorque the flange bolts after installation to compensate for cold flow. Refer to the process sensor body reassembly procedure in Section 6: Trouble-shooting.

Mhen compressed, PTFE O-rings tend to "cold flow," which aids in their sealing capabilities.

Note

PTFE O-rings should be replaced if the flange adapter is removed.

O-rings

The two styles of Rosemount flange adapters (Rosemount 1151 and Rosemount 3051S/3051/2051) each require a unique O-ring. Use only the O-ring designed for the corresponding flange adapter.

AWARNING

Failure to install proper flange adapter O-rings may cause process leaks, which can result in death or serious injury. The two flange adapters are distinguished by unique O-ring grooves. Only use the O-ring designed for its specific flange adapter, as shown below:

Rosemount 3051S/3051/2051

3.4.4 In-line process connection

In-line gage transmitter orientation

The low side pressure port on the in-line gage transmitter is located in the neck of the transmitter, behind the housing. The vent path is 360 degrees around the transmitter between the housing and sensor (See Figure 3-9).

Keep the vent path free of any obstruction, such as paint, dust, and lubrication by mounting the transmitter so that the process can drain away.

3.5 Rosemount 305, 306, and 304 Manifolds

The Rosemount 305 Integral Manifold is available in two designs: traditional and coplanar. The traditional Rosemount 305 Integral Manifold can be mounted to most primary elements with mounting adapters in the market today. The Rosemount 306 Integral Manifold is used with the Rosemount 2051T In-line Transmitters to provide block-and-bleed valve capabilities of up to 10000 psi (690 bar).

Figure 3-10. Manifolds

Rosemount 2051C and Rosemount 304 Conventional

Rosemount 2051C and Rosemount 305 Integral Traditional

Rosemount 2051C and Rosemount 305 Integral Coplanar

Rosemount 2051T and Rosemount 306 In-line

3.5.1

Rosemount 305 Integral Manifold installation procedure

To install a Rosemount 305 Integral Manifold to a Rosemount 2051 Transmitter:

1. Inspect the PTFE sensor module O-rings. Undamaged O-rings may be reused. If the O-rings are damaged (if they have nicks or cuts, for example), replace with O-rings designed for Rosemount transmitter.

Important

If replacing the O-rings, take care not to scratch or deface the O-ring grooves or the surface of the isolating diaphragm while you remove the damaged O-rings.

 Install the Integral Manifold on the sensor module. Use the four 2¹/₄-in. manifold bolts for alignment. Finger tighten the bolts, then tighten the bolts incrementally in a cross pattern to final torque value. See "Flange bolts" on page 33 for complete bolt installation information and torque values. When fully tightened, the bolts should extend through the top of the sensor module housing. 3. If the PTFE sensor module O-rings have been replaced, the flange bolts should be re-tightened after installation to compensate for cold flow of the O-rings.

Note

Always perform a zero trim on the transmitter/manifold assembly after installation to eliminate mounting effects.

3.5.2 Rosemount 306 Integral Manifold installation procedure

The Rosemount 306 Manifold is for use only with a Rosemount 2051T In-line Transmitter.

Assemble the Rosemount 306 Manifold to the Rosemount 2051T In-line Transmitter with a thread sealant.

3.5.3 Rosemount 304 Conventional Manifold installation procedure

To install a Rosemount 304 Conventional Manifold to a Rosemount 2051 Transmitter:

- 1. Align the conventional manifold with the transmitter flange. Use the four manifold bolts for alignment.
- 2. Finger tighten the bolts, then tighten the bolts incrementally in a cross pattern to final torque value. See "Flange bolts" on page 33 for complete bolt installation information and torque values. When fully tightened, the bolts should extend through the top of the sensor module housing.
- 3. Leak-check assembly to maximum pressure range of transmitter.

3.5.4 Manifold operation

AWARNING

Improper installation or operation of manifolds may result in process leaks, which may cause death or serious injury.

Always perform a zero trim on the transmitter/manifold assembly after installation to eliminate any shift due to mounting effects. See "Sensor trim overview" on page 66.

Coplanar transmitters

3-valve and 5-valve manifolds

Performing zero trim at static line pressure

In normal operation the two isolate (block) valves between the process ports and transmitter will be open and the equalize valve will be closed.

5-valve natural gas manifold

Performing zero trim at static line pressure

5-valve natural gas configurations shown:

In normal operation, the two isolate (block) valves between the process ports and transmitter will be open, and the equalize valves will be closed. Vent valves may be opened or closed.

 To zero trim the transmitter, first close the isolate valve on the low pressure (downstream) side of the transmitter and the vent valve.

2. Open the equalize valve on the high pressure (upstream) side of the transmitter.

3. Open the equalize valve on the low pressure (downstream) side of the transmitter. The manifold is now in the proper configuration for performing a zero trim on the transmitter.

Н

(Plugged)

L

(Plugged)

In-line transmitters

2-valve and block and bleed style manifolds

Isolating the transmitter

In normal operation the isolate (block) valve between the process port and transmitter will be open and the test/vent valve will be closed. On a block and bleed style manifold, a single block valve provides transmitter isolation and a bleed screw provides drain/vent capabilities.

Adjusting valve packing

Over time, the packing material inside a Rosemount manifold may require adjustment in order to continue to provide proper pressure retention. Not all Rosemount manifolds have this adjustment capability. The Rosemount manifold model number will indicate what type of stem seal or packing material has been used.

The following steps are provided as a procedure to adjust valve packing:

- 1. Remove all pressure from device.
- 2. Loosen manifold valve jam nut.
- 3. Tighten manifold valve packing adjuster nut 1/4 turn.
- 4. Tighten manifold valve jam nut.
- 5. Re-apply pressure and check for leaks.
- 6. Above steps can be repeated, if necessary.

If the above procedure does not result in proper pressure retention, the complete manifold should be replaced.

Figure 3-11. Valve Components

3.6 Liquid level measurement

Differential pressure transmitters used for liquid level applications measure hydrostatic pressure head. Liquid level and specific gravity of a liquid are factors in determining pressure head. This pressure is equal to the liquid height above the tap multiplied by the specific gravity of the liquid. Pressure head is independent of volume or vessel shape.

Open vessels 3.6.1

A pressure transmitter mounted near a tank bottom measures the pressure of the liquid above.

Make a connection to the high pressure side of the transmitter, and vent the low pressure side to the atmosphere. Pressure head equals the liquid's specific gravity multiplied by the liquid height above the tap.

Zero range suppression is required if the transmitter lies below the zero point of the desired level range. Figure 3-12 shows a liquid level measurement example.

3.6.2 Closed vessels

Pressure above a liquid affects the pressure measured at the bottom of a closed vessel. The liquid specific gravity multiplied by the liquid height plus the vessel pressure equals the pressure at the bottom of the vessel.

To measure true level, the vessel pressure must be subtracted from the vessel bottom pressure. To do this, make a pressure tap at the top of the vessel and connect this to the low side of the transmitter. Vessel pressure is then equally applied to both the high and low sides of the transmitter. The resulting differential pressure is proportional to liquid height multiplied by the liquid specific gravity.

Dry leq condition

Low-side transmitter piping will remain empty if gas above the liquid does not condense. This is a dry leg condition. Range determination calculations are the same as those described for bottom-mounted transmitters in open vessels, as shown in Figure 3-12.

Then h = (X)(SG)

= 500 x 0.9

= 450 inH₂O

- e = (Y)(SG)
- =100 x 0.9
- = 90 inH₂O

Range = 90 to 540 inH₂O

Wet leg condition

Condensation of the gas above the liquid slowly causes the low side of the transmitter piping to fill with liquid. The pipe is purposely filled with a convenient reference fluid to eliminate this potential error. This is a wet leg condition.

The reference fluid will exert a head pressure on the low side of the transmitter. Zero elevation of the range must then be made. See Figure 3-13.

Figure 3-13. Wet Leg Example

Let X equal the vertical distance between the minimum and maximum measurable levels (500-in.). Let Y equal the vertical distance between the transmitter datum line and the minimum measurable level (50-in.). Let z equal the vertical distance between the top of the liquid in the wet leg and the transmitter datum line (600-in.). Let SG_1 equal the specific gravity of the fluid (1.0). Let SG_2 equal the specific gravity of the fluid in the wet leg (1.1). Let h equal the maximum head pressure to be measured in inches of water. Let e equal the head pressure produced by Y expressed in inches of water. Let s equal head pressure produced by z expressed in inches of water. Let Range equal e – s to h + e – s. Then $h = (X)(SG_1)$ = 500 x 1.0 = 500 in H₂O $e = (Y)(SG_1)$ = 50 x 1.0 = 50 inH₂O $s = (z)(SG_2)$ = 600 x 1.1 = 660 inH₂O Range = e - s to h + e - s. = 50 - 660 to 500 + 50 - 660 = -610 to -110 inH₂O H Zero elevation Range

0

-110

inH₂O

-610

Bubbler system in open vessel

A bubbler system that has a top-mounted pressure transmitter can be used in open vessels. This system consists of an air supply, pressure regulator, constant flow meter, pressure transmitter, and a tube that extends down into the vessel.

Bubble air through the tube at a constant flow rate. The pressure required to maintain flow equals the liquid's specific gravity multiplied by the vertical height of the liquid above the tube opening. Figure 3-14 shows a bubbler liquid level measurement example.

Let X equal the vertical distance between the minimum and maximum measurable levels (100-in.). Let SG equal the specific gravity of the fluid (1.1).

Let h equal the maximum head pressure to be measured in inches of water. Let Range equal zero to h. Then h = (X)(SG) = 100 x 1.1 = 110 inH₂O Range = 0 to 110 inH₂O H₁ Range 0 inH₂O 110

Section 4 Electrical Installation

Overview	page 49
Safety messages	page 49
Local Operating Interface (LOI)/LCD display	page 49
Configure security and simulation	page 50
Setting transmitter alarm	page 53
Electrical considerations	page 54

4.1 Overview

The information in this section covers installation considerations for the Rosemount[™] 2051 Pressure Transmitter with HART[®] Protocol. A Quick Start Guide is shipped with every transmitter to describe pipe-fitting, wiring procedures and basic configuration for initial installation.

4.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol ($\underline{\land}$). Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of this Reference Manual for any restrictions associated with a safe installation.

 In an Explosion-Proof/Flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

 Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

4.3 Local Operating Interface (LOI)/LCD display

Transmitters ordered with the LCD display option (M5) or LOI option (M4) are shipped with the display installed. Installing the display on an existing transmitter requires a small instrument screwdriver. Carefully align the desired display connector with the electronics board connector. If connectors don't align, the display and electronics board are not compatible.

4.3.1 Rotating LOI/LCD display

 \wedge 1. Secure the loop to manual control and remove power to transmitter.

- 2. Remove transmitter housing cover.
- 3. Remove screws form the LCD/LOI display and rotate to desired orientation.
 - a. Insert 10 pin connector into the display board for the correct orientation. Carefully align pins for insertion into the output board.
- 4. Re-insert screws.
- 5. Re-attach transmitter housing cover; cover must be fully engaged to comply with explosion proof requirements.
- 6. Re-attach power and return loop to automatic control.

4.4 Configure security and simulation

There are four security methods with the Rosemount 2051 Transmitter.

- Security switch
- HART Lock
- Configuration buttons lock
- LOI password

Figure 4-2. 4–20 mA Electronics Board without LCD meter with LCD display

A. Alarm B. Security

Note

1-5 Vdc Alarm and Security switches are located in the same location as 4-20 mA output boards.

4.4.1 Security switch

The security switch is used to prevent changes to the transmitter configuration data. If the security switch is set to the locked location (\bigcirc), any transmitter configuration requests sent via HART, LOI, or local configuration buttons will be rejected by the transmitter and the transmitter configuration data will not be modified. See figure above for the location of the security switch. Follow the steps below to enable the security switch.

1. Set loop to manual and remove power.

- 2. Remove transmitter housing cover.
- 3. Use a small screwdriver to slide the switch to the lock (\bigcirc) position.
- 4. Replace transmitter housing cover; cover must be fully engaged to comply with explosion proof requirements.

4.4.2 HART Lock

The HART Lock prevents changes to the transmitter configuration from all sources; all changes requested via HART, LOI, and local configuration buttons will be rejected. The HART Lock can only be set via HART communication, and is only available in HART Revision 7 mode. The HART Lock can be enabled or disabled with a Field Communicator or AMS Device Manager.

Configuring HART Lock using Field Communicator

From the HOME screen, enter the fast key sequence

Device Dashboard Fast Keys 2, 2, 6, 4	
---------------------------------------	--

Configuring HART Lock using AMS device Manager

- 1. Right click on the device and select **Configure.**
- 2. Under *Manual Setup* select the **Security** tab.
- 3. Select Lock/Unlock button under HART Lock (Software) and follow the screen prompts.

4.4.3 Configuration button lock

The configuration button lock disables all local button functionality. Changes to the transmitter configuration from the LOI and local buttons will be rejected. Local external keys can be locked via HART communication only.

Configuring configuration button lock using a Field Communicator

From the HOME screen, enter the fast key sequence

Device Dashboard Fast Keys2, 2, 6, 3	
--------------------------------------	--

Configuring configuration button lock using AMS device Manager

- 1. Right click on the device and select **Configure.**
- 2. Under *Manual Setup* select the **Security** tab.
- 3. Within the *Configuration Buttons* dropdown menu select **Disabled** to lock external local keys.
- 4. Select Send.
- 5. Confirm service reason and select **Yes**.

4.4.4 LOI password

A Local Operator Interface Password can be entered and enabled to prevent review and modification of device configuration via the LOI. This does not prevent configuration from HART or external keys (analog zero and span; Digital Zero Trim). The LOI password is a 4 digit code that is to be set by the user. If the password is lost or forgotten the master password is "9307".

The LOI password can be configured and enabled/disabled by HART Communication via a Field Communicator, AMS Device Manager, or the LOI.

Configuring LOI password with Field Communicator

From the HOME screen, enter the Fast Key sequence

Device Dashboard Fast Keys	2, 2, 6, 5, 2
----------------------------	---------------

Configuring LOI password with AMS Device Manager

- 1. Right click on the device and select **Configure.**
- 2. Under *Manual Setup* select the **Security** tab.
- 3. Within the *Local Operator Interface* select the **Configure Password** button and follow the screen prompts.

Configuring LOI password using LOI

4.5 Setting transmitter alarm

On the electronics board is an alarm switch, reference Figure 4-2 on page 51 for switch location. Follow the steps below to change the alarm switch location:

- 1. Set loop to manual and remove power.
- 2. Remove transmitter housing cover.
- 3. Use a small screwdriver to slide switch to desired position.
- 4. Replace transmitter cover; cover must be fully engaged to comply with explosion proof requirements.

4.6 Electrical considerations

Note

Make sure all electrical installation is in accordance with national and local code requirements.

ACAUTION

Do not run signal wiring in conduit or open trays with power wiring or near heavy electrical equipment.

4.6.1 Conduit installation

Recommended conduit connections are shown in Figure 4-4.

ACAUTION

If all connections are not sealed, excess moisture accumulation can damage the transmitter. Make sure to mount the transmitter with the electrical housing positioned downward for drainage. To avoid moisture accumulation in the housing, install wiring with a drip loop, and ensure the bottom of the drip loop is mounted lower than the conduit connections or the transmitter housing.

4.6.2 Power supply

4-20 mA HART (option code A)

Transmitter operates on 10.5–42.4 Vdc at the terminal of the transmitter. The DC power supply should provide power with less than two percent ripple. A minimum of 16.6 V is required for loops with a 250 Ω resistance.

Note

A minimum loop resistance of 250 Ω is required to communicate with a Field Communicator. If a single power supply is used to power more than one Rosemount 2051 Transmitter, the power supply used, and circuitry common to the transmitters, should not have more that 20 Ω of impedance at 1200 Hz.

Figure 4-5. Load Limitation

Maximum loop resistance = 43.5 x (power supply voltage – 10.5)

The Field Communicator requires a minimum loop resistance of 250 Ω for communication.

The total resistance load is the sum of the resistance of the signal leads and the load resistance of the controller, indicator, I.S. Barriers, and related pieces. If intrinsic safety barriers are used, the resistance and voltage drop must be included.

1–5 Vdc low power HART (output code M)

Low power transmitters operate on 9–28 Vdc. The DC power supply should provide power with less than 2 percent ripple. The V_{out} load should be 100 k Ω or greater.

4.6.3 Wiring the transmitter

ACAUTION

Do not connect the power signal wiring to the test terminals. Incorrect wiring can damage test circuit.

Note

Use shielded twisted pairs to yield best results. To ensure proper communication, use 24 AWG or larger wire and do not exceed 5000 ft. (1500 m). For 1–5 V 500 ft. (150 m) maximum are recommended. unpaired three conductor or two twisted pairs is recommended.

A. DC power supply B. $R_L \geq 250$ (necessary for HART Communication only)

Perform the following procedure to make wiring connections:

- 1. Remove the housing cover on terminal compartment side. Do not remove the cover in explosive atmospheres when the circuit is live. Signal wiring supplies all power to the transmitter.
- ∴ 2. For 4–20 mA HART Output, connect the positive lead to the terminal marked (pwr/comm+) and the negative lead to the terminal marked (pwr/comm−). Do not connect the powered signal wiring to the test terminals. Power could damage the test diode.
 - a. For 1–5 Vdc HART Output, connect the positive lead to (PWR +) and the negative to the (PWR–). Do not connect the powered signal wiring to the test terminals. Power could damage the test diode.
 - 3. Plug and seal unused conduit connection on the transmitter housing to avoid moisture accumulation in the terminal side.

4.6.4 Grounding the transmitter

Signal cable shield grounding

Signal cable shield grounding is summarized in Figure 4-8 on page 57. The signal cable shield and unused shield drain wire must be trimmed and insulated, ensuring that the signal cable shield and drain wire do not come in contact with the transmitter case. See "Transmitter case grounding" on page 57 for instructions on grounding the transmitter case. Follow the steps below to correctly ground the signal cable shield.

- 1. Remove the field terminals housing cover.
- 2. Connect the signal wire pair at the field terminals as indicated in Figure 4-6.
- 3. At the field terminals, the cable shield and shield drain wire should be trimmed close and insulated from transmitter housing.
- 4. Reattach the field terminals housing cover; cover must be fully engaged to comply with explosion proof requirements.
- 5. At terminations outside the transmitter housing, the cable shield drain wire should be continuously connected.

- a. Prior to the termination point, any exposed shield drain wire should be insulated as shown in Figure 4-8 (B).
- 6. Properly terminate the signal cable shield drain wire to an earth ground at or near the power supply.

Transmitter case grounding

Always ground the transmitter case in accordance with national and local electrical codes. The most effective transmitter case grounding method is a direct connection to earth ground with minimal impedance. Methods for grounding the transmitter case include:

- Internal ground connection: The internal ground connection screw is inside the FIELD TERMINALS side of the electronics housing. This screw is identified by a ground symbol (). The ground connection screw is standard on all Rosemount 2051 Transmitters. Refer to Figure 4-9 on page 58.
- External ground connection: The external ground connection is located on the exterior of the transmitter housing. Refer to Figure 4-10 on page 58. This connection is only available with option V5 and T1.

Figure 4-9. Internal Ground Connection

Figure 4-10. External Ground Connection (Option V5 or T1)

Note

Grounding the transmitter case via threaded conduit connection may not provide sufficient ground continuity.

Transient protection terminal block grounding

The transmitter can withstand electrical transients of the energy level usually encountered in static discharges or induced switching transients. However, high-energy transients, such as those induced in wiring from nearby lightning strikes, can damage the transmitter.

The transient protection terminal block can be ordered as an installed option (code T1) or as a spare part to retrofit existing Rosemount 2051 Transmitters in the field. See "Spare parts" on page 145 for part numbers. The lightning bolt symbol shown in Figure 4-11 on page 59 identifies the transient protection terminal block.

Figure 4-11. Transient Protection Terminal Block

A. Lightning bolt location

Note

The transient protection terminal block does not provide transient protection unless the transmitter case is properly grounded. Use the guidelines to ground the transmitter case. Refer to Figure 4-11.

Section 5 Operation and Maintenance

Overview	page 61
Safety messages	page 61
Recommended calibration tasks	page 62
Calibration overview	page 62
Trim the pressure signal	page 66
Trim the analog output	page 69
Switching HART Revision	page 72

5.1 Overview

This section contains information on calibrating Rosemount[™] 2051 Pressure Transmitters.

Field Communicator, AMS[™], Device Manager and Local Operator Interface (LOI) instructions are given to perform configuration functions.

5.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\land). Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of the Rosemount 2051 reference manual for any restrictions associated with a safe installation.

- Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an Explosion-proof/flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

Install and tighten process connectors before applying pressure.

Electrical shock can result in death or serious injury.

 Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

5.3 Recommended calibration tasks

ACAUTION

Absolute pressure transmitters (Rosemount 2051CA and 2051TA) are calibrated at the factory. Trimming adjusts the position of the factory characterization curve. It is possible to degrade performance of the transmitter if any trim is done improperly or with inaccurate equipment.

Table 5-1. Basic and Full Calibration Tasks

Field installation tasks	Bench calibration tasks
1. Perform sensor zero/lower trim: Compensate for	1. Perform optional 4–20 mA 1–5 Vdc output trim.
mounting pressure effects.	2. Perform a sensor trim.
a. Refer to Rosemount 305, 306, and 304 Manifolds for operation instructions to properly drain/vent valves	a. Zero/lower trim using line pressure effect correction. Reference Rosemount 305, 306,
2. Set/check basic configuration parameters.	and 304 Manifolds for drain/vent valve
a. Output units	operation instructions.
b. Range points	b. Optional full scale trim. Sets the span of the
c. Output type	device and requires accurate calibration
d. Damping Value	c. Set/check basic configuration parameters.

Note

For Rosemount 2051CA, 2051TA range 0 and range 5 devices, an accurate absolute pressure source is required.

5.4 Calibration overview

The Rosemount 2051 Transmitter is an accurate instrument that is fully calibrated in the factory. Field calibration is provided to the user to meet plant requirements or industry standards. Complete calibration of the transmitter can be split into two halves: sensor calibration and analog output calibration.

Sensor calibration allows the user to adjust the pressure (digital value) reported by the transmitter to be equal to a pressure standard. The sensor calibration can adjust the pressure offset to correct for mounting conditions or line pressure effects. This correction is recommended. The calibration of the pressure range (pressure span or gain correction) requires accurate pressure standards (sources) to provide a full calibration.

Like the sensor calibration, the analog output can be calibrated to match the user measurement system. The analog output trim (4-20 mA/1-5 V output trim) will calibrate the loop at the 4 mA (1 V) and 20 mA (5 V) points.

The sensor calibration and the analog output calibration combine to match the transmitter's measurement system to the plant standard.

Calibrate the sensor

- Sensor trim (page 67)
- Zero trim (page 67)
Calibrate the 4–20 mA output

- 4–20 mA/1–5 V output trim (page 70)
- 4–20 mA/1–5V output trim using other scale (page 71)

5.4.1 Determining necessary sensor trims

Bench calibrations allow for calibrating the instrument for its desired range of operation. Straight forward connections to pressure source allow for a full calibration at the planned operating points. Exercising the Transmitter over the desired pressure range allows for verification of the analog output. "Trim the pressure signal" on page 66 discusses how the trim operations change the calibration. It is possible to degrade the performance of the transmitter if a trim is done improperly or with inaccurate equipment. The transmitter can be set back to factory settings using the recall factory trim command in "Recall factory trim—sensor trim" on page 68.

For transmitters that are field installed, the manifolds discussed in Section 3: Rosemount 305, 306, and 304 Manifolds allow the differential transmitter to be zeroed using the zero trim function. Both 3-valve and 5-valve manifolds are discussed. This field calibration will eliminate any pressure offsets caused by mounting effects (head effect of the oil fill) and static pressure effects of the process.

Determine the necessary trims with the following steps:

- 1. Apply pressure
- 2. Check digital pressure, if the digital pressure does not match the applied pressure, perform a digital trim. See "Perform a sensor trim" on page 67.
- 3. Check reported analog output against the live analog output. If they do not match, perform an analog output trim. See "Performing digital-to-analog trim (4–20 mA/1–5 V output trim)" on page 70.

Trimming with configuration buttons

Local configuration buttons are external buttons located underneath the top tag of the transmitter. There are two possible sets of local configuration buttons that can be ordered and used to perform trim operations: Digital zero trim and LOI. To access the buttons, loosen screw and rotate top tag until buttons are visible.

- LOI (M4): Can perform both digital sensor trim and the 4–20mA output trim (analog output trim). Follow the same procedures listed in trimming with Field Communicator or AMS Device Manager listed below.
- **Digital zero trim (DZ):** Used for performing a sensor zero trim. See "Determining calibration frequency" on page 64 for trim instructions.

All configuration changes should be monitored by a display or by measuring the loop output. Figure 5-1 shows the physical differences between the two sets of buttons.

Figure 5-1. Local Configuration Button Options

LOI—green retainer Digital zero trim—blue retainer

5.4.2 Determining calibration frequency

Calibration frequency can vary greatly depending on the application, performance requirements, and process conditions. Use the following procedure to determine calibration frequency that meets the needs of your application:

- 1. Determine the performance required for your application.
- 2. Determine the operating conditions.
- 3. Calculate the Total Probable Error (TPE).
- 4. Calculate the stability per month.
- 5. Calculate the calibration frequency.

Sample calculation for Rosemount 2051

Step 1: Determine the performance required for your application.

Required Performance:

0.30% of span

Step 2: Determine the operating conditions.

Transmitter:	Rosemount 2051CD, range 2 (URL=250 inH ₂ O[623 mbar])
Calibrated span:	150 inH ₂ O (374 mbar)
Ambient temperature change:	± 50 °F (28 °C)
Line pressure:	500 psig (34,5 bar)

Step 3: Calculate TPE.

	TPE = 🔬	(Reference accuracy) ² + (Temperature effect) ² + (Static	pressure effect) ² = 0.189% of spa
--	---------	---------------------------------------	--	--

Where:

Reference accuracy =	± 0.065% of span
Ambient temperature effect =	((0.025 × URL) Span + 0.125)% per 50 °F = ±0.167% of span
Span static pressure effect ⁽¹⁾ =	$^{.}$ 0.1% reading per 1000 psi (69 bar) = $\pm 0.05\%$ of span at maximum span

1. Zero static pressure effect removed by zero trimming at line pressure.

Step 4: Calculate the stability per month.

Stability = $\pm \left[\frac{(0.100 \times \text{URL})}{\text{Span}}\right]$ % of span for 2 years = ± 0.0069 % of URL for 1 month

Step 5: Calculate calibration frequency.

Cal. Freq. = $\frac{(\text{Req. Performance} - \text{TPE})}{\text{Stability per Month}} = \frac{(0.3\% - 0.189\%)}{0.0069\%} = 16 \text{ months}$

Sample calculation for Rosemount 2051C with P8 option (0.05% accuracy and 5-year stability)

Step 1: Determine the performance required for your application.

Required performance: 0.30% of span

Step 2: Determine the operating conditions.

Transmitter: Rosemount 2051CD, range 2 (URL=250 inH ₂ [623 mb		
Calibrated span: 150 inH ₂ O (374 mbar)		
Ambient temperature change: ±50 °F (28 °C)		
Line pressure:	500 psig (34,5 bar)	
Step 3: Calculate TPE.		
TPE = $\sqrt{(Reference accuracy)^2 + (Temperature)^2}$	re effect) ² + (Static pressure effect) ² = 0.117% of span	
Where:		
Reference accuracy =	± 0.05% of span	
Ambient temperature effect = $\left(\frac{(0)}{2}\right)$. <u>025 × URL)</u> + 0.125)% per 50 °F = ±0.0833% of span	

Span static pressure effect⁽¹⁾ = 0.1% reading per 1000 psi (69 bar) = $\pm 0.05\%$ of span at maximum span

1. Zero static pressure effect removed by zero trimming at line pressure.

Step 4: Calculate the stability per month.

Stability = $\pm \left[\frac{(0.125 \times \text{URL})}{\text{Span}}\right]$ % of span for 5 years = ± 0.0035 % of URL for 1 month

Step 5: Calculate calibration frequency.

Cal. Freq. = $\frac{(\text{Req. Performance} - \text{TPE})}{\text{Stability per Month}} = \frac{(0.3\% - 0.117\%)}{0.0035\%} = 52 \text{ months}$

5.4.3

Compensating for span line pressure effects (range 4 and range 5)

Rosemount 2051 Range 4 and 5 Pressure Transmitters require a special calibration procedure when used in differential pressure applications. The purpose of this procedure is to optimize transmitter performance by reducing the effect of static line pressure in these applications. The transmitters (ranges 0 through 3) do not require this procedure because optimization occurs at the sensor.

The systematic span shift caused by the application of static line pressure is -0.95 percent of reading per 1000 psi (69 bar) for range 4 transmitters, and -1 percent of reading per 1000psi (69 bar) for range 5 transmitters. Using the following procedure, the span effect can be corrected to ± 0.2 percent of reading per 1000 psi (69 bar) for line pressures from 0 to 3626 psi (0 to 250 bar).

Use the following example to compute correct input values.

Example

A range 4 differential pressure HART[®] transmitter (Rosemount 2051CD4...) will be used in an application with a static line pressure of 1200 psi (83 bar). The transmitter output is ranged with 4 mA at 500 inH₂O (1, 2 bar) and 20 mA at 1500 inH₂O (3, 7 bar). To correct for systematic error caused by high static line pressure, first use the following formulas to determine the corrected values for the high trim value.

High Trim Value:

 $HT = (URV - [S/100 \times P/1000 \times LRV])$

	HT =	Corrected High Trim Value
UF	URV =	Upper Range Value
where.	S =	Span shift per specification (as a percent of reading)
	P =	Static Line Pressure in psi
nis example:		
	URV =	1500 inH ₂ O (3.74 bar)
	S =	-0.95%
	P =	1200 psi
	LT =	1500 – (–0.95%/100 x 1200 psi/1000 psi x 1500 inH ₂ O)
	LT =	1517.1 inH ₂ O

Complete the upper sensor trim procedure as described in "Perform a sensor trim" on page 67. In the example above, at step 4, apply the nominal pressure value of 1500 inH_2O . However, enter the calculated correct upper sensor trim value of 1517.1 inH₂O with a Field Communicator.

Note

In this exa

The range values for the 4 and 20 mA points should be at the nominal URV and LRV. In the example above, the values are 1500 inH₂O and 500 inH₂O respectively. Confirm the values on the HOME screen of the Field Communicator. Modify, Safety Instrumented Systems Requirements, by following the steps in "Rerange the transmitter" on page 15.

5.5 Trim the pressure signal

5.5.1 Sensor trim overview

A sensor trim corrects the pressure offset and pressure range to match a pressure standard. The upper sensor trim corrects the pressure range and the lower sensor trim (zero trim) corrects the pressure offset. an accurate pressure standard is required for full calibration. a zero trim can be performed if the process is vented, or the high and low side pressure are equal (for differential pressure transmitters).

Zero trim is a single-point offset adjustment. It is useful for compensating for mounting position effects and is most effective when performed with the transmitter installed in its final mounting position. Since this correction maintains the slope of the characterization curve, it should not be used in place of a Sensor Trim over the full sensor range.

When performing a zero trim, ensure that the equalizing valve is open and all wet legs are filled to the correct levels. Line pressure should be applied to the transmitter during a zero trim to eliminate line pressure errors. Refer to Section 3: Manifold operation.

Note

Do not perform a zero trim on Rosemount 2051T Absolute Pressure Transmitters. Zero trim is zero based, and absolute pressure transmitters reference absolute zero. To correct mounting position effects on a transmitter, perform a low trim within the sensor trim function. The low trim function provides an offset correction similar to the zero trim function, but it does not require zero-based input.

Upper and lower sensor trim is a two-point sensor calibration where two end-point pressures are applied, all output is linearized between them, and requires an accurate pressure source. Always adjust the low trim value first to establish the correct offset. Adjustment of the high trim value provides a slope correction to the characterization curve based on the low trim value. The trim values help optimize performance over a specific measurement range.

5.5.2 Perform a sensor trim

When performing a sensor trim, but the upper and lower limits can be trimmed. If both upper and lower trims are to be performed, the lower trim must be done prior to the upper time.

\land Note

Use a pressure input source that is at least four times more accurate than the transmitter, and allow the input pressure to stabilize for 10 seconds before entering any values.

Performing a sensor trim with a Field Communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the Sensor Trim.

Device Dashboard Fast Keys	3, 4, 1
----------------------------	---------

To calibrate the sensor with a Field Communicator using the sensor trim function, perform the following procedure:

1. Select Lower Sensor Trim.

Note

Select pressure points so that lower and upper values are equal to or outside the expected process operation range. This can be done by going to "Rerange the transmitter" on page 15 of Section 2: Configuration.

- 2. Follow the commands provided by the Field Communicator to complete the adjustment of the lower value.
- 3. Repeat the procedure for the upper value, replacing 2: Lower Sensor Trim with 3: Upper Sensor Trim in Step 1.

Performing a sensor trim with AMS Device Manager

Right click on the device and, under the *Method* dropdown menu, move cursor over *Calibrate* and, under *Sensor Trim*, select **Lower Sensor Trim**.

- 1. Follow the screen prompts to perform a Sensor Trim using AMS Device Manager.
- 2. If desired, right click on the device and under the *Method* dropdown menu, move cursor over *Calibrate* and under *Sensor Trim* and select **Upper Sensor Trim**

Performing a sensor trim using LOI

Perform an upper and lower sensor trim by referencing Figure 5-3.

Figure 5-3. Sensor Trim with LOI

Performing a digital zero trim (option DZ)

A digital zero trim (option DZ) provides the same function as a zero/lower sensor trim, but can be completed in hazardous areas at any given time by simply pushing the zero trim button when the transmitter is at zero pressure. If the transmitter is not close enough to zero when the button is pushed, the command may fail due to excess correction. If ordered, a digital zero Trim can be performed by utilizing external configuration buttons located underneath the top tag of the transmitter, see Figure 5-1 on page 63 for DZ button location.

- 1. Loosen the top tag of the transmitter to expose buttons.
- 2. Press and hold the digital zero button for at least two seconds, then release to perform a digital zero trim.

5.5.3 Recall factory trim—sensor trim

The recall factory trim—sensor trim command allows the restoration of the as-shipped factory settings of the sensor trim. This command can be useful for recovering from an inadvertent zero trim of an absolute pressure unit or inaccurate pressure source.

Recalling factory trim with a Field Communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the sensor trim.

Device Dashboard Fast Keys

3, 4, 3

Recalling factory trim with AMS Device Manager

Right click on the device and, under the *Method* dropdown menu, move cursor over *Calibrate* and select **Restore Factory Calibration**.

- 1. Select **Next** after setting the control loop to manual.
- 2. Select **Sensor Trim** under *Trim to recall* and select **Next**.
- 3. Follow the screen prompts to recall sensor trim.

Recalling factory trim - sensor trim using LOI

Refer to Figure 5-4 to recall factory sensor trim.

Figure 5-4. Recall Factory Trim - Sensor Trim with LOI

5.6 Trim the analog output

The analog output trim commands allow you to adjust the transmitter's current output at the 4 and 20 mA points to match the plant standards. This trim is performed after the digital to analog conversion so only the 4–20mA analog signal will be affected. Figure 5-5 graphically shows the two ways the characterization curve is affected when an analog output trim is performed.

5.6.1 Performing digital-to-analog trim (4–20 mA/1–5 V output trim)

Note

If a resistor is added to the loop, ensure that the power supply is sufficient to power the transmitter to a 20 mA output with additional loop resistance. Refer to "Power supply" on page 54.

Performing a 4–20 mA/1–5 V output trim with a Field Communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the 4–20 mA output trim.

Device Dashboard Fast Keys	3, 4, 2, 1
----------------------------	------------

A Performing a 4–20 mA/1–5 V output trim with AMS Device Manager

Right click on the device and, under the *Method* drop down menu, move cursor over *Calibrate* and select **Analog Calibration**.

- 1. Select Digital to Analog Trim.
- 2. Follow the screen prompts to perform a 4–20 mA output trim.

Performing 4–20mA/1–5 V output trim using LOI

Figure 5-6. 4–20mA Output Trim Using LOI

5.6.2 Performing digital-to-analog trim (4–20mA/1–5 V output trim) using other scale

The Scaled 4–20 mA output Trim command matches the 4 and 20 mA points to a user selectable reference scale other than 4 and 20 mA (for example, 2 to 10 volts if measuring across a 500 Ω load, or 0 to 100 percent if measuring from a Distributed Control System [DCS]). To perform a scaled 4–20 mA output trim, connect an accurate reference meter to the transmitter and trim the output signal to scale, as outlined in the output trim procedure.

Performing a 4–20/1–5 V mA output trim using other scale with a Field Communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the 4–20 mA output trim using other scale.

Device Dashboard Fast Keys	3, 4, 2, 2
----------------------------	------------

A Performing a 4–20 mA/1–5 V output trim using other scale with AMS Device Manager

Right click on the device and under the *Method* dropdown menu, move cursor over *Calibrate* and select **Analog Calibration**.

- 1. Select Scaled Digital to Analog Trim.
- 2. Follow screen prompts to perform a 4–20 mA/1–5 V output trim.

5.6.3 Recalling factory trim—analog output

The recall factory trim—analog output command allows the restoration of the as-shipped factory settings of the analog output trim. This command can be useful for recovering from an inadvertent trim, incorrect plant standard or faulty meter.

Recalling factory trim - analog output with a Field Communicator

From the *HOME* screen, enter the Fast Key sequence and follow the steps within the Field Communicator to complete the digital to analog trim using other scale.

Device Dashboard Fast Keys

3, 4, 3

Recalling factory trim - analog output with AMS Device Manager

Right click on the device and, under the *Method* drop down menu, move cursor over *Calibrate* and select **Restore Factory Calibration**.

- 1. Select **Next** to set the control loop to manual.
- 2. Select Analog Output Trim under Select trim to recall and select Next.
- 3. Follow screen prompts to recall analog output trim.

Recalling factory trim - analog output with LOI

Reference Figure 5-7 for LOI instructions.

5.7 Switching HART Revision

Some systems are not capable of communicating with HART Revision 7 devices. The following procedures list how to change HART Protocol revisions between HART Revision 7 and HART Revision 5.

5.7.1 Switching HART Revision with generic menu

If the HART Protocol configuration tool is not capable of communicating with a HART Revision 7 device, it should load a generic menu with limited capability. The following procedures allow for switching between HART Revision 7 and HART Revision 5 from a generic menu.

- 1. Locate "Message" field
 - a. To change to HART Revision 5, Enter: HART5 in the message field
 - b. To change to HART Revision 7, Enter: HART7 in the message field

5.7.2 Switching HART Revision with Field Communicator

From the HOME screen, enter the Fast Key sequence and follow steps within the Field Communicator to complete the HART revision change.

From the HOME screen, enter the Fast Key sequence	HART5	HART7
Device Dashboard Fast Keys	2, 2, 5, 2, 4	2, 2, 5, 2, 3

5.7.3 Switching HART Revision with AMS Device Manager

- 1. Select on Manual Setup and select HART.
- 2. Select Change HART Revision then follow the on screen prompts.

Note

AMS Device Manager versions 10.5 or greater are compatible with HART Revision 7.

5.7.4 Switching HART Revision with LOI

Navigate to *HART REV* within the extended menu and select if either *HART REV 5* or *HART REV 7*. Use Figure 5-8 below to change HART Revision:

Figure 5-8. Change HART Revision with LOI

Section 6 Troubleshooting

Overview	page 75
Safety messages	page 75
Diagnostic messages	page 77
Disassembly procedures	
Reassembly procedures	page 81

6.1 Overview

Table 6-1 provides summarized maintenance and troubleshooting suggestions for the most common operating problems.

If you suspect malfunction despite the absence of any diagnostic messages on the Field Communicator display, consider using Section 6: Diagnostic messages on page 77 to identify any potential problem.

6.2 Safety messages

Procedures and instructions in this section may require special precautions to ensure the safety of the personnel performing the operations. Information that raises potential safety issues is indicated by a warning symbol (\triangle). Refer to the following safety messages before performing an operation preceded by this symbol.

AWARNING

Explosions could result in death or serious injury.

Installation of this transmitter in an explosive environment must be in accordance with the appropriate local, national, and international standards, codes, and practices. Review the approvals section of the Rosemount[™] 2051 reference manual for any restrictions associated with a safe installation.

- Before connecting a Field Communicator in an explosive atmosphere, ensure the instruments in the loop are installed in accordance with intrinsically safe or non-incendive field wiring practices.
- In an Explosion-proof/flameproof installation, do not remove the transmitter covers when power is applied to the unit.

Process leaks may cause harm or result in death.

- Install and tighten process connectors before applying pressure.
- Electrical shock can result in death or serious injury.
- Avoid contact with the leads and terminals. High voltage that may be present on leads can cause electrical shock.

Table 6-1. Rosemount 2051 Troubleshooting Table for 4–20 mA Output

Symptom	Corrective actions	
Transmitter milliamp reading is zero	Verify terminal voltage is 10.5 to 42.4 Vdc at signal terminals	
	Check power wires for reversed polarity	
	Check that power wires are connected to signal terminals	
	Check for open diode across test terminal	
Transmitter Not Communicating with	Verify terminal voltage is 10.5 to 42.4 Vdc	
	Check loop resistance, 250 Ω minimum (PS voltage -transmitter voltage/loop current)	
	Check that power wires are connected to signal terminals and not test terminals	
	Verify clean DC Power to transmitter (Max AC noise 0.2 volts peak to peak)	
	Verify the output is between 4 and 20 mA or saturation levels	
	Have Field Communicator poll for all addresses	
Transmitter milliamp reading is low or high	Verify applied pressure	
	Verify 4 and 20 mA range points	
	Verify output is not in alarm condition	
	Perform analog trim	
	Check that power wires are connected to the correct signal terminals (positive to positive, negative to negative) and not the test terminal	
Transmitter will not respond to changes in	Check impulse piping or manifold for blockage	
applied pressure	Verify applied pressure is between the 4 and 20 mA points	
	Verify the output is not in alarm condition	
	Verify transmitter is not in loop test mode	
	Verify transmitter is not in multidrop mode	
	Check test equipment	
Digital Pressure Variable reading is low or high	Check impulse piping for blockage or low fill in wet leg	
	Verify transmitter is calibrated properly	
	Check test equipment (verify accuracy)	
	Verify pressure calculations for application	
Digital Pressure Variable reading is erratic	Check application for faulty equipment in pressure line	
	Verify transmitter is not reacting directly to equipment turning on/off	
	Verify damping is set properly for application	
Milliamp reading is erratic	Verify power source to transmitter has adequate voltage and current	
	Check for external electrical interference	
	Verify transmitter is properly grounded	
	Verify shield for twisted pair is only grounded at one end	

6.3 Diagnostic messages

Listed in the below sections are detailed table of the possible messages that will appear on either the LOI/LCD display, a Field Communicator, or an AMS[®] Device Manager system. Use the tables below to diagnose particular status messages.

- Good
- Failed fix now
- Maintenance fix soon
- Advisory

6.3.1 Diagnostic message: Failed - fix now

Table 6-2. Status: Failed – Fix Now

Alert name	LCD screen	LOI screen	Problem	Recommended action
No Pressure Updates	NO P UPDATE	NO PRESS UPDATE	There are no pressure updates from the sensor to the electronics	 Ensure the sensor cable connection to the electronics is tight. Replace the pressure sensor.
Electronics Board Failure	FAIL BOARD	FAIL BOARD	A failure has been detected in the electronics circuit board	1. Replace the electronics board.
Critical Sensor Data Error	MEMRY ERROR	MEMORY ERROR	A user written parameter does not match the expected value	 Confirm and correct all parameters listed in Device Information. Perform a Device Reset. Replace sensor module.
Critical Electronics Data Error			A user written parameter does not match the expected value	 Confirm and correct all parameters listed in Device Information. Perform a Device Reset. Replace electronics board.
Sensor Failure	FAIL SENSOR	FAIL SENSOR	A failure has been detected in the pressure sensor	1. Replace the pressure sensor.
Incompatible Electronics and Sensor	XMTR MSMTCH	XMTR MSMTCH	The pressure sensor is incompatible with the attached electronics	1. Replace the electronics board or sensor with compatible hardware.

6.3.2 Diagnostic message: Maintenance - fix soon

Table 6-3. Status: Maintenance – Fix Soon

Alert name	LCD screen	LOI screen	Problem	Recommended action
No Temperature Updates	NO T UPDATE	NO TEMP UPDATE	There are no temperature updates from the sensor to the electronics	 Ensure the sensor cable connection to the electronics is tight. Replace the pressure sensor.
Pressure Out of Limits	PRES LIMITS	PRES OUT LIMITS	The pressure is either above or below the sensor limits	 Check the transmitter pressure connection to ensure it is not plugged or the isolating diaphragms are not damaged. Replace the pressure sensor.
Sensor Temperature Beyond Limits	TEMP LIMITS	TEMP OUT LIMITS	The sensor temperature has exceeded its safe operating range	 Check the process and ambient conditions are within -85 to 194 °F (-65 to 90 °C). Replace the pressure sensor.
Electronics Temperature Beyond Limits			The temperature of the electronics has exceeded its safe operating range.	 Confirm electronics temperature is within limits of – 85 to 194 °F (–65 to 90 °C). Replace electronics board.
Electronics Board Parameter Error	MEMRY WARN (also in advisory)	MEMORY WARN (also in advisory)	A device parameter does not match the expected value. The error does not affect transmitter operation or analog output.	1. Replace the electronics board.
Configuration Buttons Operator Error	STUCK BUTTON	STUCK BUTTON	Device is not responding to button presses.	 Check configuration buttons are not stuck. Replace the electronics board.

6.3.3 Diagnostic message: Advisory

Table 6-4. Status: Advisory

Alert name	LCD screen	LOI screen	Problem	Recommended action
Non-Critical User Data Warning			A user written parameter does not match expected value.	 Confirm and correct all parameters listed in Device Information. Perform a Device Reset.
5	MEMRY	MEMORY		3. Replace Electronics Board.
Sensor	WARN	WARN	A user written parameter	1. Confirm and correct all parameters listed in Device Information.
Warning			value.	2. Perform a Device Reset.
				3. Replace pressure sensor.
LCD Display	[If display	[If display	The LCD Display is not	1. Check the connection between the LCD display and the circuit board.
Update Failure	updating]	updating]	pressure sensor.	2. Replace the LCD display.
				3. Replace the electronics board.
	[none]	[none]	A recent change has been made the device by a secondary HART master such as a handheld device.	 Verify that the configuration change of the device was intended and expected.
Configuration Changed				 Clear this alert by selecting Clear Configuration Changed Status.
				3. Connect a HART [®] master such as AMS Device Manager or similar which will automatically clear it.
			The analog output is fixed	1. Take action on any other notifications from the device.
Analog Output	ANLOG FIXED	ANALOG FIXED	This may be caused by other conditions in the device, or because the device has been set to loop test or multidrop mode.	2. If the device is in loop test, and should no longer be, disable or momentarily remove power.
Fixed				3. If the device is in multidrop mode and should not be, re-enable loop current by setting the polling address to 0.
			The device is in simulation	1. Verify that simulation is no longer required.
Simulation Active	[none]	[none]	mode and may not be reporting actual	2. Disable simulation mode in service tools.
			information.	3. Perform a device reset.
	ANLOG SAT	ANALOG SAT	The analog output is saturated either high or low due to the pressure either above or below the range values.	1. Check the pressure applied to ensure it is between the 4–20mA points.
Analog Output Saturated				2. Check the transmitter pressure connection to make sure it is not plugged or isolating diaphragms are not damaged.
				3. Replace the pressure sensor.

6.4 Disassembly procedures

 \bigwedge Do not remove the instrument cover in explosive atmospheres when the circuit is live.

6.4.1 Removing from service

Follow these steps:

- 1. Follow all plant safety rules and procedures.
- 2. Power down device.
- 3. Isolate and vent the process from the transmitter before removing the transmitter from service.
- 4. Remove all electrical leads and disconnect conduit.
- 5. Remove the transmitter from the process connection.
 - a. The Rosemount 2051C Transmitter is attached to the process connection by four bolts and two cap screws. Remove the bolts and screws and separate the transmitter from the process connection. Leave the process connection in place and ready for re-installation. Reference "Installation procedures" on page 30 for coplanar flange.
 - b. The Rosemount 2051T Transmitter is attached to the process by a single hex nut process connection. Loosen the hex nut to separate the transmitter from the process. Do not wrench on neck of transmitter. See warning in "In-line process connection" on page 38.
- 6. Do not scratch, puncture, or depress the isolating diaphragms.
- 7. Clean isolating diaphragms with a soft rag and a mild cleaning solution, and rinse with clear water.
- 8. For the Rosemount 2051C, whenever you remove the process flange or flange adapters, visually inspect the PTFE O-rings. Replace the O-rings if they show any signs of damage, such as nicks or cuts. Undamaged O-rings may be reused.

6.4.2 Removing terminal block

Electrical connections are located on the terminal block in the compartment labeled "FIELD TERMINALS."

- 1. Remove the housing cover from the field terminal side.
- 2. Loosen the two small screws located on the assembly in the 9 o'clock and 5 o'clock positions relative to the top of the transmitter.
- 3. Pull the entire terminal block out to remove it.

6.4.3 Removing the electronics board

The transmitter electronics board is located in the compartment opposite the terminal side. To remove the electronics board see Figure 4-2 on page 51 and perform following procedure:

- 1. Remove the housing cover opposite the field terminal side.
- 2. If you are disassembling a transmitter with a LOI/LCD display, loosen the two captive screws that are visible (See Figure 4-1 on page 50 for screw locations). The two screws anchor the LOI/LCD display to the electronics board and the electronics board to the housing.

Note

The electronics board is electrostatically sensitive; observe handling precautions for static-sensitive components

3. Using the two captive screws, slowly pull the electronics board out of the housing. The sensor module ribbon cable holds the electronics board to the housing. Disengage the ribbon cable by pushing the connector release.

Note

If an LOI/LCD display is installed, use caution as there is an electronic pin connector that interfaces between the LOI/LCD display and electronics board.

6.4.4 Removing sensor module from the electronics housing

1. Remove the electronics board. Refer to "Removing the electronics board" on page 80.

Note

To prevent damage to the sensor module ribbon cable, disconnect it from the electronics board before you remove the sensor module from the electrical housing.

2. Carefully tuck the cable connector completely inside of the internal black cap.

Note

Do not remove the housing until after you tuck the cable connector completely inside of the internal black cap. The black cap protects the ribbon cable from damage that can occur when you rotate the housing.

- 3. Using a $\frac{5}{64}$ -inch hex wrench, loosen the housing rotation set screw one full turn.
- 4. Unscrew the module from the housing, making sure the black cap on the sensor module and sensor cable do not catch on the housing.

6.5 Reassembly procedures

- 1. Inspect all cover and housing (non-process wetted) O-rings and replace if necessary. Lightly grease with silicone lubricant to ensure a good seal.
- 2. Carefully tuck the cable connector completely inside the internal black cap. To do so, turn the black cap and cable counterclockwise one rotation to tighten the cable.
- 3. Lower the electronics housing onto the module. Guide the internal black cap and cable on the sensor module through the housing and into the external black cap.
- 4. Turn the module clockwise into the housing.

Note

Make sure the sensor ribbon cable and internal black cap remain completely free of the housing as you rotate it. Damage can occur to the cable if the internal black cap and ribbon cable become hung up and rotate with the housing.

- 5. Thread the housing completely onto the sensor module. The housing must be no more than one full turn from flush with the sensor module to comply with explosion proof requirements.
 - 6. Tighten the housing rotation set screw using a 5/64-in. hex wrench.

6.5.1 Attaching electronics board

- 1. Remove the cable connector from its position inside of the internal black cap and attach it to the electronics board.
- 2. Using the two captive screws as handles, insert the electronics board into the housing. Make sure the power posts from the electronics housing properly engage the receptacles on the electronics board. Do not force. The electronics board should slide gently on the connections.
- 3. Tighten the captive mounting screws.
- 1. Replace the electronics housing cover. The transmitter covers must be engaged metal-to-metal to ensure a proper seal and to meet explosion-proof requirements.

6.5.2 Installing terminal block

- 1. Gently slide the terminal block into place, making sure the two power posts from the electronics housing properly engage the receptacles on the terminal block.
 - 2. Tighten the captive screws.
 - 3. Replace the electronics housing cover. The transmitter covers must be fully engaged to meet explosion-proof requirements.

6.5.3 Reassembling the Rosemount 2051C Process Flange

1. Inspect the sensor module PTFE O-rings. Undamaged O-rings may be reused. Replace O-rings that show any signs of damage, such as nicks, cuts, or general wear.

Note

If you are replacing the O-rings, be careful not to scratch the O-ring grooves or the surface of the isolating diaphragm when removing the damaged O-rings.

- 2. Install the process connection. Possible options include:
 - a. Coplanar process flange:
 - Hold the process flange in place by installing the two alignment screws to finger tightness (screws
 are not pressure retaining). Do not overtighten as this will affect module-to-flange alignment.
 - Install the four 1.75-in. flange bolts by finger tightening them to the flange.
 - b. Coplanar process flange with flange adapters:
 - Hold the process flange in place by installing the two alignment screws to finger tightness (screws are not pressure retaining). Do not overtighten as this will affect module-to-flange alignment.
 - Hold the flange adapters and adapter O-rings in place while installing (in the desired of the four possible process connection spacing configurations) using four 2.88-in. bolts to mount securely to the coplanar flange. For gage pressure configurations, use two 2.88-in. bolts and two 1.75-in. bolts.
 - c. Manifold:
 - Contact the manifold manufacturer for the appropriate bolts and procedures.
- 3. Tighten the bolts to the initial torque value using a crossed pattern. See Table 6-5 on page 83 for appropriate torque values.
- 4. Using same cross pattern, tighten bolts to final torque values seen in Table 6-5 on page 83.

Table 6-5. Bolt Installation Torque Values

Bolt material	Initial torque value	Final torque value
Carbon steel—ASTM-A445 Standard	300 in-lb (34 N-m)	650 in-lb (73 N-m)
316 stainless steel—Option L4	150 in-lb (17 N-m)	300 in-lb (34 N-m)
ASTM-A-19 B7M—option L5	300 in-lb (34 N-m)	650 in-lb (73 N-m)
ASTM-A-193 Class 2, Grade B8M—option L8	150 in-lb (17 N-m)	300 in-lb (34 N-m)

Note

If you replaced the PTFE sensor module O-rings, re-torque the flange bolts after installation to compensate for cold flow.

Note

For range 1 transmitters: After replacing O-rings and re-installing the process flange, expose the transmitter to a temperature of 185 °F (85 °C) for two hours. Then re-tighten the flange bolts in a cross pattern, and again expose the transmitter to a temperature of 185 °F (85 °C) for two hours before calibration.

6.5.4 Installing drain/vent valve

- 1. Apply sealing tape to the threads on the seat. Starting at the base of the valve with the threaded end pointing toward the installer, apply five clockwise turns of sealing tape.
- 2. Tighten the drain/vent valve seat to 250 in-lb (28,25 N-m).
- 3. Take care to place the opening on the valve so that process fluid will drain toward the ground and away from human contact when the valve is opened.

Section 7 Safety Instrumented Systems Requirements

Safety Instrumented Systems (SIS) Certification page 85

7.1 Safety Instrumented Systems (SIS) Certification

The safety-critical output of the Rosemount[™] 2051 is provided through a two-wire, 4–20 mA signal representing pressure. The Rosemount 2051 safety certified pressure transmitter is certified to: Low Demand; Type B.

SIL 2 for random integrity @ HFT=0 SIL 3 for random integrity @ HFT=1 SIL 3 for systematic integrity

7.1.1 Rosemount 2051 safety certified identification

All Rosemount 2051 Transmitters must be identified as safety certified before installing into SIS systems.

To identify a safety certified Rosemount 2051C, Rosemount 2051T, Rosemount 2051L:

1. Check NAMUR Software Revision located on the metal device tag. "SW _._.".

 NAMUR Software Revision Number

 SW⁽¹⁾
 1.0.x-1.4.x

 1.
 NAMUR Software Revision: Located on the metal device tag

2. Transmitter output code "A" (4–20 mA HART Protocol).

7.1.2 Installation in SIS applications

Installations are to be performed by qualified personnel. No special installation is required in addition to the standard installation practices outlined in this document. Always ensure a proper seal by installing the electronics housing cover(s) so that metal contacts metal.

Environmental and operational limits are available in Appendix A: Specifications and Reference Data.

The loop should be designed so the terminal voltage does not drop below 10.5 Vdc when the transmitter output is set to 23 mA.

Position the security switch to the (\Box) position to prevent accidental or deliberate change of configuration data during normal operation.

7.1.3 Configuring in SIS applications

Use any HART[®] Protocol capable configuration tool to communicate with and verify configuration of the Rosemount 2051.

Note

Transmitter output is not safety-rated during the following: Configuration changes, multidrop, and loop test. Alternative means should be used to ensure process safety during transmitter configuration and maintenance activities.

Damping

User-selected damping will affect the transmitters ability to respond to changes in the applied process. The damping value + response time must not exceed the loop requirements.

Reference "Damping" on page 17 to change damping value.

Alarm and saturation levels

DCS or safety logic solver should be configured to match transmitter configuration. Figure 7-1 identifies the three alarm levels available and their operation values.

2. Transmitter failure, hardware or software alarm in HI position.

7.1.4 Rosemount 2051 SIS operation and maintenance

Proof test

The following proof tests are recommended.

In the event that an error is found in the safety and functionality, proof test results and corrective actions taken can be documented at <u>Emerson.com/Rosemount/Safety</u>. All proof test procedures must be carried out by qualified personnel.

Use "Field Communicator Fast Keys" on page 184 to perform a loop test, analog output trim, or sensor

trim. Security switch should be in the (\mathbf{T}) position during proof test execution and repositioned in the

() position after execution.

Simple proof test

The simple suggested proof test consists of a power cycle plus reasonability checks of the transmitter output. Reference the <u>FMEDA Report</u> for percent of possible DU failures in the device.

Required tools: Field Communicator and mA meter.

- 1. Bypass the safety function and take appropriate action to avoid a false trip.
- 2. Use HART communications to retrieve any diagnostics and take appropriate action.
- 3. Send a HART command to the transmitter to go to the high alarm current output and verify that the analog current reaches that value⁽¹⁾. See "Verifying alarm level" on page 24.
- 4. Send a HART command to the transmitter to go to the low alarm current output and verify that the analog current reaches that value⁽¹⁾.
- 5. Remove the bypass and otherwise restore the normal operation.
- 6. Place the Security switch in the (🔒) position.

Comprehensive proof test

The comprehensive proof test consists of performing the same steps as the simple suggested proof test but with a two point calibration of the pressure sensor in place of the reasonability check. Reference the <u>FMEDA Report</u> for percent of possible DU failures in the device.

^{1.} This tests for possible quiescent current related failures.

Required tools: Field Communicator and pressure calibration equipment.

- 1. Bypass the safety function and take appropriate action to avoid a false trip.
- 2. Use HART communications to retrieve any diagnostics and take appropriate action.
- 3. Send a HART command to the transmitter to go to the high alarm current output and verify that the analog current reaches that value⁽¹⁾. See "Verifying alarm level" on page 24.
- 4. Send a HART command to the transmitter to go to the low alarm current output and verify that the analog current reaches that value ⁽¹⁾.
- 5. Perform a two-point calibration of the sensor (see "Trim the pressure signal" on page 66) over the full working range and verify the current output at each point.
- 6. Remove the bypass and otherwise restore the normal operation.
- 7. Place the Security switch in the (1) position.

Note

- The user determines the proof test requirements for impulse piping.
- Automatic diagnostics are defined for the corrected % DU: The tests performed internally by the device during runtime without requiring enabling or programming by the user.

Calculation of average probability of failure on demand (PFD_{AVG})

PFD_{AVG} calculation can be found in the <u>FMEDA Report</u>.

7.1.5 Inspection

Visual inspection

Not required

Special tools

Not required

Product repair

The Rosemount 2051 is repairable by major component replacement.

All failures detected by the transmitter diagnostics or by the proof-test must be reported. Feedback can be submitted electronically at <u>Emerson.com/Rosemount/Contact-Us</u>.

All product repair and part replacement should be performed by qualified personnel.

Rosemount 2051 SIS reference

The Rosemount 2051 must be operated in accordance to the functional and performance specifications provided in Appendix A: Specifications and Reference Data.

1. This tests for compliance voltage problems such as a low loop power supply voltage or increased wiring distance. This also tests for other possible failures.

Failure rate data

The <u>FMEDA Report</u> includes failure rates and common cause Beta factor estimates.

Failure values

- Safety accuracy: ±2.0%
- Transmitter response time: 1.5 seconds
- Self-diagnostics test: At least once every 60 minutes

Product life

50 years - based on worst case component wear-out mechanisms - not based on wear-out of process wetted materials

Appendix A Specifications and Reference Data

Performance specifications	page 91
Functional specifications	page 95
Physical specifications	page 99
Dimensional drawings	page 102
Ordering information	
Options	
Spare parts	

A.1 Performance specifications

A.1.1 Conformance to specification ($\pm 3\sigma$ [Sigma])

Technology leadership, advanced manufacturing techniques and statistical process control ensure specification conformance to at least $\pm 3\sigma$.

A.1.2 Reference accuracy

Rosemount [™] models	Standard	High performa	nce option, P8 ⁽¹⁾
2051C			
Range 1	$\pm 0.10\%$ of span For spans less than 15:1, accuracy = $\pm (0.025 + 0.005 \left[\frac{URL}{Span} \right])\%$ of span	N/A	N/A
Ranges 2–4	$\pm 0.065\%$ of span For spans less than 10:1, accuracy = $\pm (0.025 + 0.005 \left[\frac{URL}{Span} \right])\%$ of span	Ranges 2–4	High accuracy option, P8 ±0.05% of span For spans less than 10:1 ⁽²⁾ , accuracy = ± $\left(0.015 + 0.005 \left[\frac{URL}{Span} \right] \right)$ % of span
Range 5	$\pm 0.075\% \text{ of span}$ For spans less than 10:1, accuracy= $\pm \left(0.025 + 0.005 \left[\frac{URL}{Span}\right]\right)\% \text{ of span}$	Range 5	High performance option, P8 ±0.065% of span For spans less than 10:1, accuracy= ± $(0.015 + 0.005 \left[\frac{URL}{Span} \right])$ % of span

Reference Manual

00809-0100-4107, Rev CA

Rosemount [™] models	Standard	High performa	nce option, P8 ⁽¹⁾
2051T			
Ranges 1–4	$\pm 0.065\% \text{ of span}$ For spans less than 10:1, accuracy = $\pm \left(0.0075 \left[\frac{URL}{Span}\right]\right)\% \text{ of span}$	Ranges 1–4	High accuracy option, P8 ±0.05% of span For spans less than 10:1 ⁽²⁾ , accuracy = ± $\left(0.0075\left[\frac{URL}{Span}\right]\right)$ % of span
Range 5	±0.075% of span For spans less than 10:1, accuracy = $\pm (0.0075 \left[\frac{URL}{Span} \right])$ % of span	N/A	N/A
2051L			
Ranges 2–4	$\pm 0.075\%$ of span For spans less than 10:1, accuracy = $\pm (0.025 + 0.005 \left[\frac{URL}{Span} \right])\%$ of span	N/A	N/A

Not available with output code W. For protocol code F, accuracy specification is for spans less than 7:1. 1. 2.

A.1.3 Flow performance

Flow reference accuracy

Rosemount 2051CFA Annubar™ Flow Meter					
Ranges 2–3		±2.00% of flow rate at 5:1 flow turndown			
Rosemount 2051CFC	C_A Compact Annubar Flow Meter —	Rosemount Annubar option A			
D	Standard	±2.60% of flow rate at 5:1 flow turndown			
Kanges 2–3	Calibrated	±2.30% of flow rate at 5:1 flow turndown			
Rosemount 2051CFC	Rosemount 2051CFC Compact Orifice Flow Meter — conditioning option C				
Dangas 2, 2	β = 0.4	±2.25% of flow rate at 5:1 flow turndown			
Ranges 2–3	β = 0.65	±2.45% of flow rate at 5:1 flow turndown			
Rosemount 2051CFC Compact Orifice Flow Meter — orifice type option P ⁽¹⁾					
Demons 2, 2	β=0.4	±2.50% of flow rate at 5:1 flow turndown			
Ranges 2–3	β =0.65	±2.50% of flow rate at 5:1 flow turndown			
Rosemount 2051CFP Integral Orifice Flow Meter					
	Bore < 0.1	±3.10% of flow rate at 5:1 flow turndown			
Pangos 2, 2	0.1 < Bore < 0.2	±2.75% of flow rate at 5:1 flow turndown			
Kaliyes 2-3	0.2 < Bore < 0.6	±2.25% of flow rate at 5:1 flow turndown			
	0.6 < Bore < 0.8	±3.00% of flow rate at 5:1 flow turndown			

1. For smaller line sizes, see Rosemount Compact Orifice.

Long-term stability

±50 °F (28 °C) temperature changes and up to 1000 psi (6,9 MPa) line pressure.

Rosemount models	Standard	High performance option, P8			
2051C	2051C				
Range 1 (CD)	±0.2% of URL for 1 year	0 125% of UPL for 5 years			
Ranges 2–5	±0.1% of URL for 3 years	- ±0.125% of UKL for 5 years			
2051T					
Ranges 1–5	±0.1% of URL for 3 years	±0.125% of URL for 5 years			

A.1.4 Dynamic performance

	4–20 mA HART®(1) 1–5 Vdc HART low power	FOUNDATION [™] Fieldbus and PROFIBUS PA Protocols ⁽²⁾	Typical HART transmitter response time
Total response time (T _d + T _c) ⁽³⁾ :	Transmitter Output vs. Time	
2051C, Range 3–5: Range 1: Range 2: 2051T: 2051L:	115 ms 270 ms 130 ms 100 ms See Instrument Toolkit™	152 ms 307 ms 152 ms 152 ms See Instrument Toolkit	Pressure released T_{c}^{a} Dead time T_{c}^{c} Time constant Response time = $T_{d} + T_{c}$ 36.8% 63.2% of total
Dead time (T _d)	60 ms (nominal)	97 ms	step change
Update rate	22 times per second	22 times per second	0% i i Time

1. Dead time and update rate apply to all models and ranges; analog output only.

2. Transducer block response time, analog Input block execution time not included.

3. Nominal total response time at 75 °F (24 °C) reference conditions.

Line pressure effect per 1000 psi (6,9 MPa)

For line pressures above 2000 psi (13,7 MPa) and Ranges 4–5, see Rosemount 2051 <u>Reference Manual</u> for HART, Rosemount 2051 <u>Reference Manual</u> for *Wireless*HART®, Rosemount 2051 <u>Reference Manual</u> for FOUNDATION Fieldbus, and Rosemount 2051 <u>Reference Manual</u> PROFIBUS® PA.

Rosemount models	Line pressure effect		
2051CD, 2051CF	Zero error ⁽¹⁾	Span error	
Range 1	±0.25% of URL/ 1000 psi (68,9 bar)	±0.4% of reading/ 1,000 psi (68,9 bar)	
Ranges 2–3	±0.05% of URL/ 1000 psi (68,9 bar) for line pressures from 0 to 2000 psi (0 to 13,7 MPa)	±0.1% of reading/ 1,000 psi (68,9 bar)	

1. Can be calibrated out at line pressure.

Ambient temperature effect per 50 °F (28 °C)

Rosemount models	Ambient temperature effect
2051C, 2051C	F
Ranges 2–5	±(0.025% URL + 0.125% span) from 1:1 to 5:1 ±(0.05% URL + 0.25% span) from 5:1 to 100:1
Range 1	±(0.1% URL + 0.25% span) from 1:1 to 30:1
2051T	
Range 2–4	±(0.05% URL + 0.25% span) from 1:1 to 30:1 ±(0.07% URL + 0.25% span) from 30:1 to 100:1
Range 1	±(0.05% URL + 0.25% span) from 1:1 to 10:1 ±(0.10% URL + 0.25% span) from 10:1 to 100:1
Range 5	±(0.1% URL + 0.15% span)
2051L	See Instrument Toolkit

Mounting position effects

Rosemount models	Mounting position effects
2051C	Zero shifts up to ± 1.25 inH ₂ O (3,1 mbar), which can be calibrated out. No span effect.
2051T	Zero shifts up to ±2.5 inH ₂ O (6,2 mbar), which can be calibrated out. No span effect.
2051L	With liquid level diaphragm in vertical plane, zero shift of up to 1 inH ₂ O (2,49 mbar). With diaphragm in horizontal plane, zero shift of up to 5 inH ₂ O (12,43 mbar) plus extension length on extended units. Zero shifts can be calibrated out. No span effect.

Vibration effect

Less than $\pm 0.1\%$ of URL when tested per the requirements of IEC60770-1: 1999 field or pipeline with high vibration level (10–60 Hz 0.21 mm displacement peak amplitude/60–2000 Hz 3g).

A.2 Functional specifications

A.2.1 Range and sensor limits

Table A-1. Range and Sensor Limits for Rosemount 2051CD, 2051CF, 2051CG, 2051L Models

Range	Minimum span	Upper (URL)	Lower (LRL)			
			Rosemount 2051C Differential and 2051CF Flow Meters	Rosemount 2051C Gage ⁽¹⁾	Rosemount 2051L Differential	Rosemount 2051L Gage ⁽¹⁾
1	0.5 inH ₂ O (1,2 mbar)	25 inH ₂ O (62,3 mbar)	–25 inH ₂ O (–62,1 mbar)	–25 inH ₂ O (–62,1 mbar)	N/A	N/A
2	2.5 inH ₂ O (6,2 mbar)	250 inH ₂ O (0,62 bar)	–250 inH ₂ O (–0,62 bar)	–250 inH ₂ O (–0,62 bar)	–250 inH ₂ O (–0,62 bar)	–250 inH ₂ O (–0,62 bar)
3	10 inH ₂ O (24,9 mbar)	1000 inH ₂ O (2,49 bar)	–1000 inH ₂ O (–2,49 bar)	–393 inH ₂ O (–979 mbar)	–1000 inH ₂ O (–2,49 bar)	–393 inH ₂ O (–979 mbar)
4	3 psi (0,207 bar)	300 psi (20,7 bar)	–300 psi (–20,7 bar)	–14.2 psig (–979 mbar)	–300 psi (–20,7 bar)	–14.2 psig (–979 mbar)
5	20 psi (1,38 bar)	2000 psi (137,9 bar)	–2000 psi (–137,9 bar)	–14.2 psig (–979 mbar)	N/A	N/A

1. Assumes atmospheric pressure of 14.7 psig.

Power supply effect

Less than ±0.005% of calibrated span per volt.⁽¹⁾

Electromagnetic compatibility (EMC)

Meets all relevant requirements of EN 61326 and NAMUR NE-21.⁽²⁾

Maximum deviation < 1% Span during EMC disturbance.⁽³⁾

- 1. Does not apply to wireless (output code X).
- 2. NAMUR NE-21 does not apply to wireless output code X.
- During surge event device may exceed maximum EMC deviation limit or reset; however, device will self-recover and return to normal operation within specified start-up time.

Transient protection (option code T1)

Meets IEEE C62.41, category location B

- 6 kV crest (0.5 μs–100 kHz)
- 3 kA crest (8 x 20 microseconds)
- 6 kV crest (1.2 x 50 microseconds)

Table A-2. Range and Sensor Limits for Rosemount 2051T Model

Range	Minimum span	Upper (URL)	Lower (LRL)(Abs)	Lower ⁽¹⁾ (LRL)(Gage)
1	0.3 psi (20,7 mbar)	30 psi (2,07 bar)	0 psia (0 bar)	–14.7 psig (–1,01 bar)
2	1.5 psi (0,103 bar)	150 psi (10,3 bar)	0 psia (0 bar)	–14.7 psig (–1,01 bar)
3	8 psi (0,55 bar)	800 psi (55,2 bar)	0 psia (0 bar)	–14.7 psig (–1,01 bar)
4	40 psi (2,76 bar)	4000 psi (275,8 bar)	0 psia (0 bar)	–14.7 psig (–1,01 bar)
5	2,000 psi (137,9 bar)	10,000 psi (689,5 bar)	0 psia (0 bar)	–14.7 psig (–1,01 bar)

1. Assumes atmospheric pressure of 14.7 psig.

A.2.2 Service

Liquid, gas, and vapor application

A.2.3 4-20 mA (output code A)

Power supply

External power supply required. Standard transmitter operates on 10.5–42.4 Vdc with no load.

Load limitations

Maximum loop resistance is determined by the voltage level of the external power supply, as described by: Max. Loop Resistance = 43.5 (Power Supply Voltage – 10.5)

Communication requires a minimumloop resistance of 250 ohms. 1. For CSA approval, power supply must not exceed 42.4 V.

Indication

Optional two line LOI/LCD display.

Zero and span adjustment requirements

Zero and span values can be set anywhere within the range limits stated in Table A-1 and Table A-2.

Span must be greater than or equal to the minimum span stated in Table A-1 and Table A-2.

Output

Two-wire 4–20 mA, user selectable for linear or square root output. Digital process variable superimposed on 4–20 mA signal, available to any host that conforms to HART Protocol.

Rosemount 2051

Digital communications based on HART Revision 5 Protocol.

Rosemount 2051 with Selectable HART

The 2051 with Selectable HART comes with Selectable HART Revisions. Digital communications based on HART Revision 5 (default) or Revision 7 (option code HR7) Protocol can be selected. The HART revision can be switched in the field using any HART based configuration tool or the optional local operator interface (LOI).

LOI

The LOI utilizes a two-button menu with internal and external configuration buttons. Internal buttons are always configured for LOI. External buttons can be configured for either LOI, (option code M4), analog zero and span (option code D4) or digital zero trim (option code DZ). See Rosemount 2051 with Selectable HART <u>Reference Manual</u> for LOI configuration menu.

A.2.4 HART 1–5 Vdc low power (output code M)

Output

Three wire 1–5 Vdc output, user-selectable for linear or square root output. Digital process variable superimposed on voltage signal, available to any host conforming to the HART Protocol.

Rosemount 2051

Digital communications based on HART Revision 5 protocol.

Rosemount 2051 with Selectable HART

The Rosemount 2051 with Selectable HART comes with Selectable HART Revisions. Digital communications based on HART Revision 5 (default) or Revision 7 (option code HR7) protocol can be selected.

The HART Revision can be switched in the field using any HART based configuration tool or the optional LOI.

LOI

The LOI utilizes a two button menu with internal and external configuration buttons. Internal buttons are always configured for LOI. External buttons can be configured for either LOI, (option code M4), analog zero and span (option code D4) or digital zero trim (option code DZ).

Power supply

External power supply required. standard transmitter operates on 9 to 28 Vdc with no load.

Power consumption

3.0 mA, 27-84 mW

Output load

100 k Ω or greater (meter input impedance)

Turn-on time

Performance within specifications less than 2.0 seconds after power is applied to the transmitter.

A.2.5 Overpressure limits

Transmitters withstand the following limits without damage:

Rosemount 2051C, 2051CF

- Ranges 2–5: 3,626 psig (250 bar)
 4,500 psig (310,3 bar) for option code P9
- Range 1: 2,000 psig (137,9 bar)

Rosemount 2051T

- Range 1: 750 psi (51,7 bar)
- Range 2: 1,500 psi (103,4 bar)
- Range 3: 1,600 psi (110,3 bar)
- Range 4: 6,000 psi (413,7 bar)
- Range 5: 15,000 psi (1034,2 bar)

Rosemount 2051L

Limit is flange rating or sensor rating, whichever is lower. See table below:

Table A-3. Rosemount 2051L Flange Rating

Standard	Туре	Carbon steel rating	Stainless steel rating
ANSI/ASME	Class 150	285 psig	275 psig
ANSI/ASME	Class 300	740 psig	720 psig
At 100 °F (38 °C), the rating decreases with increasing temperature, per ANSI/ASME B16.5.			
DIN	PN 10-40	40 bar	40 bar
DIN	PN 10/16	16 bar	16 bar
At 248 °F (120 °C), the rating decreases			

with increasing temperature, per DIN 2401.

A.2.6 Static pressure limit

Rosemount 2051CD, 2051CF

- Operates within specifications between static line pressures of –14.2 psig (0,034 bar) and 3626 psig (250 bar)
- For Option Code P9, 4500 psig (310,3 bar)
- Range 1: 0.5 psia to 2000 psig (34 mbar and 137,9 bar)

A.2.7 Burst pressure limits

Rosemount 2051C, 2051CF Coplanar or Traditional Process Flange

10,000 psig (689.5 bar)

Rosemount 2051T In-line

- Ranges 1–4: 11000 psi (758,4 bar)
- Range 5: 26000 psi (1792,6 bar)

A.2.8 Failure mode alarm

If self-diagnostics detect a sensor or microprocessor failure, the analog signal is driven either high or low to alert the user. High or low failure mode is user-selectable with a jumper on the transmitter. The values to which the transmitter drives its output in failure mode depend on whether it is factory-configured to standard or NAMUR-compliant operation. The values for each are as follows:

	High alarm	Low alarm
Default	≥21.75 mA	≤ 3.75 mA
NAMUR compliant ⁽¹⁾	≥22.5 mA	≥3.6 mA
Custom levels ⁽²⁾	20.2–23.0 mA	3.6–3.8 mA

1. Analog output levels are compliant with NAMUR recommendation NE 43, see option codes C4 or C5.

2. Low alarm must be 0.1 mA less than low saturation and high alarm must be 0.1 mA greater than high saturation.

Temperature limits

Ambient

- –40 to 185 °F (–40 to 85 °C)
- with LCD display⁽¹⁾⁽²⁾: -40 to 175 °F (-40 to 80 °C)

Storage⁽¹⁾

- -50 to 230 °F (-46 to 110 °C)
- with LCD display: -40 to 185 °F (-40 to 85 °C)
- with Wireless output: -40 °F to 185 °F (-40 °C to 85 °C)

1. Rosemount 2051 LCD display may not be readable and LCD display updates may be slower at temperatures below -22 °F (-30 °C).

2. Wireless LCD display may not be readable and LCD display updates will be slower at temperatures below -4 °F (-20 °C).

A.2.9 Process

At atmospheric pressures and above. See table below: **Table A-4. Process Temperature Limits**

Rosemount 2051C, 2051CF

Silicone fill sensor ⁽¹⁾			
with coplanar flange	–40 to 250 °F (–40 to 121 °C) ⁽²⁾		
with traditional flange	-40 to 300 °F (-40 to 149 °C) ⁽²⁾⁽³⁾		
with level flange	–40 to 300 °F (–40 to 149 °C) ⁽²⁾		
with Rosemount 305 Integral Manifold	-40 to 300 °F (-40 to 149 °C) ⁽²⁾		
Inert fill sensor ⁽¹⁾	–40 to 185 °F (–40 to 85 °C) ⁽³⁾		
Rosemount 2051T (process fill fluid)			
Silicone fill sensor ⁽¹⁾	–40 to 250 °F (–40 to 121 °C) ⁽²⁾		
Inert fill sensor ⁽¹⁾	–22 to 250 °F (–30 to 121 °C) ⁽²⁾		
Rosemount 2051L low side temperature limits			
Silicone fill sensor ⁽¹⁾	–40 to 250 °F (–40 to 121 °C) ⁽²⁾		
Inert fill Sensor ⁽¹⁾	–40 to 185 °F (–40 to 85 °C) ⁽²⁾		
Rosemount 2051L high side temperature limits (process fill fluid)			
SYLTHERM XLT	–102 to 293 °F (–75 to 145°C)		
Silicone 704	32 to 401 °F (0 to 205 °C)		
Silicone 200	–49 to 401 °F (–45 to 205 °C)		
Inert	–49 to 320 °F (–45 to 160 °C)		
Glycerin and water	5 to 203 °F (-15 to 95 °C)		

 Propylene glycol and water
 5 to 203 °F (-15 to 95 °C)

 1.
 Process temperatures above 185 °F (85 °C) require derating the ambient limits by a 1.5:1 ratio.

5 to 401 °F (-15 to 205 °C)

- 2. 220 °F (104 °C) limit in vacuum service; 130 °F (54 °C) for pressures below 0.5 psia.
- 3. 160 °F (71 °C) limit in vacuum service.

Neobee M-20

A.2.10 Humidity limits

0-100 percent relative humidity

A.2.11 Volumetric displacement

Less than 0.005 in³ (0,08 cm³)
A.2.12 Damping

4–20 mA HART Protocol

Rosemount 2051 with Selectable HART

Analog output response to a step input change is user-enterable from 0 to 60 seconds for one time constant. This software damping is in addition to sensor module response time.

Rosemount 2051

Analog output response to a step input change is user-selectable from 0.4 to 60 seconds for one time constant. This software damping is in addition to sensor module response time.

A.3 Physical specifications

A.3.1 Material selection

Emerson provides a variety of Rosemount product with various product options and configurations including materials of construction that can be expected to perform well in a wide range of applications. The Rosemount product information presented is intended as a guide for the purchaser to make an appropriate selection for the application. It is the purchaser's sole responsibility to make a careful analysis of all process parameters (such as all chemical components, temperature, pressure, flow rate, abrasives, contaminants, etc.), when specifying product, materials, options and components for the particular application. Emerson is not in a position to evaluate or guarantee the compatibility of the process fluid or other process parameters with the product, options, configuration or materials of construction selected.

A.3.2 Electrical connections

 $^{1}/_{2}\text{--}14$ NPT, G $^{1}/_{2}$, and M20 x 1.5 conduit

A.3.3 Process connections

Rosemount 2051C

- ¹/4–18 NPT on 2¹/8-in. centers
- 1/2-14 NPT and RC 1/2 on 2-in.(50,8 mm), 21/8-in. (54,0 mm), or 21/4-in. (57,2 mm) centers (process adapters)

Rosemount 2051T

- 1/2–14 NPT female
- G¹/₂ A DIN 16288 male (available in stainless steel for range 1–4 transmitters only)
- Autoclave type F-250-C (pressure relieved ⁹/₁₆–18 gland thread; ¹/₄O.D. high pressure tube 60° cone; available in stainless steel for Range 5 transmitters only)

Rosemount 2051L

- High pressure side: 2-in.(50,8 mm), 3-in. (72 mm), or 4-in. (102 mm), ASME B 16.5 (ANSI) Class 150 or 300 flange; 50, 80, or 100 mm, DIN 2501 PN 40 or 10/16 flange
- Low pressure side: 1/4–18 NPT on flange, 1/2–14 NPT on process adapter

Rosemount 2051CF

- For Rosemount 2051CFA wetted parts, see Rosemount DP Flow Meters and Primary Elements <u>Product Data Sheet</u> in the 485 section
- For Rosemount 2051CFC wetted parts, see Rosemount DP Flow Meters and Primary Elements <u>Product Data Sheet</u> in the 405 section
- For Rosemount 2051CFP wetted parts, see Rosemount DP Flow Meters and Primary Elements <u>Product Data Sheet</u> in the 1195 section

A.3.4 Rosemount 2051C process wetted parts

Drain/vent valves

316 stainless steel, alloy C-276, or alloy 400 material (alloy 400 not available with Rosemount 2051L)

Process flanges and adapters

Plated carbon steel, stainless steel cast CF-8M (cast version of 316 stainless steel, material per ASTM-A743), C-Type cast alloy CW12MW, or cast alloy M30C

Wetted O-rings

Glass-filled PTFE or graphite-filled PTFE

Process isolating diaphragms

Icolating dianhuage	Rosemount model				
material	2051CD and 2051 CG	2051T	2051CA		
315L stainless steel	?	?	?		
Alloy C-276	?	?	?		
Alloy 400	?		?		
Tantalum	?				
Gold-plated alloy 400	?		?		
Gold-plated stainless steel	?		?		

A.3.5 Rosemount 2051L Process wetted parts

Flanged process connection (transmitter high side)

Process diaphragms, including process gasket surface

316L stainless steel, alloy C-276, or tantalum

Extension

CF-3M (Cast version of 316L stainless steel, material per ASTM-A743), or Cast C-276. Fits schedule 40 and 80 pipe.

Mounting flange

Zinc-cobalt plated carbon steel or stainless steel

Reference process connection (transmitter low side)

Isolating diaphragms

316L stainless steel or alloy C-276

Reference flange and adapter

CF-8M (cast version of 316 stainless steel, material per ASTM-A743)

A.3.6 Non-wetted parts

Electronics housing

Low-copper aluminum or CF-8M (cast version of 316 stainless steel). Enclosure type 4X, IP 65, IP 66, IP68

Coplanar sensor module housing

CF-3M (Cast version of 316L stainless steel, material per ASTM-A743)

Bolts

- ASTM A449, Type 1 (zinc-cobalt plated carbon steel)
- ASTM F593G, Condition CW1 (Austenitic 316 stainless steel)
- ASTM A193, Grade B7M (zinc plated alloy steel)
- Alloy K-500

Sensor module fill fluid

- Silicone or inert halocarbon
- In-line series uses Fluorinert[™] FC-43

Process fill fluid (2051L only)

SYLTHERM[™] XLT, Silicone 704, Silicone 200, inert, glycerin and water, Neobee[®] M-20, or propylene glycol and water

Paint

Polyurethane

Cover O-rings

Buna-N

A.3.7 Shipping weights

Table A-5. Transmitter Weights without Options

Rosemount transmitter	Add weight in-lb. (kg)
2051C	4.9 (2.2)
2051L	See Table A-6
2051T	3.1 (1.4)

Table A-6. Rosemount 2051L Weights without Options

Flange	Flush lb (kg)	ısh 2-in. Ext. 4-in. Ext. kg) lb (kg) lb (kg)		6-in. Ext. Ib (kg)
2-in., 150	12.5 (5,7)	N/A	N/A	N/A
3-in., 150	17.5 (7,9)	19.5 (8,8)	20.5 (9,3)	21.5 (9,7)
4-in., 150	23.5 (10,7)	26.5 (12,0)	28.5 (12,9)	30.5 (13,8)
2-in., 300	17.5 (7,9)	N/A	N/A	N/A

Table A-6. Rosemount 2051L Weights without Options

Flange	Flush Ib (kg)	2-in. Ext. Ib (kg)	4-in. Ext. Ib (kg)	6-in. Ext. lb (kg)
3-in., 300	22.5 (10.2)	24.5 (11.1)	25.5 (11,6)	26.5 (12.0)
4-in., 300	32.5 (14,7)	35.5 (16,1)	37.5 (17,0)	39.5 (17,9)
DN 50/ PN 40	13.8 (6,2)	N/A	N/A	N/A
DN 80/ PN 40	19.5 (8,8)	21.5 (9,7)	22.5 (10,2)	23.5 (10,6)
DN 100/ PN 10/16	17.8 (8,1)	19.8 (9,0)	20.8 (9,5)	21.8 (9,9)
DN 100/ PN 40	23.2 (10,5)	25.2 (11,5)	26.2 (11,9)	27.2 (12,3)

Table A-7. Transmitter Options Weights

Code	Option	Add lb (kg)
J, K, L, M	Stainless steel housing	3.9 (1,8)
M5	LCD display for aluminum housing	0.5 (0,2)
M5	LCD display for wireless output	0.1 (0,04)
B4	Stainless steel mounting bracket for coplanar flange	1.0 (0,5)
B1, B2, B3	Mounting bracket for traditional flange	2.3 (1,0)
B7, B8, B9	Mounting bracket for traditional flange	2.3 (1,0)
BA, BC	Stainless steel bracket for traditional flange	2.3 (1,0)
H2	Traditional flange	2.6 (1,2)
H3	Traditional flange	3.0 (1,4)
H4	Traditional flange	3.0 (1,4)
H7	Traditional Flange	2.7 (1,2)
FC	Level flange—3-in., Class 150	12.7 (5,8)
FD	Level flange—3-in., Class 300	15.9 (7,2)
FA	Level flange—2-in., Class 150	8.0 (3,6)
FB	Level flange—2-in., Class 300	8.4 (3,3)
FP	DIN Level flange, stainless steel, DN 50, PN 40	7.8 (3,5)
FQ	DIN Level flange, stainless steel, DN 80, PN 40	12.7 (5,8)
WSM	Stainless steel sensor module	1.0 (0,45)
	Power module (701PGNKF)	0.4 (0,18)

A.4 Dimensional drawings

Figure A-1. Rosemount2051C Exploded View

Figure A-2. Rosemount 2051C Coplanar Flange

A. Transmitter circuitry B. HART display cover C. FOUNDATION Fieldbus display cover D. Terminal connection

Figure A-3. Rosemount 2051C Coplanar with Rosemount 305 3-Valve Coplanar Integral Manifold

Figure A-4. Coplanar Flange Mounting Configurations with Optional Bracket (B4) for 2-in. Pipe or Panel Mounting

B. $3/8-16 \times 1^{1}/4$ bolts for mounting to transmitter

C. ⁵/16 x 1¹/2 bolts for panel mounting (not supplied)

Figure A-5. Rosemount 2051C Coplanar with Traditional Flange

Figure A-6. Rosemount 2051C Coplanar with Rosemount 304 3-Valve Traditional Integral Manifold

Figure A-7. Traditional Flange Mounting Configurations with Optional Brackets for 2-in. Pipe or Panel Mounting

Panel mount (bracket option B2/B8)

Pipe mount (bracket option B3/B9/BC)

Pipe mount (bracket option B1/B7/BA)

Figure A-8. Rosemount 2051T

Figure A-9. Rosemount 2051T with Rosemount 306 2-Valve Integral Manifold

1. The Rosemount Pak-Lok Annubar is available up to Class 600 ANSI (1,440 psig at 100 °F [99 bar at 38 °C]).

Sensor size	A (max)	B (max)	C (max)	D (max)				
1	8.50 (215,9)	14.55 (369,6)	9.00 (228,6)	6.00 (152,4)				
2	11.00 (279,4)	16.30 (414,0)	9.00 (228,6)	6.00 (152,4)				
3	12.00 (304,8)	19.05 (483,9)	9.00 (228,6)	6.00 (152,4)				
Dimensions are in inches (millimeters)								

Table A-8. Rosemount 2051CFA Pak-Lok Annubar Flow Meter Dimensional Data

Table A-9. Rosemount 2051CFC Dimensions

Primary element type	А	В	Transmitter height	С	D
Type P and C	5.62 (143)	Transmitter height + A	6.27 (159)	7.75 (197) - closed 8.25 (210) - open	6.00 (152) - closed 6.25 (159) - open
Dimensions are in inches (millimeters).					

Front view

Figure A-12. Rosemount 2051CFP Integral Orifice Flow Meter

Bottom view

Table A-10. Rosemount 2051CFP Dimensions

Dimonsion	Line size					
Dimension	¹ /2 -in. (15 mm)	1-in. (25 mm)	1 ¹ /2-in. (40 mm)			
J (beveled/threaded pipe ends)	12.54 (318,4)	20.24 (514,0)	28.44 (722,4)			
J (RF slip-on, RTJ slip-on, RF-DIN slip on)	12.62 (320,4)	20.32 (516,0)	28.52 (724,4)			
J (RF Class 150, weld neck)	14.37 (364,9)	22.37 (568,1)	30.82 (782,9)			
J (RF Class 300, weld neck)	14.56 (369,8)	22.63 (574,7)	31.06 (789,0)			
J (RF Class 600, weld neck)	14.81 (376,0)	22.88 (581,0)	31.38 (797,1)			
K (beveled/threaded pipe ends)	5.74 (145,7)	8.75 (222,2)	11.91 (302,6)			
K (RF slip-on, RTJ slip-on, RF-DIN slip on) ⁽¹⁾	5.82 (147,8)	8.83 (224,2)	11.99 (304,6)			
K (RF Class 150, weld neck)	7.57 (192,3)	10.88 (276,3)	14.29 (363,1)			
K (RF Class 300, weld neck)	7.76 (197,1)	11.14 (282,9)	14.53 (369,2)			
K (RF Class 600, weld neck)	8.01 (203.4)	11.39 (289,2)	14.85 (377,2)			
B.D. (bore diameter)	0.664 (16,87)	1.097 (27,86)	1.567 (39,80)			

1. Downstream length shown here includes plate thickness of 0.162-in. (411 mm).

Figure A-13. Rosemount 2051L Liquid Level

3- and 4-in. Flange Configuration

Optional flushing connection ring (lower housing)

I. 2-in., 4-in., or 6-in. extension J. Terminal connections K. FOUNDATION Fieldbus display cover L. HART display cover M. Transmitter circuitry

Diaphragm assembly and mounting flange

Table A-11. Rosemount 2051L Dimensional Specifications

Class	Pipe size	Flange thickness A	Bolt circle diameter B	Outside diameter C	No. of bolts	Bolt hole diameter	Extension diameter D ⁽¹⁾	O.D. gasket surface E
	2 (51)	0.69 (18)	4.75 (121)	6.0 (152)	4	0.75 (19)	NA	3.6 (92)
ASME B16.5 (ANSI) 150	3 (76)	0.88 (22)	6.0 (152)	7.5 (191)	4	0.75 (19)	2.58 (66)	5.0 (127)
150	4 (102)	0.88 (22)	7.5 (191)	9.0 (229)	8	0.75 (19)	3.5 (89)	6.2 (158)
ASME B16.5 (ANSI) 300	2 (51)	0.82 (21)	5.0 (127)	6.5 (165)	8	0.75 (19)	NA	3.6 (92)
	3 (76)	1.06 (27)	6.62 (168)	8.25 (210)	8	0.88 (22)	2.58 (66)	5.0 (127)
	4 (102)	1.19 (30)	7.88 (200)	10.0 (254)	8	0.88 (22)	3.5 (89)	6.2 (158)
ASME B16.5 (ANSI)	2 (51)	1.00 (25)	5.0 (127)	6.5 (165)	8	0.75 (19)	NA	3.6 (92)
600	3 (76)	1.25 (32)	6.62 (168)	8.25 (210)	8	0.88 (22)	2.58 (66)	5.0 (127)
DIN 2501 PN 10-40	DN 50	20 mm	125 mm	165 mm	4	18 mm	NA	4.0 (102)
	DN 80	24 mm	160 mm	200 mm	8	18 mm	66 mm	5.4 (138)
201 PN 25/40	DN 100	24 mm	190 mm	235 mm	8	22 mm	89 mm	6.2 (158)
DIN 2501 PN 10/16	DN 100	20 mm	180 mm	220 mm	8	18 mm	89 mm	6.2 (158)

Class(1)	Pipe Process		Lower h		
Class	size	side F	¹ /4 NPT	1/2 NPT	
	2 (51)	2.12 (54)	0.97 (25)	1.31 (33)	5.65 (143)
ASME B16.5 (ANSI) 150	3 (76)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	4 (102)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
ASME B16.5 (ANSI) 300	2 (51)	2.12 (54)	0.97 (25)	1.31 (33)	5.65 (143)
	3 (76)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	4 (102)	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	2 (51)	2.12 (54)	0.97 (25)	1.31 (33)	7.65 (194)
ASME B16.5 (ANSI) 600	3 (76)	3.6 (91)	0.97 (25)	1.31 (33)	7.65 (194)
DIN 2501 PN 10-40	DN 50	2.4 (61)	0.97 (25)	1.31 (33)	5.65 (143)
DIN 2501 PN 25/40	DN 80	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
	DN 100	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)
DIN 2501 PN 10/16	DN 100	3.6 (91)	0.97 (25)	1.31 (33)	5.65 (143)

1. Tolerances are 0.040 (1,02), -0.020 (0,51).

A.5 Ordering information

A.5.1 Rosemount 2051C Coplanar Pressure Transmitter

This ordering table contains the following Rosemount 2051C configurations:

Configuration	Transmitter output code
4–20 mA HART [®] Protocol	
• Rosemount 2051	A
 Enhanced Rosemount 2051⁽¹⁾ 	
FOUNDATION Fieldbus Protocol	F
PROFIBUS PA Protocol	W

 The enhanced 4–20 mA HART device can be ordered with Transmitter output option code A plus any of the following new option codes: DA0, M4, QT, DZ, CR, CS, CT, HR5, HR7.

See Performance specifications and options for more details on each configuration.

Additional Information

Specifications: page 91 Certifications: page 149

Dimensional drawings: page 102

Table A-12. Rosemount 2051C Coplanar Pressure Transmitter Ordering Information

Rosemount model	Transmitter type		
2051C	Coplanar pressure transmitter		
Measureme	ent type		
D	Differential		*
G	Gage		*
Pressure ra	nge		
	2051CD	2051CG	
1	–25 to 25 inH ₂ O (–62,2 to 62,2 mbar)	–25 to 25 inH ₂ O (–62,2 to 62,2 mbar)	*
2	-250 to 250 inH ₂ O (-623 to 623 mbar)	–250 to 250 inH ₂ O (–623 to 623 mbar)	*
3	–1000 to 1000 inH ₂ O (–2,5 to 2,5 bar)	–393 to 1000 inH ₂ O (–0,98 to 2,5 bar)	*
4	-300 to 300 psi (-20,7 to 20,7 bar)	-14.2 to 300 psi (-0,98 to 20,7 bar)	*
5	-2000 to 2000 psi (-137,9 to 137,9 bar)	-14.2 to 2000 psi (-0,98 to 137,9 bar)	*
Transmitte	routput		
A ⁽¹⁾	4–20 mA with digital signal based on HAR	r Protocol	*
F	FOUNDATION Fieldbus Protocol		*
W	PROFIBUS PA Protocol		*
М	Low-Power, 1–5 Vdc with digital signal bas	ed on HART Protocol	

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Materia	als of construction			
	Process flange type	Flange material	Drain/vent	
2	Coplanar	Stainless steel	Stainless steel	*
3(2)	Coplanar	Cast C-276	Alloy C-276	*
5	Coplanar	Plated CS	Stainless steel	*
7(2)	Coplanar	Stainless steel	Alloy C-276	*
8(2)	Coplanar	Plated CS	Alloy C-276	*
0	Alternate process connection	on	·	*
Isolatir	ng diaphragm			
2 ⁽²⁾	316L stainless steel			*
3(2)	Alloy C-276			*
5(3)	Tantalum			
O-ring				
A	Glass-filled PTFE			*
В	Graphite-filled PTFE			*
Sensor	fill fluid			
1	Silicone			*
2	Inert			*
Housin	ıg material		Conduit entry size	
A	Aluminum		1/2-14 NPT	*
В	Aluminum		M20 x 1.5	*
J	Stainless steel		¹ /2–14 NPT	*
K ⁽⁴⁾	Stainless steel		M20 x 1.5	*
D	Aluminum		G ¹ /2	
M ⁽⁴⁾	Stainless steel		G ¹ /2	

Options (Include with selected model number)

PlantWeb control functionality			
A01	FOUNDATION Fieldbus advanced control function block suite	*	

Alternate flange ⁽⁵⁾					
H2	Traditional flange, 316 stainless steel, stainless steel drain/vent	*			
H3 ⁽²⁾	Traditional flange, cast C-276, alloy C-276 drain/vent	*			
H7 ⁽²⁾	Traditional flange, 316 stainless steel, alloy C-276 drain/vent	*			
HJ	DIN compliant traditional flange, stainless steel, 7/16-in. adapter/manifold bolting	*			
FA	Level flange, stainless steel, 2-in., ANSI Class 150, vertical mount	*			
FB	Level flange, stainless steel, 2-in., ANSI Class 300, vertical mount	*			
FC	Level flange, stainless steel, 3-in., ANSI Class 150, vertical mount	*			
FD	Level flange, stainless steel, 3-in., ANSI Class 300, vertical mount	*			
FP	DIN level flange, stainless steel, DN 50, PN 40, vertical mount	*			
FQ	DIN level flange, stainless steel, DN 80, PN 40, vertical mount	*			
HK ⁽⁶⁾	DIN compliant traditional flange, stainless steel, 10 mm adapter/manifold bolting				
HL	DIN compliant traditional flange, stainless steel, 12 mm adapter/manifold bolting				
Manifold as	Manifold assembly ⁽⁶⁾⁽⁷⁾				
S5	Assemble to Rosemount 305 Integral Manifold	*			
S6	Assemble to Rosemount 304 Manifold or Connection System	*			
Integral mo	ount primary element ⁽⁶⁾⁽⁷⁾				
S4 ⁽⁸⁾	Assemble to Rosemount Annubar Flow Meter or Rosemount 1195 Integral Orifice	*			
S3	Assemble to Rosemount 405 Primary Element	*			
Seal assem	blies ⁽⁷⁾				
S1 ⁽⁹⁾	Assemble to one Rosemount 1199 Diaphragm Seal	*			
S2 ⁽¹⁰⁾	Assemble to two Rosemount 1199 Diaphragm Seals	*			
Mounting t	prackets				
B1	Traditional flange bracket for 2-in. pipe mounting, carbon steel bolts	*			
B2	Traditional flange bracket for panel mounting, carbon steel bolts	*			
B3	Traditional flange flat bracket for 2-in. pipe mounting, carbon steel bolts	*			
B4	Coplanar flange bracket for 2-in. pipe or panel mounting, all stainless steel	*			
B7	B1 bracket with series 300 stainless steel bolts	*			
B8	B2 bracket with series 300 stainless steel bolts	*			
B9	B3 bracket with series 300 stainless steel bolts	*			
BA	Stainless steel B1 bracket with series 300 stainless steel bolts	*			
BC	Stainless steel B3 bracket with series 300 stainless steel bolts	*			

Product Ce	rtifications			
E1 ⁽⁴⁾	ATEX Flameproof	*		
E2 ⁽⁴⁾	INMETRO Flameproof	*		
E3 ⁽⁴⁾	China Flameproof	*		
E4 ⁽⁴⁾	TIIS Flameproof	*		
E5	FM Explosion-proof, Dust Ignition-proof	*		
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2	*		
E7 ⁽⁴⁾	IECEx Flameproof	*		
EW	India (CCOE) Flameproof Approval	*		
I1 ⁽⁴⁾	ATEX Intrinsic Safety	*		
I2 ⁽⁴⁾	INMETRO Intrinsically Safe	*		
I3 ⁽⁴⁾	China Intrinsic Safety	*		
15	FM Intrinsically Safe, Division 2	*		
16	CSA Intrinsically Safe	*		
17 ⁽⁴⁾	IECEx Intrinsic Safety	*		
IA ⁽¹¹⁾	ATEX FISCO Intrinsic Safety	*		
IE ⁽¹²⁾	FM FISCO Intrinsically Safe	*		
IF ⁽¹²⁾	CSA FISCO Intrinsically Safe	*		
IG ⁽¹²⁾	IECEx FISCO Intrinsically Safe	*		
IW ⁽⁴⁾	India (CCOE) Intrinsically Safe	*		
K1 ⁽⁴⁾	ATEX Flameproof, Intrinsic Safety, Type n, Dust	*		
K2	INMETRO Flameproof and Intrinsic Safety	*		
К5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*		
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*		
K7 ⁽⁴⁾	IECEx Flameproof, Intrinsic Safety, Type n and Dust	*		
KA ⁽⁴⁾	ATEX and CSA Flameproof, Intrinsically Safe, Division 2	*		
КВ	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*		
KC ⁽⁴⁾	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2	*		
KD ⁽⁴⁾	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe	*		
N1 ⁽⁴⁾	ATEX Type n	*		
N7 ⁽⁴⁾	IECEx Type n	*		
ND ⁽⁴⁾	ATEX Dust	*		
Drinking W	Drinking Water Approval ⁽¹³⁾			
DW	NSF Drinking Water Approval	*		

Shipboard a	approvals	
SBS	American Bureau of Shipping (ABS) Type Approval	*
SBV	Bureau Veritas (BV) Type Approval	*
SDN	Det Norske Veritas (DNV) Type Approval	*
SLL	Lloyds Register (LR) Type Approval	*
Bolting ma	terials	
L4	Austenitic 316 stainless steel bolts	*
L5	ASTM A 193, grade B7M bolts	*
L6	Alloy K-500 bolts	*
L8	ASTM A 193 Class 2, grade B8M bolts	*
Display and	interface options	
M4 ⁽¹²⁾	LCD display with LOI	*
M5	LCD display	*
Hardware a	adjustments ⁽¹⁴⁾	
D4	Zero and span configuration buttons	*
DZ	Digital zero trim	*
Flange adaj	pters ⁽¹⁵⁾	
DF	1/2–14 NPT flange adapters	*
Conduit plu	Ig ⁽¹⁶⁾	
DO	316 stainless steel conduit plug	*
RC ¹ /4 RC ¹ /2 p	process connection ⁽¹⁷⁾	
D9	RC 1/4 flange with RC 1/2 flange adapter – stainless steel	
Ground scr	ew ⁽¹⁸⁾	
V5	External ground screw assembly	*
Performan	ce ⁽¹⁹⁾	
P8	High performance option	*
Transient p	rotection ⁽²⁰⁾	
T1	Transient protection terminal block	*
Software co	onfiguration ⁽²¹⁾	
C1	Custom software configuration (completed Rosemount 2051 <u>Configuration Data Sheet</u> required with order)	*

Alarm limit	(14)	
C4 ⁽²²⁾	NAMUR alarm and saturation levels, high alarm	*
CN ⁽²²⁾	NAMUR alarm and saturation levels, high alarm	*
CR	Custom alarm and saturation signal levels, high alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*
CS	Custom alarm and saturation signal levels, low alarm (requires C1 and Rosemount 2051 Configuration Data Sheet)	*
СТ	Low alarm (standard Rosemount alarm and saturation levels)	*
Pressure te	sting	
P1	Hydrostatic testing with certificate	
Cleaning p	rocess area	
P2	Cleaning for special service	
P3	Cleaning for < 1 PPM chlorine/flourine	
Maximum	static line pressure	
Р9	4500 psig (310 bar) static pressure limit (Rosemount 2051CD ranges 2–5 only)	*
Calibration	Certification	
Q4	Calibration Certificate	*
QG	Calibration Certificate and GOST Verification Certificate	*
QP	Calibration certification and tamper evident seal	*
Material Tra	aceability Certification	
Q8	Material Traceability Certification per EN 10204 3.1.B	*
Quality Cer	tification for Safety ⁽²¹⁾	
QS	Prior-use certificate of FMEDA data	*
QT	Safety Certified to IEC 61508 with certificate of FMEDA	*
Surface fini	ish	
Q16	Surface finish certification for sanitary remote seals	*
Toolkit tota	al system performance reports	
QZ	Remote seal system performance calculation report	*
Conduit ele	ectrical connection	
GE	M12, 4-pin, male connector (eurorast®)	*
GM	A size mini, 4-pin, male connector (minifast®)	*

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

HART Revision Configuration ⁽¹⁴⁾			
HR5 ⁽²³⁾	Configured for HART Revision 5	*	
HR7 ⁽²⁴⁾	Configured for HART Revision 7	*	
Typical Model Number: 2051C D 2 A 2 2 A 1 A B4 M5			

1. HART Revision 5 is the default HART output. The Rosemount 2051 with Selectable HART can be factory or field configured to HART Revision 7. To order HART Revision

- 7 factory configured, add option code HR7.
 Materials of Construction comply with recommendations per NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.
- 3. Available in ranges 2–5 only.
- 4. Not available with low power output code M.
- 5. Requires 0 code in materials of construction for alternate process connection.
- 6. Not valid with optional code P9 for 4500 psi static pressure.
- 7. "Assemble-to" items are specified separately and require a completed model number.
- 8. Process flange limited to coplanar (codes 2, 3, 5, 7, 8) or traditional (H2, H3, H7).
- 9. Not valid with optional code D9 for RC¹/2 adaptors.
- 10. Not valid with optional codes DF and D9 for adaptors.
- 11. Only valid with FOUNDATION Fieldbus output code F.
- 12. Not available with FOUNDATION Fieldbus output code F.
- 13. Not available with alloy C-276 isolator (3 code), tantalum isolator (5 code), all cast C-276 flanges, all plated carbon steel flanges, all DIN flanges, all Level flanges, assemble-to manifolds (55 and 56 codes), assemble-to seals (S1 and S2 codes), assemble-to primary elements (S3 and S4 codes), surface finish certification (Q16 code), and remote seal system report (QZ code).
- 14. Only available with HART 4–20 mA (output codes A and M).
- 15. Not valid with alternate process connection options S3, S4, S5, S6.
- 16. Transmitter is shipped with 316 stainless steel conduit plug (uninstalled) in place of standard carbon steel conduit plug.
- 17. Not available with alternate process connection: DIN flanges and level flanges.
- 18. The V5 option is not needed with the T1 option; external ground screw assembly is included with the T1 option.
- Available with 4–20 mA HART output code A, FOUNDATION Fieldbus output code F, Rosemount 2051C ranges 2–5 or 2051T ranges 1–4, stainless steel diaphragms and silicone fill fluid. High performance option includes 0.05 percent reference accuracy, five year stability and improved ambient temperature effect specifications. See "Performance specifications" on page 91 for details.
- 20. The T1 option is not needed with FISCO Product Certifications; transient protection is included in the FISCO product certification codes IA and IE.
- 21. Only available with HART 4–20 mA (output code A).
- 22. NAMUR-Compliant operation is pre-set at the factory and cannot be changed to standard operation in the field.
- 23. Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 Safety Instrumented Systems Requirements.
- 24. Configures the HART output to HART Revision 7. The device can be field configured to HART Revision 5 Safety Instrumented Systems Requirements.

A.5.2 Rosemount 2051T In-Line Pressure Transmitter

This ordering table contains the following Rosemount 2051T configurations:

Configuration	Transmitter output code
4–20 mA HART Protocol	
• Rosemount 2051	A
 Enhanced Rosemount 2051⁽¹⁾ 	
FOUNDATION [™] Fieldbus Protocol	F
PROFIBUS PA Protocol	W

1. The enhanced 4–20 mA HART device can be ordered with transmitter output option code A plus any of the following new option codes: DA0, M4, QT, DZ, CR, CS, CT, HR5, HR7.

See Performance specifications and Options for more details on each configuration.

Additional Information

Specifications: page 91 Certifications: page 149 Dimensional drawings: page 102

Table A-13. Rosemount 2051T In-Line Pressure Transmitter Ordering Information

Rosemount model	Transmitter type		
2051T	In-line pressure transmitter		*
Pressure ty	ре		
G	Gage		*
A	Absolute		*
Pressure ra	nge		
	Rosemount 2051TG	Rosemount 2051TA	
1	–14.7 to 30 psi (–1,0 to 2.1 bar)	0 to 30 psi (0 to 2.1 bar)	*
2	–14.7 to 150 psi (–1,0 to 10.3 bar)	0 to 150 psi (0 to 10.3 bar)	*
3	–14.7 to 800 psi (–1,0 to 55 bar)	0 to 800 psi (0 to 55 bar)	*
4	–14.7 to 4000 psi (–1,0 to 276 bar)	0 to 4000 psi (0 to 276 bar)	*
5	–14.7 to 10000 psi (–1.0 to 689 bar)	0 to 10000 psi (0 to 689 bar)	*
Transmitte	routput		
A ⁽¹⁾	4–20 mA with digital signal based on HART Protocol		*
F	FOUNDATION Fieldbus Protocol		*
W	PROFIBUS PA Protocol		*
М	Low-power, 1–5 Vdc with digital signal based on HAR	T Protocol	
Process con	nection style		
2B	¹ /2–14 NPT female		*
2C	$G^1/_2$ A DIN 16288 male (available in stainless steel for	range 1-4 only)	*
2F	Coned and threaded, compatible with autoclave type	F-250-C (range 5 only)	

Table A-13. Rosemount 2051T In-Line Pressure Transmitter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Isolating di	aphragm ⁽²⁾	Process connection wetted parts material		
2	316L stainless steel	316L stainless steel	*	
3	Alloy C-276	Alloy C-276	*	
Sensor fill f	Sensor fill fluid			
1	Silicone		*	
2	Inert		*	
Housing ma	aterial	Conduit entry size		
А	Aluminum	1/2-14 NPT	*	
В	Aluminum	M20 x 1.5	*	
J	Stainless steel	1/2-14 NPT	*	
K ⁽³⁾	Stainless steel	M20 x 1.5	*	
D	Aluminum	G ¹ /2		
M ⁽³⁾	Stainless steel	G1/2		

Options (Include with selected model number)

PlantWeb c	control functionality	
A01	FOUNDATION Fieldbus Advanced Control Function Block Suite	*
Manifold as	ssemblies ⁽⁴⁾	
S5	Assemble to Rosemount 306 Integral Manifold	*
Seal assem	blies ⁽⁴⁾	
S1	Assemble to one Rosemount 1199 Diaphragm Seal	*
Mounting	pracket	
B4	Bracket for 2-in. pipe or panel mounting, all stainless steel	*
Product Ce	rtifications	
E1 ⁽³⁾	ATEX Flameproof	*
E2 ⁽³⁾	INMETRO Flameproof	*
E3 ⁽³⁾	China Flameproof	*
E4 ⁽³⁾	TIIS Flameproof	*
E5	FM Explosion-proof, Dust Ignition-proof	*
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2	*
E7 ⁽³⁾	IECEx Flameproof	*
EW ⁽³⁾	India (CCOE) Flameproof Approval	*
I1 ⁽³⁾	ATEX Intrinsic Safety	*
I2 ⁽³⁾	INMETRO Intrinsically Safe	*
13 ⁽³⁾	China Intrinsic Safety	*
15	FM Intrinsically Safe, Division 2	*
16	CSA Intrinsically Safe	*
17 ⁽³⁾	IECEx Intrinsic Safety	*
IA ⁽⁶⁾	ATEX FISCO Intrinsic Safety	*
IE ⁽⁶⁾	FM FISCO Intrinsically Safe	*
IF ⁽⁶⁾	CSA FISCO Intrinsically Safe	*

Table A-13. Rosemount 2051T In-Line Pressure Transmitter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

additional dell	very read time.	
IG ⁽⁶⁾	IECEx FISCO Intrinsically Safe	*
IW ⁽³⁾	India (CCOE) Intrinsic Safety Approval	*
K1 ⁽³⁾	ATEX Flameproof, Intrinsic Safety, Type n, Dust	*
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*
K7 ⁽³⁾	IECEx Flameproof, Intrinsic Safety, Type n and Dust	*
KA ⁽³⁾	ATEX and CSA Flameproof, Intrinsically Safe, Division 2	*
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	×
KC ⁽³⁾	FM and ATEX Explosion-proof. Intrinsically Safe, Division 2	×
N1(3)		
N7(3)		*
ND ⁽³⁾	ATEX Dust	*
Drinking V	Nater Approval ⁽⁵⁾	
	NSE Drinking Water Approval	•
		^
Shipboard	Approvais	
SBS	American Bureau of Shipping (ABS) Type Approval	*
SBV	Bureau Veritas (BV) Type Approval	*
SDN	Det Norske Veritas (DNV) Type Approval	*
SLL	Lloyds Register (LR) Type Approval	*
Display an	d interface options	
M4 ⁽⁶⁾	LCD display with LOI	*
M5	LCD display	*
Hardware	adjustments ⁽⁷⁾	
D4	Zero and span configuration buttons	*
DZ	Digital zero trim	*
Conduit pl	ug	
DO ⁽⁸⁾	316 stainless steel conduit plug	*
Ground sc	rew ⁽⁹⁾	
V5	External ground screw assembly	*
Performan	Ice ⁽¹⁰⁾	
P8	High performance option	*
Terminal b	locks ⁽¹¹⁾	
T1	Transient protection terminal block	*
Software o	configuration ⁽¹²⁾	
C1	Custom software configuration (completed Rosemount 2051 <u>Configuration Data Sheet</u> required with order)	*
Alarm limi	ts ⁽⁷⁾	
C4 ⁽¹³⁾	Analog output levels compliant with NAMUR Recommendation NE 43, alarm high	*
CN ⁽¹³⁾	Analog output levels compliant with NAMUR Recommendation NE 43, alarm low	*
CR	Custom alarm and saturation signal levels, high alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*
CS	Custom alarm and saturation signal levels, low alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*
CT	Low alarm (standard Rosemount alarm and saturation levels)	*
Pressure to	esting	

Specifications and Reference Data

Table A-13. Rosemount 2051T In-Line Pressure Transmitter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

P1	Hydrostatic testin	g with certificate	
Cleaning process area ⁽¹⁴⁾			
P2	Cleaning for speci	al service	
P3	Cleaning for <1 PF	PM chlorine/fluorine	
Calibration	certification		
Q4	Calibration Certifi	cate	*
QG	Calibration Certifi	cate and GOST Verification Certificate	*
QP	Calibration Certifi	cate and tamper evident seal	*
Material tra	aceability certifi	cation	
Q8	Material Traceabil	ity Certification per EN 10204 3.1.B	*
Quality cer	tification for safe	ety ⁽¹²⁾	
QS	Prior-use certificat	te of FMEDA data	*
QT	Safety Certified to IEC 61508 with certificate of FMEDA *		*
Surface finish			
Q16	Surface finish certification for sanitary remote seals *		*
Toolkit tota	al system perfori	mance reports	
QZ	Remote seal syste	m performance calculation report	*
Conduit ele	ectrical connecto	ח	
GE	M12, 4-pin, male	connector (eurofast)	*
GM	A size Mini, 4-pin,	male connector (minifast)	*
HART revisi	ion configuratio	n ⁽⁷⁾	
HR5 ⁽¹⁵⁾	Configured for HA	NRT Revision 5	*
HR7 ⁽¹⁶⁾	Configured for HART Revision 7		*
Typical mo	Typical model number: 2051T G 3 A 2B 2 1 A B4 M5		

1. HART Revision 5 is the default HART output. The Rosemount 2051 with Selectable HART can be factory or field configured to HART Revision 7. To order HART Revision 7 factory configured, add option code HR7.

- 2. Materials of Construction comply with recommendations per NACE MR0175/ISO 15156 for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.
- 3. Not available with low power output code M.
- 4. "Assemble-to" items are specified separately and require a completed model number.
- 5. Not available with coned and threaded connection (2F code), assemble-to manifold (S5 code), assemble-to seal (S1 code), surface finish certification (Q16 code),
- remote seal system report (QZ code).
- 6. Not available with FOUNDATION Fieldbus output code F.
- 7. Only Available with HART 4–20 mA (output codes A and M).
- 8. Transmitter is shipped with 316 stainless steel conduit plug (uninstalled) in place of standard carbon steel conduit plug.
- 9. The V5 option is not needed with the T1 option; external ground screw assembly is included with the T1 option.
- Available with 4–20 mA HART output code A, FOUNDATION Fieldbus output code F, Rosemount 2051C ranges 2–5 or 2051T ranges 1–4, stainless steel diaphragms and silicone fill fluid. High performance option includes 0.05 percent reference accuracy, five year stability and improved ambient temperature effect specifications. See "Performance specifications" on page 91 for details.
- 11. The T1 option is not needed with FISCO Product Certifications; transient protection is included in the FISCO product certification codes IA and IE.
- 12. Only available with HART 4–20 mA output code A.
- 13. NAMUR-Compliant operation is pre-set at the factory and cannot be changed to standard operation in the field.
- 14. Not valid with Alternate Process Connection S5.
- 15. Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 Safety Instrumented Systems Requirements.

A.5.3 Rosemount 2051CF Flow Meter Series

This ordering table contains the following Rosemount 2051CF configurations:

Configuration	Transmitter output code
4–20 mA HART Protocol	
Rosemount 2051	A
 Enhanced Rosemount 2051⁽¹⁾ 	
Foundation [™] Fieldbus Protocol	F
PROFIBUS PA Protocol	W

1. The enhanced 4–20 mA HART device can be ordered with Transmitter output option code A plus any of the following new option codes: DA0, M4, QT, DZ, CR, CS, CT, HR5, HR7.

See Performance specifications and options for more details on each configuration.

Rosemount 2051CFA Compact Flow Meter

Table A-14. Rosemount 2051CFA Annubar Flow Meter Ordering Information

Rosemount model	Product description		
2051CFA	Rosemount Annubar Flow Meter		
Measureme	ent type		
D	Differential Pressure		*
Fluid type			
L	Liquid		*
G	Gas		\star
S	Steam		★
Line size			
020	2-in. (50 mm)		*
025	2 ¹ / ₂ -in. (63,5 mm)		★
030	3-in. (80 mm)		★
035	3 ¹ /2-in. (89 mm)		\star
040	4-in. (100 mm)		★
050	5-in. (125 mm)		\star
060	6-in. (150 mm)		\star
070	7-in. (175 mm)		★
080	8-in. (200 mm)		★
100	10-in. (250 mm)		\star
120	12-in. (300 mm)		★
Pipe I.D. ran	nge		
C	Range C from the pipe I.D. table		*
D	Range D from the pipe I.D. table		\star
А	Range A from the pipe I.D. table		
В	Range B from the pipe I.D. table	i	
E	Range E from the pipe I.D. table		
Z	Non-standard pipe I.D. range or line sizes greater than 12-in.		

Pipe materi	al/mounting assembly material	
C	Carbon steel (A105)	*
S	316 stainless steel	*
0 ⁽¹⁾	No mounting (customer supplied)	
G	Chrome-moly grade F-11	
N	Chrome-moly grade F-22	
J	Chrome-moly grade F-91	
Piping orien	itation	l
Н	Horizontal piping	*
D	Vertical piping with downwards flow	*
U	Vertical piping with upwards flow	*
Rosemount	Annubar type	
Р	Pak-lok	*
F	Flanged with opposite side support	*
Sensor mate	erial	ł
S	316 stainless steel	*
Sensor size		·
1	Sensor size 1 – line sizes 2- to 8-in. (50 to 200 mm)	*
2	Sensor size 2 — line sizes 6- to 96-in. (150 to 2400 mm)	*
3	Sensor size 3 — line sizes greater than 12-in. (300 mm)	*
Mounting t	уре	I
T1	Compression or threaded connection	*
A1	Class 150 RF ANSI	*
A3	Class 300 RF ANSI	*
A6	Class 600 RF ANSI	*
D1	DN PN16 flange	*
D3	DN PN40 flange	*
D6	DN PN100 flange	*
R1	Class 150 RTJ flange	
R3	Class 300 RTJ flange	
R6	Class 600 RTJ flange	
Opposite sid	le support or packing gland	·
0	No opposite side support or packing gland (required for pak-lok and flange-lok models)	*
	Opposite side support – required for flanged models	
C	NPT threaded opposite support assembly – extended tip	*
D	Welded opposite support assembly – extended tip	*
Isolation va	lve for flo-tap models	
0 ⁽¹⁾	Not applicable or customer supplied	*
Temperatur	e measurement	
Т	Integral RTD – not available with flanged model greater than Class 600	*
0	No temperature sensor	*
R	Remote thermowell and RTD	
Transmitter	connection platform	
3	Direct-mount, Integral 3-valve manifold– not available with flanged model greater than Class 600	*
5	Direct -mount, 5-valve manifold – not available with flanged model greater than Class 600	*
7	Remote-mount NPT connections (1/2-in. FNPT)	*
8	Remote-mount SW connections (1/2-in.)	

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Differential	pressure range		
1	0 to 25 in H ₂ O (0 to 62,3 mbar)		*
2	0 to 250 in H ₂ O (0 to 623 mbar)		*
3	0 to 1000 in H ₂ O (0 to 2,5 bar)		*
Transmitter	output		
A ⁽²⁾	4–20 mA with digital signal based on HART Protocol		*
F	FOUNDATION Fieldbus Protocol		*
W	PROFIBUS PA Protocol		*
М	Low-power, 1–5 Vdc with digital signal based on HART Protocol		
Transmitter	housing material	Conduit entry size	
A	Aluminum	¹ /2–14 NPT	*
В	Aluminum	M20 x 1,5	*
J	Stainless steel	1/2-14 NPT	*
K ⁽³⁾	Stainless steel	M20 x 1,5	*
D	Aluminum	G ¹ /2	
M ⁽³⁾	Stainless steel	G ¹ /2	
Transmitter	Transmitter performance class		
1	2.0 percent flow rate accuracy, 5:1 flow turndown, 2-year stability		*

Options (Include with selected model number)

Pressure tes	sting ⁽⁴⁾		
P1	Hydrostatic testing with certificate		
PX	Extended hydrostatic testing		
Special clea	ning		
P2	Cleaning for special services		
PA	Cleaning per ASTM G93 level D (section 11.4)		
Material tes	ting		
V1	Dye penetrant exam		
Material exa	amination		
V2	Radiographic examination		
Special insp	Special inspection		
QC1	Visual and dimensional inspection with certificate	*	
QC7	Inspection and performance certificate	★	
Surface finis	Surface finish		
RL	Surface finish for low pipe Reynolds number in gas and steam	*	
RH	Surface finish for high pipe Reynolds number in liquid	★	
Material Tra	nceability Certification		
Q8 ⁽⁵⁾	Material Traceability Certification per EN 10474:2004 3.1	*	
Code confo	rmance		
J2	ANSI/ASME B31.1		
J3	ANSI/ASME B31.3		
Materials conformance ⁽⁶⁾			
J5	NACE MR-0175/ISO 15156		

Country Certification			
J6	European Pressure Directive (PED)	*	
J1	Canadian Registration		
Instrument	connections for remote mount options		
G2	Needle valves, stainless steel	*	
G6	OS&Y gate valve, stainless steel	*	
G1	Needle valves, carbon steel		
G3	Needle valves, alloy C-276		
G5	OS&Y gate valve, carbon steel		
G7	OS&Y gate valve, alloy C-276		
Special ship	ment	-	
Y1	Mounting hardware shipped separately	*	
Product cer	tifications		
E1 ⁽³⁾	ATEX Flameproof	*	
E2	INMETRO Flameproof	*	
E3 ⁽³⁾	China Flameproof	*	
E4 ⁽³⁾	TIIS Flameproof	*	
E5	FM Explosion-proof, Dust Ignition-proof	*	
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2	*	
E7	IECEx Flameproof, Dust Ignition-proof	*	
11 ⁽³⁾	ATEX Intrinsic Safety	*	
12	INMETRO Intrinsic Safety	*	
I3 ⁽³⁾	China Intrinsic Safety	*	
15 ⁽³⁾	FM Intrinsically Safe, Division 2	*	
16	CSA Intrinsically Safe	*	
17 ⁽³⁾	IECEx Intrinsic Safety	*	
IA ⁽⁷⁾	ATEX FISCO Intrinsic Safety; for FOUNDATION Fieldbus protocol only	*	
IE ⁽⁷⁾	FM FISCO Intrinsically Safe	*	
IF ⁽⁷⁾	CSA FISCO Intrinsically Safe	*	
IG ⁽⁷⁾	IECEx FISCO Intrinsically Safe	*	
K1 ⁽³⁾	ATEX Flameproof. Intrinsic Safety. Type n. Dust	*	
K2 ⁽³⁾	INMETRO Flameproof and Intrinsic Safety	*	
К5	FM Explosion-proof. Dust Ignition-proof. Intrinsically Safe. Division 2 (combination of E5 and I5)	*	
К6	CSA Explosion-proof. Dust Ignition-proof. Intrinsically Safe. Division 2 (combination of E6 and I6)	*	
K7 ⁽³⁾	IECEX Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, I7, and N7)	*	
KA ⁽³⁾	ATEX and CSA Flameproof, Intrinsically Safe, Division 2	*	
КВ	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe. Division 2 (combination of E5, E6, I5, and I6)	*	
KC ⁽³⁾	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2	*	
KD ⁽³⁾	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5. I5. E6. I6. E1. and I1)	*	
N1 ⁽³⁾	ATEX Type n	*	
N7 ⁽³⁾	IECEx Type n	*	
ND ⁽³⁾	ATEX Dust	*	
Sensor fill fl	uid and O-ring options		
L1	Inert sensor fill fluid	*	
L2	Graphite-filled (PTFE) O-ring	*	
LA	Inert sensor fill fluid and graphite-filled (PTFF) O-ring	*	
Display and	interface options		
		+	
IVID	сси аврая	—	

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Transmitter	Calibration Certification	
Q4	Calibration Certificate for Transmitter	*
Quality Cert	tification for Safety ⁽⁹⁾	
QS	Prior-use certificate of FMEDA data	*
QT	Safety Certified to IEC 61508 with certificate of FMEDA	*
Transient pr	rotection ⁽¹⁰⁾	
T1	Transient terminal block	*
Manifold fo	r remote mount option	
F6	5-valve manifold, stainless steel	*
F1	3-valve manifold, carbon steel	
F5	5-valve manifold, carbon steel	
PlantWeb c	ontrol functionality	
A01 ⁽⁷⁾	FOUNDATION Fieldbus advanced control function block suite	*
Hardware a	djustments ⁽¹¹⁾	
D4	Zero and span hardware adjustments	*
DZ	Digital zero trim	*
Alarm limit ⁽	(11)	
C4 ⁽¹²⁾	NAMUR alarm and saturation levels, high alarm	*
CN ⁽¹²⁾	NAMUR alarm and saturation levels, low alarm	*
CR	Custom alarm and saturation signal levels, high alarm (requires C1 and Rosemount 2051 Configuration Data Sheet)	*
CS	Custom alarm and saturation signal levels, low alarm (requires C1 and Rosemount 2051 Configuration Data Sheet)	*
СТ	Low alarm (standard Rosemount alarm and saturation levels)	*
Ground scre	ew ⁽¹³⁾	
V5	External ground screw assembly	*
HART revision	on configuration ⁽¹¹⁾	
HR5 ⁽¹⁴⁾	Configured for HART Revision 5	*
HR7 ⁽¹⁵⁾	Configured for HART Revision 7	*
Typical mod	lel number: 2051CFA D L 060 D C H P S 2 T1 0 0 0 3 2A A 1A 3	

Provide the "A" dimension for flanged and pak-lok. 1.

2. HART Revision 5 is the default HART output. The Rosemount 2051 with Selectable HART can be factory or field configured to HART Revision 7. To order HART Revision 7 factory configured, add option code HR7.

3. Not available with low power output code M.

- 4. 5.
- Applies to assembled flow meter only, mounting not tested. Instrument connections for remote mount options and isolation valves for flo-tap models are not included in the Material Traceability Certification.

Materials of construction comply with metallurgical requirements within NACE MR0175/ISO for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments. 6.

7. Only valid with FOUNDATION Fieldbus output code F.

Not available with FOUNDATION Fieldbus (output code F). 8.

 Only available with 4–20 mA HART (output code A).
 Not available with housing code 00, 5A or 7J. The T1 option is not needed with FISCO Product Certifications, transient protection is included with the FISCO Product Certification code IA. 11. Only available with 4–20 mA HART (output codes A and M).

- 12. NAMUR-Compliant operation is pre-set at the factory and cannot be changed to standard operation in the field.
- 13. The V5 option is not needed with the T1 option; external ground screw assembly is included with the T1 option.
- Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 Safety Instrumented Systems Requirements.
 Configures the HART output to HART Revision 7. The device can be field configured to HART Revision 5 Safety Instrumented Systems Requirements.

Rosemount 2051CFC Compact Flow Meter

Additional information

Specifications: page 91 Certifications: page 149 Dimensional drawings: page 102

Table A-15. Rosemount 2051CFC Compact Flow Meter Ordering Information

Rosemount model	Product description	
2051CFC	Compact flow meter	
Measureme	nt type	
D	Differential Pressure	*
Primary Eler	nent technology	
C	Conditioning orifice plate	*
Р	Orifice plate	*
Material typ	e	
S	316 stainless steel	*
Line size		
005 ⁽¹⁾	¹ /2-in. (15 mm)	*
010 ⁽¹⁾	1-in. (25 mm)	*
015 ⁽¹⁾	1 ¹ / <i>z</i> -in. (40 mm)	*
020	2-in. (50 mm)	*
030	3-in. (80 mm)	*
040	4-in. (100 mm)	*
060	6-in. (150 mm)	*
080	8-in. (200 mm)	*
100	10-in. (250 mm)	*
120	12-in. (300 mm)	*
Primary eler	nent style	
N	Square edged	*
Primary eler	nent type	
040	0.40 beta ratio	*
065 ⁽²⁾	0.65 beta ratio	*
Temperature	e measurement	
0	No temperature sensor	*
R	Remote thermowell and RTD	
Transmitter	connection platform	
3	Direct-mount, Integral 3-valve manifold	*
7	Remote-mount, 1/4-in. NPT connections	*
Differential	pressure range	
1	0 to 25 in H ₂ O (0 to 62,3 mbar)	*
2	0 to 250 in H ₂ O (0 to 623 mbar)	*
3	0 to 1000 in H ₂ O (0 to 2,5 bar)	*

Table A-15. Rosemount 2051CFC Compact Flow Meter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Transmi	itter output		
A ⁽³⁾	4–20 mA with digital signal based on HART	Protocol	*
F	FOUNDATION Fieldbus Protocol		*
W	PROFIBUS PA Protocol		*
М	Low-power, 1–5 Vdc with digital signal bas	ed on HART Protocol	
Transmi	itter housing material	Conduit entry size	
A	Aluminum	1/2-14 NPT	*
В	Aluminum	M20 x 1,5	*
J	Stainless steel	1/2-14 NPT	*
K ⁽⁴⁾	Stainless steel	M20 x 1,5	*
D	Aluminum	G ¹ /2	
M ⁽⁴⁾	Stainless steel	G ¹ /2	
Transmi	itter performance Class		
1	up to ±2.25% flow rate accuracy, 5:1 flow to	urndown, 2-year stability	*

Options (Include with selected model number)

Installa	tion accessories	
AB	ANSI alignment ring (Class 150) (only required for 10- and 12-in. (250 and 300 mm) line sizes)	*
AC	ANSI alignment ring (Class 300) (only required for 10- and 12-in. (250 and 300 mm) line sizes)	*
AD	ANSI alignment ring (Class 600) (only required for 10- and 12-in. (250 and 300 mm) line sizes)	*
DG	DIN alignment ring (PN16)	*
DH	DIN alignment ring (PN40)	*
DJ	DIN alignment ring (PN100)	*
JB	JIS alignment ring (10K)	
JR	JIS alignment ring (20K)	
JS	JIS alignment ring (40K)	
Remote	e adapters	
FE	Flange adapters 316 stainless steel (1/2-in. NPT)	*
High te	mperature application	
HT	Graphite valve packing (T _{max} = 850 °F)	
Flow ⁽⁵⁾		
WC	Flow calibration certification (3 point)	
WD	Discharge coefficient verification (full 10 point)	
Pressur	e testing	
P1	Hydrostatic Testing with Certificate	
Special	cleaning	
P2	Cleaning for special services	
PA	Cleaning per ASTM G93 level D (section 11.4)	
Special	inspection	
QC1	Visual and Dimensional Inspection with Certificate	*
QC7	Inspection and Performance Certificate	*
Transm	itter Calibration Certification	
Q4	Calibration Certificate for Transmitter	*
Quality	Certification for Safety ⁽⁶⁾	
QS	Prior-use certificate of FMEDA data	*
QT	Safety Certified to IEC 61508 with certificate of FMEDA	*

Specifications and Reference Data

Table A-15. Rosemount 2051CFC Compact Flow Meter Ordering Information

Material Traceability Certification			
Q8	Material Traceability Certification per EN 10204:2004 3.1	*	
Code confor	mance		
12	ANSI/ASME B31.1		
3	ANSI/ASME B31.3	-	
4	ANSI/ASME B31.8	-	
Materials co	onformance ⁽⁷⁾		
15	NACE MR-0175/JSO 15156		
Country Cer	tification		
		1	
Product Cer	tifications		
E1 ⁽³⁾	ATEX Flameproof	*	
E2	INMETRO Flameproof	*	
E3 ⁽³⁾	China Flameproof	*	
E4 ⁽³⁾	TIIS Flameproof	*	
E5	FM Explosion-proof, Dust Ignition-proof	*	
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2	*	
E7	IECEx Flameproof, Dust Ignition-proof	*	
11 ⁽³⁾	ATEX Intrinsic Safety	*	
12	INMETRO Intrinsic Safety	*	
I3 ⁽⁴⁾	China Intrinsic Safety	*	
15 ⁽⁴⁾	FM Intrinsically Safe, Division 2	*	
16	CSA Intrinsically Safe	*	
I7 ⁽⁴⁾	IECEx Intrinsic Safety	*	
IA ⁽⁸⁾	ATEX FISCO Intrinsic Safety; for FOUNDATION Fieldbus protocol only	*	
IE ⁽⁷⁾	FM FISCO Intrinsically Safe	*	
IF ⁽⁷⁾	CSA FISCO Intrinsically Safe	*	
IG ⁽⁷⁾	IECEx FISCO Intrinsically Safe	*	
K1 ⁽⁴⁾	ATEX Flameproof, Intrinsic Safety, Type n, Dust	*	
K2 ⁽⁴⁾	INMETRO Flameproof and Intrinsic Safety	*	
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5 and I5)	*	
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)	*	
K7 ⁽⁴⁾	IECEx Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, I7, and N7)	*	
KA ⁽⁴⁾	ATEX and CSA Flameproof, Intrinsically Safe, Division 2	*	
КВ	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6)	*	
KC ⁽⁴⁾	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2	*	
KD ⁽⁴⁾	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, I5, E6, I6, E1, and I1)	*	
N1 ⁽⁴⁾	ATEX Type n	*	
N7 ⁽⁴⁾	IECEx Type n	*	
ND ⁽⁴⁾	ATEX Dust	*	
Sensor fill fl	uid and O-ring options		
L1	Inert sensor fill fluid	*	
L2	Graphite-filled (PTFE) O-ring	*	
LA	Inert sensor fill fluid and graphite-filled (PTFE) O-ring	*	
Display and	interface options		
M4 ⁽⁶⁾	ICD display with IOI	*	
M5		+	
Translaut	etestion	+	
iransient pr			
[] ⁽⁹⁾	Iransient terminal block	_ ★	

Table A-15. Rosemount 2051CFC Compact Flow Meter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Manifold fo	r remote mount option	
F2	3-valve manifold, stainless steel	*
F6	5-valve manifold, stainless steel	*
Alarm limit	(10)	
C4 ⁽¹¹⁾	NAMUR alarm and saturation levels, high alarm	*
CN ⁽¹¹⁾	NAMUR alarm and saturation levels, low alarm	*
CR	Custom alarm and saturation signal levels, high alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*
CS	Custom alarm and saturation signal levels, low alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*
СТ	Low alarm (standard Rosemount alarm and saturation levels)	*
PlantWeb c	ontrol functionality ⁽⁸⁾	
A01	FOUNDATION Fieldbus advanced control function block suite	*
Hardware a	djustments ⁽¹⁰⁾	
D4	Zero and span hardware adjustments	*
DZ	Digital zero trim	*
Ground scre	ew ⁽¹²⁾	
V5	External ground screw assembly	*
HART Revisi	ion configuration ⁽¹⁰⁾	
HR5 ⁽¹³⁾	Configured for HART Revision 5	*
HR7 ⁽¹⁴⁾	Configured for HART Revision 7	*
Typical Moc	lel Number: 2051CFC D C S 060 N 065 0 3 2 A A 1 WC E5 M5	

Not available for Primary Element technology C. 1.

For 2-in. (50 mm) line sizes the Primary Element type is 0.6 for Primary Element technology code C. 2.

- HART Revision 5 is the default HART output. The Rosemount 2051 with Selectable HART can be factory or field configured to HART Revision 7. To order HART Revision 3. 7 factory configured, add option code HR7.
- 4. Not available with low power output code M.
- Not available with Primary Element technology P. Only available wit 4–20 mA HART (output code A). 5.
- 6.
- Materials of Construction comply with metallurgical requirements within NACE MR0175/ISO for sour oil field production environments. Environmental limits apply to 7. certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.
- Only valid with FOUNDATION Fieldbus output code F. 8.
- Not available with Housing code 00, 5A or 7J. The T1 option is not needed with FISCO Product Certifications, transient protection is included with the FISCO Product 9. Certification code IA.

- Certification code IA.
 Only available with 4–20 mA HART (output codes A and M).
 NAMUR-Compliant operation is pre-set at the factory and cannot be changed to standard operation in the field.
 The V5 option is not needed with the T1 option; external ground screw assembly is included with the T1 option.
 Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 Safety Instrumented Systems Requirements.
 Configures the HART output to HART Revision 7. The device can be field configured to HART Revision 5 if 14 needed.

Rosemount 2051CFP Integral Orifice Flow Meter

Additional information

Specifications: page 91 Certifications: page 149 Dimensional drawings: page 102

Table A-16. Rosemount 2051CFP Integral Orifice Flow Meter Ordering Information

Rosemount model	Product description				
2051CFP	Integral orifice flow meter				
Measurement type					
D	Differential Pressure	*			
Material typ	Material type				
S	316 stainless steel	*			
Line size					
005	¹ /2-in. (15 mm)	*			
010	1-in. (25 mm)	*			
015	1 ¹ /2-in. (40 mm)	*			
Process con	nection				
T1	NPT female body (not available with remote thermowell and RTD)	*			
S1 ⁽¹⁾	Socket weld body (not available with remote thermowell and RTD)	*			
P1	Pipe ends: NPT threaded	*			
P2	Pipe ends: beveled	*			
D1	Pipe ends: flanged, DIN PN16, slip-on	*			
D2	Pipe ends: flanged, DIN PN40, slip-on	*			
D3	Pipe ends: flanged, DIN PN100, slip-on	*			
W1	Pipe ends: flanged, RF, ANSI Class 150, weld-neck	*			
W3	Pipe ends: flanged, RF, ANSI Class 300, weld-neck	*			
W6	Pipe ends: Flanged, RF, ANSI Class 600, weld-neck	*			
A1	Pipe ends: flanged, RF, ANSI Class 150, slip-on				
A3	Pipe ends: flanged, RF, ANSI Class 300, slip-on				
A6	Pipe ends: flanged, RF, ANSI Class 600, slip-on				
R1	Pipe ends: flanged, RTJ, ANSI Class 150, slip-on				
R3	Pipe ends: flanged, RTJ, ANSI Class 300, slip-on				
R6	Pipe ends: flanged, RTJ, ANSI Class 600, slip-on				
Orifice plate	material				
S	316 stainless steel	*			
Bore size op	tion				
0066	0.066-in. (1,68 mm) for ¹ / ₂ -in. pipe	*			
0109	0.109-in. (2,77 mm) for ¹ /2-in. pipe	*			
0160	0.160-in. (4,06 mm) for 1/2-in. pipe	*			
0196	0.196-in. (4,98 mm) for 1/2-in. pipe	*			
0260	0.260-in. (6,60 mm) for 1/2-in. pipe	*			
0340	0.340-in. (8,64 mm) for 1/2-in. pipe	*			
0150	0.150-in. (3,81 mm) for 1-in. pipe	*			
0250	0.250-in. (6,35 mm) for 1-in. pipe	*			
0345	0.345-in. (8,76 mm) for 1-in. pipe	*			

Table A-16. Rosemount 2051CFP Integral Orifice Flow Meter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

0500	0.500-in. (12,70 mm) for 1-in. pipe	0.500-in. (12,70 mm) for 1-in. pipe *				
0630	0.630-in. (16,00 mm) for 1-in. pipe					
0800	0.800-in. (20,32 mm) for 1-in. pipe					
0295	0.295-in. (7,49 mm) for 1 ¹ / ₂ -in. pipe					
0376	0.376-in. (9,55 mm) for 11/2-in. pipe		*			
0512	0.512-in. (13,00 mm) for 11/2-in. pipe		*			
0748	0.748-in. (19,00 mm) for 1 ¹ / ₂ -in. pipe					
1022	1.022-in. (25,96 mm) for 1 ¹ /2-in. pipe					
1184	1.184-in. (30,07 mm) for 1 ¹ /2-in. pipe					
0010	0.010-in. (0,25 mm) for 1/2-in. pipe					
0014	0.014-in. (0,36 mm) for 1/2-in. pipe					
0020	0.020-in. (0,51 mm) for 1/2-in. pipe					
0034	0.034-in. (0,86 mm) for 1/2-in. pipe					
Transmitter connection platform						
D3	Direct-mount, 3-valve manifold, stainless steel					
D5	Direct-mount, 5-valve manifold, stainless steel					
R3	Remote-mount, 3-valve manifold, stainless steel	Remote-mount, 3-valve manifold, stainless steel				
R5	Remote-mount, 5-valve manifold, stainless steel					
Differentia	l pressure ranges					
1	0 to 25 in H ₂ O (0 to 62,3 mbar)		*			
2	0 to 250 in H ₂ O (0 to 623 mbar)		*			
3	0 to 1000 in H ₂ O (0 to 2,5 bar)	0 to 1000 in H ₂ O (0 to 2,5 bar)				
Transmitte	routput					
A ⁽²⁾	4–20 mA with digital signal based on HART Protocol					
F	FOUNDATION Fieldbus Protocol		*			
W	PROFIBUS PA Protocol		*			
M	Low-power, 1–5 Vdc with digital signal based on HART Protocol					
Transmitte	r housing material	Conduit entry size				
A	Aluminum	1/2-14 NPT	*			
B	Aluminum	M20 x 1.5	*			
1	Stainless steel	1/2-14 NPT	*			
K ⁽³⁾	Stainless steel	M20 x 1.5	*			
D	Aluminum	G1/2	+			
M ⁽³⁾	Stainless steel	G1/2	+			
Transmitte	r performance Class	- -	-			
1 up to 2.25% flow rate accuracy. E:1 flow turn down. 2 year stability.						
I	up to ±2.25% now rate accuracy, 5:1 flow turndown, 2-year stability		<u> </u>			

Options (Include with selected model number)

Temperature sensor ⁽⁴⁾				
RT	Thermowell and RTD			
Optional connection				
G1	DIN 19213 transmitter connection	*		
Pressure testing ⁽⁵⁾				
P1	Hydrostatic Testing with Certificate			
Special cleaning				
P2	Cleaning for special services			
PA	Cleaning per ASTM G93 level D (section 11.4)			
Table A-16. Rosemount 2051CFP Integral Orifice Flow Meter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Material testing				
V1	Dye penetrant exam			
Material examination				
V2	Radiographic examination			
Flow calibra	tion ⁽⁶⁾			
WD	Discharge coefficient verification			
Special insp	ection			
0C1	Visual and Dimensional Inspection with Certificate	*		
QC7	Inspection and Performance Certificate	*		
Material Tra	ceability Certification			
Q8	Material Traceability Certification per EN 10204:2004 3.1	*		
Code confor	mance ⁽⁷⁾			
12	ANSI/ASME B31 1			
13	ANSI/ASME B31.3			
] ³	ANSI/ASME B31.8			
Materials co	photomance ⁽⁸⁾	i		
15	NACE MR-0175 / ISO 15156			
Country Cer	tification			
16	European Pressure Directive (PED)	+		
]0]1	Canadian Registration			
Transmittor				
	Calibration Certificate for Transmitter	+		
Q4 Quality Cort	Q4 Calibration Certificate for hansing (a)			
Quanty Cert		-		
QS OT	Prior-use certificate of FIVEDA data	×		
		<u> </u>		
Product Cer	tifications			
E1 ⁽³⁾	ATEX Flameproof	*		
E2	INMETRO Flameproof	*		
E3 ⁽³⁾	China Flameproof	*		
E4 ⁽³⁾	TIIS Flameproof	*		
E5	FM Explosion-proof, Dust Ignition-proof	*		
E6	CSA Explosion-proot, Dust Ignition-proot, Division 2	*		
E7	IECEx Flameproot, Dust Ignition-proot	*		
[](3)	ATEX Intrinsic Safety	*		
12	INMETRO Intrinsic Safety	*		
13(3)		*		
15(3)	FM Intrinsically Safe, Division 2	*		
		×		
1/(3)	IECEX INTRINSIC SAFETY	× -		
	ATEX FISCO Intrinsic Safety, for FOUNDATION FIEldbus Protocoronny	× +		
IE(7)		*		
$\Gamma(7)$		*		
K1(3)	ATEX Flamenroof Intrinsic Safety Type n. Dust	^		
K7(3)	INMETRO Flameproof and Intrinsic Safety	÷		
K5	FM Explosion-proof Dust Ignition-proof Intrinsically Safe Division 2 (combination of F5 and I5)	*		
	The Explosion proof, busicing internationally sure, Division 2 (combination of E3 and 13)			

Table A-16. Rosemount 2051CFP Integral Orifice Flow Meter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

VC	CALcurrence and Duct Institute proof Intrinsically Safe Division 2 (combination of CC and IC)			
K6	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E6 and I6)			
K7 ⁽³⁾	IECEX Flameproof, Dust Ignition-proof, Intrinsic Safety, Type n (combination of E7, 17, and N7)	*		
KA ⁽³⁾	ATEX and CSA Flameproof, Intrinsically Safe, Division 2	*		
KB	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2 (combination of E5, E6, I5, and I6)	*		
KC ⁽³⁾	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2			
KD ⁽³⁾	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe (combination of E5, I5, E6, I6, E1, and I1)	*		
N1 ⁽³⁾	ATEX Type n	*		
N7 ⁽³⁾	IECEx Type n	*		
ND ⁽³⁾	ATEX Dust	*		
Sensor fill fl	uid and O-ring options			
L1	Inert sensor fill fluid	*		
L2	Graphite-filled (PTFE) O-ring	*		
LA	Inert sensor fill fluid and graphite-filled (PTFE) O-ring	*		
Display and	interface options			
M4 ⁽⁹⁾	LCD display with LOI	*		
M5	LCD display	*		
Transient pr	otection ⁽¹¹⁾			
T1	Transient terminal block	*		
Alarm limit	12)(13)			
C4 ⁽¹⁴⁾	NAMUR alarm and saturation levels, high alarm	*		
CN ⁽¹⁴⁾	NAMUR alarm and saturation levels, low alarm	*		
CR	Custom alarm and saturation signal levels, high alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*		
CS	Custom alarm and saturation signal levels, low alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*		
СТ	Low alarm (standard Rosemount alarm and saturation levels)	*		
PlantWeb c	ontrol functionality ⁽¹⁰⁾			
A01	FOUNDATION Fieldbus Advanced Control Function Block Suite	*		
Hardware a	djustments ⁽¹²⁾			
D4	Zero and span hardware adjustments	*		
DZ	Digital zero trim	*		
Ground scre	W ⁽¹⁵⁾			
V5	External ground screw assembly	*		
HART revision	on configuration ⁽¹²⁾			
HR5 ⁽¹⁶⁾	Configured for HART Revision 5	*		
HR7 ⁽¹⁷⁾	Configured for HART Revision 7	*		
Typical Mod	lel Number: 2051CFP D S 010 W1 S 0500 D3 2 A A 1 E5 M5			

1. To improve pipe perpendicularity for gasket sealing, socket diameter is smaller than standard pipe O.D.

HART Revision 5 is the default HART output. The Rosemount 2051 with Selectable HART can be factory or field configured to HART Revision 7. To order HART Revision 7 factory configured, add option code HR7.

3. Not available with low power Output Code M.

4. Thermowell material is the same as the body material.

5. Does not apply to process connection codes T1 and S1.

6. Not available for bore sizes 0010, 0014, 0020, or 0034.

7. Not available with DIN Process Connection codes D1, D2, or D3.

8. Materials of Construction comply with metallurgical requirements within NACE MR0175/ISO for sour oil field production environments. Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments.

9. Only available with 4–20 mA HART (Output Code A).

10. Only valid with FOUNDATION Fieldbus Output Code F.

11. Not available with Housing code 00, 5A or 7J. The T1 option is not needed with FISCO Product Certifications, transient protection is included with the FISCO Product Certification code IA.

12. Only available with 4–20 mA HART (output codes A and M).

13. Only available with 4–20 mA HART (output codes A and M).

14. NAMUR-Compliant operation is pre-set at the factory and cannot be changed to standard operation in the field.

15. The V5 option is not needed with the T1 option; external ground screw assembly is included with the T1 option.

16. Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 Safety Instrumented Systems Requirements.

17. Configures the HART output to HART Revision 7. The device can be field configured to HART Revision 5 Safety Instrumented Systems Requirements.

Specifications and Reference Data

A.5.4 Rosemount 2051L Level Transmitter

This ordering table contains the following Rosemount 2051L configurations:

Configuration	Transmitter output code
4–20 mA HART Protocol	
• Rosemount 2051	A
• Enhanced Rosemount 2051 ⁽¹⁾	
FOUNDATION Fieldbus Protocol	F
PROFIBUS PA Protocol	W

1. The enhanced 4–20 mA HART device can be ordered with transmitter output option code A plus any of the following new option codes: DA0, M4, QT, DZ, CR, CS, CT, HR5, HR7.

See Performance specifications and Options for more details on each configuration.

Additional information

Specifications: page 91 Certifications: page 149 Dimensional Drawings: page 102

Table A-17. Rosemount 2051L Liquid Level Transmitter Ordering Information

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Rosemount model	Transmitter type		
2051L	Liquid level transmitter		*
Pressure ra	nge		
2	–250 to 250 inH ₂ O (–0,6 to 0,6 bar)		*
3	–1000 to 1000 inH ₂ O (–2,5 to 2,5 bar)		*
4	-300 to 300 psi (-20,7 to 20,7 bar)		*
Transmitte	r output		·
A ⁽¹⁾	4–20 mA with digital signal Based on HART Protocol		*
F	FOUNDATION Fieldbus Protocol		*
W	PROFIBUS PA Protocol		*
М	Low-power, 1–5 V dc with digital signal based on HART Pro	tocol	
Process cor	nnection size, diaphragm material (high side)		
	Process connection size	Diaphragm	
G ⁽²⁾	2-in./DN 50	316L stainless steel	*
H ⁽²⁾	2-in./DN 50	Alloy C-276	*
J	2-in./DN 50	Tantalum	*
A ⁽²⁾	3-in./DN 80	316L stainless steel	*
B ⁽²⁾	4-in./DN 100	316L stainless steel	*
C ⁽²⁾	3-in./DN 80	Alloy C-276	*
D ⁽²⁾	4-in./DN 100	Alloy C-276	*
E	3-in./DN 80	Tantalum	*
F	4-in./DN 100	Tantalum	*

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

0 None, floshmount ** 2 2-in, 50 mm ** 6 6-in, 150 mm ** 6 6-in, 150 mm ** 7 Size Rating Material (high size) ** 8 6-in, 150 mm NSI, IASME B16.5 Class 150 Carbon steel ** 8 4-in, ANSI/ASME B16.5 Class 150 Carbon steel ** 8 4-in, ANSI/ASME B16.5 Class 150 Carbon steel ** 9 4-in, ANSI/ASME B16.5 Class 300 Carbon steel ** 10 4-in, ANSI/ASME B16.5 Class 300 Carbon steel ** 10 4-in, ANSI/ASME B16.5 Class 300 Carbon steel ** 10 4-in, ANSI/ASME B16.5 Class 150 Stainless steel ** 10 4-in, ANSI/ASME B16.5 Class 150 Stainless steel ** 110 4-in, ANSI/ASME B16.5 Class 150 Stainless steel ** 120 Jin, ANSI/ASME B16.5 Class 150 Stainless steel ** 120 Jin, ANSI/ASME B16.5 Class 300 Stai	Extension	ength (high side)						
2 2-hn/50 mm 4 4-in/100 mm 4 4 4 4-in/100 mm 4 4 4 6 6-in/150 mm 5 5 5 5 Material (hig/50 mm Material (hig/50 mm 4 Material (hig/50 mm Material (hig/50 mm 4 Material (hig/50 mm Material (hig/50 mm % Material (hig/50 mm Material (hig/50 mm % Material (hig/50 mm % % % % % % % % <td colsp<="" td=""><td>0</td><td>None, flush mount</td><td colspan="4">None, flush mount</td><td>*</td></td>	<td>0</td> <td>None, flush mount</td> <td colspan="4">None, flush mount</td> <td>*</td>	0	None, flush mount	None, flush mount				*
44-in/100 mm	2	2-in./50 mm				*		
6 6-in./150 mm X Mounting Harge size, rating, material (high side) Material (high side) Material (high side) N 2-in. ANSI/ASME B16.5 Class 150 Carbon steel X A 3-in. ANSI/ASME B16.5 Class 150 Carbon steel X B 4-in. ANSI/ASME B16.5 Class 300 Carbon steel X C 3-in. ANSI/ASME B16.5 Class 300 Carbon steel X D 4-in. ANSI/ASME B16.5 Class 300 Carbon steel X C 3-in. ANSI/ASME B16.5 Class 300 Carbon steel X D 4-in. ANSI/ASME B16.5 Class 150 Stainless steel X G(2) 3-in. ANSI/ASME B16.5 Class 300 Stainless steel X G(2) 3-in. ANSI/ASME B16.5 Class 300 Stainless steel X Q Dhs0 NI/ASME B16.5 Class 300 Stainless steel X G(2) 3-in. ANSI/ASME B16.5 Class 300 Stainless steel X G(2) 0 bipayed ANSI/ASME B16.5 Class 300 Stainless steel X Q DNS0	4	4-in./100 mm					*	
Material (high site site site site site site site site	6	6-in./150 mm					*	
SizeRatingMateriationM	Mounting f	lange size, rating, material (high s	side)					
M2-in.ANSI/ASME B16.5 Class 150Carbon steel*A3-in.ANSI/ASME B16.5 Class 150Carbon steel*N2-in.ANSI/ASME B16.5 Class 150Carbon steel*N2-in.ANSI/ASME B16.5 Class 300Carbon steel*C3-in.ANSI/ASME B16.5 Class 300Carbon steel*X122-in.ANSI/ASME B16.5 Class 300Carbon steel*X122-in.ANSI/ASME B16.5 Class 150Stainless steel*X122-in.ANSI/ASME B16.5 Class 150Stainless steel*X123-in.ANSI/ASME B16.5 Class 150Stainless steel*Y12DisplayedANSI/ASME B16.5 Class 300Stainless steel*Y12DisplayedANSI/ASME B16.5 Class 300Stainless steel*Y12DisplayedANSI/ASME B16.5 Class 300Stainless steel*Y12DisplayedPN 10-40 per KN 1092-1Carbon steel*Y12DNS0PN 10-40 per KN 1092-1Carbon steel*Y12DNS0PN 10-40 per KN 1092-1Stainless steel*Y12DNS0PN 40 per KN 1092-1Carbon steel*Y12DNS0PN 40 per KN 1092-1Stainless steel*Y12DNS0PN 40 per KN 1092-1Carbon steel*Y12DNS0PN 40 per KN 1092-1Stainless steel*Y12DNS0PN 40 per KN 1092-1Stainless steel*Y12DNS0PN 40 per KN 1		Size	Rating		Materia	I		
A3-in.ANSI/ASME B16.5 Class 150Carbon steel\$B4-in.ANSI/ASME B16.5 Class 150Carbon steel\$C3-in.ANSI/ASME B16.5 Class 300Carbon steel\$D4-in.ANSI/ASME B16.5 Class 300Carbon steel\$X?2-in.ANSI/ASME B16.5 Class 150Stainless steel\$Y?3-in.ANSI/ASME B16.5 Class 150Stainless steel\$G?4-in.ANSI/ASME B16.5 Class 150Stainless steel\$G?4-in.ANSI/ASME B16.5 Class 150Stainless steel\$G?4-in.ANSI/ASME B16.5 Class 300Stainless steel\$G?4-in.ANSI/ASME B16.5 Class 300Stainless steel\$G3-in.ANSI/ASME B16.5 Class 300Stainless steel\$G3-in.ANSI/ASME B16.5 Class 300Stainless steel\$GMASOPN40 per EN 1092-1Carbon steel\$QDN50PN 10-40 per EN 1092-1Carbon steel\$K?DN80PN40 per EN 1092-1Stainless steel\$K?DN80PN40 per EN 1092-1Stainless teel\$K?DN80PN40 per EN 1092-1Stainless teel\$K?DN80PN40 per EN 1092-1Stainless teel\$K?DN80PN40 per EN 1092-1Stainless teel\$Seal fill fluit (ligh side)Stainless teel\$\$K?DN80PN40 per EN 1092-1Stainless teel\$	М	2-in.	ANSI/ASME B16.5 Cl	ass 150	Carbon s	teel	*	
B4-in.ANS//ASME B16.5 Class 150Carbon steel*N2-in.ANSI/ASME B16.5 Class 300Carbon steel*D4-in.ANSI/ASME B16.5 Class 300Carbon steel*D4-in.ANSI/ASME B16.5 Class 150Stainless steel*X ⁽²⁾ 2-in.ANSI/ASME B16.5 Class 150Stainless steel*G ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 150Stainless steel*G ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 150Stainless steel*G ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 300Stainless steel*G ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 300Stainless steel*Y ⁽²⁾ DisplayedANSI/ASME B16.5 Class 300Stainless steel*Y ⁽²⁾ Ain.ANSI/ASME B16.5 Class 300Stainless steel*QDNS0PN 10-40 per EN 1092-1Carbon stel*QDNS0PN 10-40 per EN 1092-1Stainless steel*T1 ²⁰ DNS0PN 40 per EN 1092-1Stainless steel*Seal fill fill fill sidelPN 40 per EN 1092-1Stainless steel*Seal fill fill fill sidelPN 40 per EN 1092-1Stainless steel*Mine ret (rator 70 * UTDNS0PN 40 per EN 1092-1Stainless teel*ASytherm XLTO.93102 to 293 °F (-75 to 145 °C)*ASilicone 70T.92-S to 401 °F (-15 to 205 °C)*ANoebee M-20O.93 </td <td>A</td> <td>3-in.</td> <td>ANSI/ASME B16.5 Cl</td> <td>ass 150</td> <td>Carbon s</td> <td>teel</td> <td>*</td>	A	3-in.	ANSI/ASME B16.5 Cl	ass 150	Carbon s	teel	*	
N2-in.ANSI/ASME B16.5 Class 300Carbon stee *C3-in.ANSI/ASME B16.5 Class 300Carbon stee *X2'2-in.ANSI/ASME B16.5 Class 150Stainless steel*X2'2-in.ANSI/ASME B16.5 Class 150Stainless steel*G'2'4-in.ANSI/ASME B16.5 Class 150Stainless steel*G'2'4-in.ANSI/ASME B16.5 Class 300Stainless steel*G'2'4-in.ANSI/ASME B16.5 Class 300Stainless steel*G'2'4-in.ANSI/ASME B16.5 Class 300Stainless steel*H12'3-in.ANSI/ASME B16.5 Class 300Stainless steel*QDNS0PN 10-40 per EN 1092-1Carbon steel*QDNS0PN 10-40 per EN 1092-1Carbon steel*K2'DNS0PN 10-40 per EN 1092-1Stainless steel*K2'DNS0PN 10-40 per EN 1092-1Stainless steel*K2'DNS0PN 40 per EN 1092-1Stainless steel*Sainless teelSainless teelSainless Steel*Sainless teelSainless SteelSainless Steel	В	4-in.	ANSI/ASME B16.5 Cl	ass 150	Carbon s	teel	*	
C3-in.ANS//ASME B16.5 Class 300Carbon stel★D4-in.ANSI/ASME B16.5 Class 300Carbon stel★X ⁽²⁾ 2-in.ANSI/ASME B16.5 Class 150Stainless stel★F(2)3-in.ANSI/ASME B16.5 Class 150Stainless stel★G(2)4-in.ANSI/ASME B16.5 Class 150Stainless stel★G(2)4-in.ANSI/ASME B16.5 Class 300Stainless stel★G(2)3-in.ANSI/ASME B16.5 Class 300Stainless stel★J ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 300Stainless stel★J ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 300Stainless stel★J ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 300Stainless stel★QDNS0PN 10-40 per EN 1092-1Carbon stel★K ⁽²⁾ DNS0PN 10-40 per EN 1092-1Carbon stel★K ⁽²⁾ DNS0PN 40 per EN 1092-1Stainless stel★Seal fill fluit (high side)PN 40 per EN 1092-1Stainless stel★Seal fill fluit (high side)PN 40 per EN 1092-1Stainless stel★Seal fill fluit (high side)PN 40 per EN 1092-1Stainless stel★Seal fill fluit (high side)PN 40 per EN 1092-1Stainless stel★Seal fill fluit (high side)Silcone 7041.07×2 tot 15 cot 15 cot 15 cot 14 cot 14 cot 15 cot 14 cot 14 cot 15 cot 14 cot 14 cot 15 cot 15 cot 14 cot 14 cot 15 cot 15 cot 1	N	2-in.	ANSI/ASME B16.5 Cl	ass 300	Carbon s	teel	*	
D4-in.ANSI/ASME B16.5 Class 300Carbon steel★X(?)2-in.ANSI/ASME B16.5 Class 150Stainless steel★F?3-in.ANSI/ASME B16.5 Class 150Stainless steel★G(?)4-in.ANSI/ASME B16.5 Class 300Stainless steel★Y(?)DisplayedANSI/ASME B16.5 Class 300Stainless steel★Y(?)DisplayedANSI/ASME B16.5 Class 300Stainless steel★Y(?)Ain.ANSI/ASME B16.5 Class 300Stainless steel★QDNS0PN 10-40 per EN 1092-1Carbon steel★QDNS0PN 10-40 per EN 1092-1Carbon steel★RDN80PN 40 per EN 1092-1Stainless steel★K(?)DNS0PN 10-40 per EN 1092-1Stainless steel★RDN80PN 40 per EN 1092-1Stainless steel★K(?)DN80PN 40 per EN 1092-1Stainless steel★Seal fill flut Uhigh side)PN 40 per EN 1092-1Stainless steel★KDN80PN 40 per EN 1092-1Stainless steel★Seal fill flut Uhigh side)PN 40 per EN 1092-1Stainless steel★KDN80PN 40 per EN 1092-1Stainless steel★Seal fill flut Uhigh side)PN 40 per EN 1092-1Stainless steel★Seal fill flut Uhigh side)PN 40 per EN 1092-1Stainless steel★Seal fill flut InternotionStainless teel102 to 203 °C (r 45 to 160 °C)★ <td< td=""><td>C</td><td>3-in.</td><td>ANSI/ASME B16.5 Cl</td><td>ass 300</td><td>Carbon s</td><td>teel</td><td>*</td></td<>	C	3-in.	ANSI/ASME B16.5 Cl	ass 300	Carbon s	teel	*	
X ⁽²⁾ 2-in.ANSI/ASME B16.5 Class 150Stainless steel*K ⁽²⁾ 3-in.ANSI/ASME B16.5 Class 150Stainless steel*G ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 100Stainless steel*V ⁽³⁾ DisplayedANSI/ASME B16.5 Class 300Stainless steel*H ⁽²⁾ 3-in.ANSI/ASME B16.5 Class 300Stainless steel*QDN50PN 10-40 per K1 092-1Carbon steel*QDN50PN 10-40 per K1 092-1Carbon steel*K ⁽²⁾ DN80PN 40 per K1 1092-1Stainless steel*T(2)DN80PN 40 per K1 1092-1Stainless steel*K ⁽²⁾ DN50PN 10-40 per K1 1092-1Stainless steel*T(2)DN80PN 40 per K1 1092-1Stainless steel*K ⁽²⁾ DN80PN 40 per K1 1092-1Stainless steel*T(2)DN80PN 40 per K1 1092-1Stainless steel*K ⁽²⁾ DN80PN 40 per K1 1092-1Stainless steel*Seal fill fluidStainless teelStainless teel**GSilicone 70 <td>D</td> <td>4-in.</td> <td>ANSI/ASME B16.5 Cl</td> <td>ass 300</td> <td>Carbon s</td> <td>teel</td> <td>*</td>	D	4-in.	ANSI/ASME B16.5 Cl	ass 300	Carbon s	teel	*	
F?23-in.ANSI/ASME B16.5 Class 150Stainless steel*G(2)4-in.ANSI/ASME B16.5 Class 150Stainless steel*Y(2)DisplayedANSI/ASME B16.5 Class 300Stainless steel*Y(2)DisplayedANSI/ASME B16.5 Class 300Stainless steel*Y(2)4-in.ANSI/ASME B16.5 Class 300Stainless steel*Y(2)4-in.ANSI/ASME B16.5 Class 300Stainless steel*Y(2)4-in.ANSI/ASME B16.5 Class 300Stainless steel*Y(2)ANS0PN 10-40 per EN 1092-1Carbon steel*RDNS0PN 10-40 per EN 1092-1Carbon steel*RDNS0PN 10-40 per EN 1092-1Stainless steel*T(2)DNS0PN 10-40 per EN 1092-1Stainless steel*T(2)DNS0PN 40 per EN 1092-1Stainless steel*T(2)DNS0PN 40 per EN 1092-1Stainless steel*Seal fill flut(high side)PN 40 per EN 1092-1Stainless steel*Seal fill flut(high side)PN 40 per EN 1092-1Stainless steel*Seal fill flut(high side)PN 40 per EN 1092-1Stainless teel*Seal fill flut(high side)PN 40 per EN 1092-1Stainless teel*Seal fill flut(high side)Stainless teel**Seal fill flut(high side)Stainless teel**Seal fill flut(high side)Stainless teel**Seal fill flut(high side)St	X ⁽²⁾	2-in.	ANSI/ASME B16.5 Cl	ass 150	Stainless	steel	*	
G[2]4-in.ANSI/ASME B16.5 Class 150Stainless steel*Y(2)DisplayedANSI/ASME B16.5 Class 300Stainless steel*H ⁽²⁾ 3-in.ANSI/ASME B16.5 Class 300Stainless steel*H ⁽²⁾ 4-in.ANSI/ASME B16.5 Class 300Stainless steel*QDN50PN 10-40 per EN 1092-1Carbon steel*QDN50PN 10-40 per EN 1092-1Carbon steel*K ⁽²⁾ DN50PN 10-40 per EN 1092-1Stainless steel*Salicone 704DN80PN 40 per EN 1092-1Stainless steel*ASyltherm XLT0.85OSilicone 7040.85DSilicone 2000.93NNeobee M-200.93NNeobee M-201.1349 to 401 "F (-15 to 205 "C)*NNeobee M-20Stainless steel0.925 to 401 "F (-15 to 205 "C)*NNeobee M-20Stainless steelPPropylene glycol and water1.1349 to 320 "F (-45 to 160 °C)*N </td <td>F⁽²⁾</td> <td>3-in.</td> <td>ANSI/ASME B16.5 Cl</td> <td>ass 150</td> <td>Stainless</td> <td>steel</td> <td>*</td>	F ⁽²⁾	3-in.	ANSI/ASME B16.5 Cl	ass 150	Stainless	steel	*	
YP2DisplayedANSI/ASME B16.5 Class 300Stainless steel*HI23-in.ANSI/ASME B16.5 Class 300Stainless steel*J24-in.ANSI/ASME B16.5 Class 300Stainless steel*QDN50PN 10-40 per EN 1092-1Carbon steel*RDN80PN 40 per EN 1092-1Carbon steel*K12DN50PN 10-40 per EN 1092-1Stainless steel*K12DN50PN 40 per EN 1092-1Stainless steel*K12DN80PN 40 per EN 1092-1Stainless steel*K12DN80PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluit (high side)T1.02- 102 to 293 'F (-75 to 145 'C)*MNecbeer M-20Silicone 200Stainless steel*- 49 to 320 'F (-45 to 205 'C)*NNecbeer M-20	G ⁽²⁾	4-in.	ANSI/ASME B16.5 Cl	ass 150	Stainless	steel	*	
H IP3-in.ANSI/ASME B16.5 Class 300Stainless steel*J°4-in.ANSI/ASME B16.5 Class 300Stainless steel*QDN50PN 10-40 per EN 1092-1Carbon steel*RDN80PN 40 per EN 1092-1Garbon steel*K ⁽²⁾ DN50PN 10-40 per EN 1092-1Stainless steel*K ⁽²⁾ DN50PN 10-40 per EN 1092-1Stainless steel*K ⁽²⁾ DN50PN 10-40 per EN 1092-1Stainless steel*T ⁽²⁾ DN80PN 40 per EN 1092-1Stainless steel*Seal fill fluitfundem temperature of 20 °F (21 °C)**Seal fill fluitfundem temperature of 20 °F (21 °C)**ASyltherm XLT0.85-102 to 293 °F (-75 to 145 °C)*CSilicone 7041.0732 to 401 °F (-45 to 205 °C)*DSilicone 2000.93-49 to 401 °F (-45 to 205 °C)*GGilycerin and water1.855 to 401 °F (-15 to 205 °C)*NNeobee M-200.925 to 401 °F (-15 to 205 °C)*PPropylene glycol and water1.025 to 203 °F (-15 to 95 °C)*Sensor motionFlange adapter	Y ⁽²⁾	Displayed	ANSI/ASME B16.5 Cl	ass 300	Stainless	steel	*	
j²4-in.ANSI/ASME B16.5 Class 300Stainless steel*QDNS0PN 10-40 per EN 1092-1Carbon steel*RDN80PN 40 per EN 1092-1Carbon steel*K²DNS0PN 10-40 per EN 1092-1Stainless steel*T²DN80PN 40 per EN 1092-1Stainless steel*Seal fill fluid (high side)*Specific gravityTemperature limits (ambient temperature of 70 °F [21 °C])ASyltherm XLT0.85-102 to 293 °F (-75 to 145 °C)*CSilicone 7041.0732 to 401 °F (10 to 205 °C)*DSilicone 7000.93-49 to 401 °F (10 to 205 °C)*HInert (halocarbon)1.855 to 401 °F (-45 to 205 °C)*GGlycerin and water1.13-49 to 320 °F (-45 to 160 °C)*NNeobee M-200.925 to 401 °F (-15 to 205 °C)*PPropylene glycol and water1.025 to 203 °F (-45 to 160 °C)*NNeobee M-200.925 to 401 °F (-15 to 205 °C)*PPropylene glycol and water1.025 to 203 °F (-45 to 160 °C)*Sensor of GigurationFlange adapter1.025 to 203 °F (-45 to 160 °C)*1GageStainless steel316*313Tuned-system with remote sealNone*Sensor fill fluid (low side) ⁽²⁾ *Sensor fill fluid (low side) ⁽²⁾ </td <td>H⁽²⁾</td> <td>3-in.</td> <td>ANSI/ASME B16.5 Cl</td> <td>ass 300</td> <td>Stainless</td> <td>steel</td> <td>*</td>	H ⁽²⁾	3-in.	ANSI/ASME B16.5 Cl	ass 300	Stainless	steel	*	
QDN50PN 10-40 per EN 1092-1Carbon steel★RDN80PN 40 per EN 1092-1Carbon steel★K ^{[2)} DN50PN 10-40 per EN 1092-1Stainless steel★T ^{[2)} DN80PN 40 per EN 1092-1Stainless steel★Seal fill fluid (high side)PN 40 per EN 1092-1Stainless steel★Seal fill fluid (high side)Specific gr-WTemperature limits (ambient temperature of 70 °F [21 °C])★ASytherm XLT0.85-102 to 293 °F (-75 to 145 °C)★CSilicone 7041.0732 to 401 °F (0 to 205 °C)★DSilicone 7041.855 to 401 °F (-15 to 205 °C)★GGlycerin and water1.855 to 401 °F (-15 to 205 °C)★NNeobee M-200.925 to 401 °F (-15 to 205 °C)★PPropylene glycol and water1.025 to 401 °F (-15 to 205 °C)★Sensor moter configuration, flange adapter (low side)(2)1.025 to 401 °F (-15 to 205 °C)★1GageStainless steel1.025 to 203 °F (-45 to 160 °C)★3 ⁽³⁾ Tuned-system with remote sealNone	J ⁽²⁾	4-in.	ANSI/ASME B16.5 Cl	ass 300	Stainless	steel	*	
RDN80PN 40 per EN 1092-1Carbon steel*K(2)DN50PN 10-40 per EN 1092-1Stainless steel*T(2)DN80PN 40 per EN 1092-1Stainless steel*Seal fill fluidStainless steel*Specific gravityTemperature limits (ambient temperature of $0^{+}F [21 \circ C]$)*ASytherm XLT 0.85 -102 to 293 °F (-75 to 145 °C)*CSilicone 704 0.93 -102 to 293 °F (-75 to 145 °C)*DSilicone 200 0.93 -49 to 401 °F (-45 to 205 °C)*HInert (halocarbon) 1.85 $5 to 401 °F (-15 to 205 °C)$ *GGlycerin and water 1.25 $5 to 401 °F (-15 to 205 °C)$ *NNeobee M-20 0.92 $5 to 401 °F (-15 to 205 °C)$ *PPropylene glycol and water 1.02 $5 to 401 °F (-15 to 205 °C)$ *Sensor tube configuration, flange adapter (low side)(2) $5 to 401 °F (-15 to 205 °C)$ *1GageStainless steel $5 to 203 °F (-15 to 95 °C)$ *3(3)Tuned-system with remote sealNone $- $ $ to 203 °F (-15 to 95 °C)$ *3(3)Tuned-system with remote sealNone $- $ $ $ to 203 °F (-15 to 95 °C)$ *3(3)Tuned-system with remote sealNone $- $ $ $ to 203 °F (-15 to 95 °C)$ *3(3)Tuned-system with remote sealNone $- $ $ $ to 203 °F (-15 to 95 °C)$ *3(3)Tuned-system with remote sealNone	Q	DN50	PN 10-40 per EN 109	92-1	Carbon s	teel	*	
K(2) T(2)DN50PN 10-40 per EN 1092-1Stainless steel*T(2) DN80DN80PN 40 per EN 1092-1Stainless steel*Seal fill fluid (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluid (high side)PN 40 per EN 1092-1Stainless steel*Seal fill fluid (high side)Syltern XLTSyltern XLTSyltern XLT*ASyltern XLT0.85-102 to 293 °F (-75 to 145 °C)*CSilicone 7041.0732 to 401 °F (0 to 205 °C)*DSilicone 2000.93-49 to 401 °F (-45 to 205 °C)*HInert (halocarbon)1.855 to 401 °F (-15 to 205 °C)*GGlycerin and water1.13-49 to 320 °F (-45 to 160 °C)*NNeobee M-200.925 to 401 °F (-15 to 205 °C)*PPropylene glycol and water1.025 to 203 °F (-15 to 205 °C)*Sensor motifiguration, flange adapter1.025 to 203 °F (-15 to 95 °C)*1GageStainless steelStainless steel*3 ⁽³⁾ Tuned-system with remote sealNone**Sensor motifier trailSensor fill fluidSensor fill fluid**3 ⁽³⁾ Tuned-system with remote sealNone**Sensor motifier trailSensor fill fluidSensor fill fluid**1316L stainless steelSilicone**1316L	R	DN80	PN 40 per EN 1092-1		Carbon s	teel	*	
T(2)DN80PN 40 per EN 1092-1Stainless teel*Seal fill fluid (high side)Specific gr-vtyTemperature limits (ambient temperature of 70 'F [21 'C])*ASylthern XLT 0.85 $-102 to 293 "f (-75 to 145 'C)$ *CSilicone 704 1.07 $23 to 401 "F (0 to 205 °C)$ *DSilicone 200 0.93 $-49 to 401 "F (-45 to 205 °C)$ *HInert (halocarbon) 1.85 $5 to 401 "F (-15 to 205 °C)$ *GGlycerin and water 1.13 $-49 to 320 " (-45 to 160 °C)$ *NNeobee M-20 0.92 $5 to 401 "F (-15 to 205 °C)$ *PPropylene glycol and water 1.02 $5 to 401 "F (-15 to 205 °C)$ *Sensor motification, flange adapter 1.02 $5 to 203 "F (-15 to 505 °C)$ *SStainless steelStainless steel 1.02 $5 to 203 "F (-15 to 505 °C)$ *SStainless steelNone 1.02 $5 to 203 "F (-15 to 505 °C)$ *SStainless steelNone 1.02 $5 to 203 "F (-15 to 505 °C)$ *SStainless steelNone 1.02 $5 to 203 "F (-15 to 505 °C)$ *3(3)Tuned-system with remote sealNone 1.02 $5 to 203 "F (-15 to 505 °C)$ *SSensor motifier trialSensor fill fluid (low side)(2) 1.02 1.02 1.02 1.02 1.02 1.02 SStainless steelNone 1.02 1.02	K ⁽²⁾	DN50	NN50 PN 10-40 per EN 109		Stainless	steel	*	
Seal fill fluid (high side)Temperature limits (ambient temperature of 70 °F [21 °C])Temperature limits (ambient temperature of 70 °F [21 °C])ASyltherm XLT0.85-102 to 293 °F (-75 to 145 °C)*CSilicone 7041.0732 to 401 °F (0 to 205 °C)*DSilicone 2000.93-49 to 401 °F (0 to 205 °C)*HInert (halocarbon)1.855 to 401 °F (-15 to 205 °C)*GGlycerin and water1.13-49 to 320 °F (-45 to 160 °C)*NNeobee M-200.925 to 401 °F (-15 to 205 °C)*PPropylene glycol and water1.025 to 203 °F (-15 to 95 °C)*Sensor module configuration, flange adapter (low side)(2)5 to 203 °F (-15 to 95 °C)*1GageStainless steel**3(3)Tuned-system with remote sealNone**Sensor module diaphragm material, sensor fill fluid (low side)(2)***1316L stainless steel***2Alloy C-276 (stainless steel valve seat)Silicone**1316L stainless steel***2Alloy C-276 (alloy C-276 valve seat)Silicone**7Alloy C-276 (alloy C-276 valve seat)Silicone**	T ⁽²⁾	DN80	PN 40 per EN 1092-1		Stainless	steel	*	
A Syltherm XLT 0.85 -102 to 293 °F (-75 to 145 °C) ★ C Silicone 704 1.07 32 to 401 °F (0 to 205 °C) ★ D Silicone 200 -49 to 401 °F (-45 to 205 °C) ★ H Inert (halocarbon) 1.85 5 to 401 °F (-15 to 205 °C) ★ G Glycerin and water 1.13 -49 to 320 °F (-45 to 160 °C) ★ N Neobee M-20 0.92 5 to 401 °F (-15 to 205 °C) ★ P Propylene glycol and water 0.92 5 to 401 °F (-15 to 205 °C) ★ Sensor moture configuration, flange adapter 1.02 5 to 203 °F (-15 to 95 °C) ★ Sensor moture configuration, flange adapter 1.02 5 to 203 °F (-15 to 95 °C) ★ 1 Gage Stainless steel 1.02 5 to 203 °F (-15 to 95 °C) ★ 3 Tuned-system with remote seal None	Seal fill fluid (high side)			Specific gra	avity	Temperature limits (ambient temperature of 70 °F [21 °C])		
CSilicone 7041.07 $32 \text{ to } 401 \ \ensuremath{red} 10 \text{ to } 205 \ \ensuremath{ensuremath{red} 1}$ 1.07 $32 \text{ to } 401 \ \ensuremath{ensuremath{red} 1}$ 1.07 $32 \text{ to } 401 \ \ensuremath{ensuremath{red} 1}$ 1.07 $32 \text{ to } 401 \ \ensuremath{ensuremath}ensuremath{ensurema$	A	Syltherm XLT		0.85		–102 to 293 °F (–75 to 145 °C)	*	
DSilicone 200-49 to 401 °F (-45 to 205 °C)★HInert (halocarbon)1.855 to 401 °F (-15 to 205 °C)★GGlycerin and water1.13-49 to 320 °F (-45 to 160 °C)★NNeobee M-200.925 to 401 °F (-15 to 205 °C)★PPropylene glycol and water0.925 to 401 °F (-15 to 205 °C)★Sensor motion, flange adapter1.025 to 203 °F (-15 to 95 °C)★1GageStainless steel	C	Silicone 704		1.07		32 to 401 °F (0 to 205 °C)	*	
HInert (halocarbon)1.855 to 401 °F (-15 to 205 °C)★GGlycerin and water1.13-49 to 320 °F (-45 to 160 °C)★NNeobee M-200.925 to 401 °F (-15 to 205 °C)★PPropylene glycol and water1.025 to 203 °F (-15 to 95 °C)★Sensor motion flange adapter (low side) ⁽²⁾ 5 to 203 °F (-15 to 95 °C)★Configuration, flange adapter (low side) ⁽²⁾ 5 to 203 °F (-15 to 95 °C)★1GageStainlege adapter1.025 to 203 °F (-15 to 95 °C)★2OnfigurationFlange adapter1.025 to 203 °F (-15 to 95 °C)★3GageStainlege adapter1.025 to 203 °F (-15 to 95 °C)★2GageStainlege adapter1.025 to 203 °F (-15 to 95 °C)★3GageStainlege adapter1.025 to 203 °F (-15 to 95 °C)★3GageStainlege adapter1.025 to 203 °F (-15 to 95 °C)★3GageStainlege adapterStainlege adapter**3Inde-system with remote sealNone1.02**3Sensor motion material, sensor fill fluidSensor fill fluid1.02**1316L stainlege steelSilicone1.02***2Alloy C-276 (stainlege steel valve seat)Silicone1.02**7Alloy C-276 (alloy C-276 valve seat)Silicone*** <td>D</td> <td>Silicone 200</td> <td></td> <td>0.93</td> <td></td> <td>–49 to 401 °F (–45 to 205 °C)</td> <td>*</td>	D	Silicone 200		0.93		–49 to 401 °F (–45 to 205 °C)	*	
GGlycerin and water1.13-49 to 320 °F (-45 to 160 °C)★NNeobee M-200.925 to 401 °F (-15 to 205 °C)★PPropylene glycol and water1.025 to 203 °F (-15 to 95 °C)★Sensor motion, flange adapter (low side)(2)ConfigurationFlange adapter	Н	Inert (halocarbon)		1.85		5 to 401 °F (–15 to 205 °C)	*	
NNeobee M-200.925 to 401 °F (−15 to 205 °C)★PPropylene glycol and water1.025 to 203 °F (−15 to 95 °C)★Sensor motiguration, flange adapter low side) ⁽²⁾ ConfigurationFlange adapter1GageStainless steel★2DifferentialStainless steel★3 ⁽³⁾ Tuned-system with remote sealNone	G	Glycerin and water		1.13		–49 to 320 °F (–45 to 160 °C)	*	
PPropylene glycol and water1.025 to 203 °F (−15 to 95 °C)★Sensor model configuration, flange adapterFlange adapterSensor model configurationFlange adapter1GageStainless steelStainless steel<	N	Neobee M-20		0.92		5 to 401 °F (–15 to 205 °C)	*	
Sensor moUle configuration, flange adapter (low side) ⁽²⁾ ConfigurationFlange adapter1GageStainless steel2DifferentialStainless steel3(3)Tuned-system with remote sealNoneSensor moUle alaphragm material, sensor fIll fluid (low side) ⁽²⁾ Diaphragm materialSensor fill fluid1316L stainless steelSilicone2Alloy C-276 (stainless steel valve seat)Silicone7Alloy C-276 valve seat)Silicone	Р	Propylene glycol and water		1.02		5 to 203 °F (–15 to 95 °C)	*	
ConfigurationFlange adapter1GageStainless steel*2DifferentialStainless steel*3(3)Tuned-system with remote sealNone*Sensor muterial, sensor fill fluid (low side)(2)Diaphragm material, sensor fill fluidSensor fill fluid1316L stainless steelSilicone*2Alloy C-276 (stainless steel valve seat)Silicone*7Alloy C-276 (alloy C-276 valve seat)Silicone*	Sensor mo	dule configuration, flange adapter	(low side) ⁽²⁾					
1GageStainless steel★2DifferentialStainless steel★3(3)Tuned-system with remote sealNone★Sensor moterial, sensor fill fluid (low side)(2)Diaphragm material, sensor fill fluidSensor fill fluid1316L stainless steelSilicone★2Alloy C-276 (stainless steel valve seat)Silicone★7Alloy C-276 (alloy C-276 valve seat)Silicone★		Configuration	Flange adapter					
2DifferentialStainless steel★3(3)Tuned-system with remote sealNone★Sensor moterial, sensor fill fluid (low side)(2)CDiaphragm material, sensor fill fluid (low side)(2)C1316L stainless steelSilicone★2Alloy C-276 (stainless steel valve seat)Silicone★7Alloy C-276 (alloy C-276 valve seat)Silicone★	1	Gage	Stainless steel				*	
3(3)Tuned-system with remote sealNone*Sensor motule diaphragm material, sensor fill fluid (low side)(2)*Diaphragm materialSensor fill fluid1316L stainless steelSilicone*2Alloy C-276 (stainless steel valve seat)Silicone*7Alloy C-276 (alloy C-276 valve seat)Silicone*	2	Differential	Stainless steel				*	
Sensor material, sensor ill fluid (low side)(2)Diaphragm materialSensor fill fluid1316L stainless steel2Alloy C-276 (stainless steel valve seat)7Alloy C-276 (alloy C-276 valve seat)Silicone*	3(3)	Tuned-system with remote seal	None				*	
Diaphragm materialSensor fill fluid1316L stainless steel2Alloy C-276 (stainless steel valve seat)7Alloy C-276 (alloy C-276 valve seat)Silicone	Sensor mo	dule diaphragm material, sensor f	ill fluid (low side) ⁽²)				
1316L stainless steelSilicone2Alloy C-276 (stainless steel valve seat)Silicone7Alloy C-276 (alloy C-276 valve seat)Silicone		Diaphragm material	Sensor fill fluid					
2Alloy C-276 (stainless steel valve seat)Silicone7Alloy C-276 (alloy C-276 valve seat)Silicone	1	316L stainless steel	Silicone				*	
7 Alloy C-276 (alloy C-276 valve seat) Silicone	2	Alloy C-276 (stainless steel valve seat)	Silicone				*	
	7	Alloy C-276 (alloy C-276 valve seat)	Silicone				*	

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

А	316L stainless steel	Inert (halocarbon)		*
В	Alloy C-276 (stainless steel valve seat)	Inert (halocarbon)		*
G	Alloy C-276 (Alloy C-276 valve seat)	Inert (halocarbon)		*
O-ring				
A	Glass-filled PTFE			*
Housing m	aterial		Conduit entry size	
A	Aluminum		1/2–14 NPT	*
В	Aluminum		M20 x 1,5	*
J	Stainless steel		1/2-14 NPT	*
K ⁽⁴⁾	Stainless steel		M20 x 1,5	*
D	Aluminum		G ¹ /2	
D	,			

Options (Include with selected model number)

PlantWeb	PlantWeb control functionality ⁽⁵⁾		
A01	FOUNDATION Fieldbus advanced control function block suite	*	
Seal assem	blies ⁽⁶⁾		
S1	Assemble to one Rosemount 1199 Seal (requires Rosemount 1199M)	*	
Product Ce	rtifications		
E1 ⁽⁴⁾	ATEX Flameproof	*	
E2 ⁽⁴⁾	INMETRO Flameproof	*	
E3 ⁽⁴⁾	China Flameproof	*	
E4 ⁽⁴⁾	TIIS Flameproof	*	
E5	FM Explosion-proof, Dust Ignition-proof	*	
E6	CSA Explosion-proof, Dust Ignition-proof, Division 2	*	
E7 ⁽⁴⁾	IECEx Flameproof	*	
EW	India (CCOE) Flameproof Approval	*	
11 ⁽⁴⁾	ATEX Intrinsic Safety	*	
I2 ⁽⁴⁾	INMETRO Intrinsically Safe	*	
13 ⁽⁴⁾	China Intrinsic Safety	*	
15	FM Intrinsically Safe, Division 2	*	
16	CSA Intrinsically Safe	*	
17 ⁽⁴⁾	IECEx Intrinsic Safety	*	
IA ⁽⁵⁾	ATEX FISCO Intrinsic Safety	*	
IE ⁽⁵⁾	FM FISCO Intrinsically Safe	*	
IF ⁽⁵⁾	CSA FISCO Intrinsically Safe	*	
IG ⁽⁵⁾	IECEx FISCO Intrinsically Safe	*	
IW	India (CCOE) Intrinsically Safety Approval	*	
K1 ⁽⁴⁾	ATEX Flameproof, Intrinsic Safety, Type n, Dust	*	
K2	INMETRO Flameproof and Intrinsic Safety	*	
K5	FM Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*	
Кб	CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*	
K7 ⁽⁴⁾	IECEx Flameproof, Intrinsic Safety, Type n and Dust	*	

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

auuluonai uo	envery lead time.	
KA ⁽⁴⁾	ATEX and CSA Flameproof, Intrinsically Safe, Division 2	*
КВ	FM and CSA Explosion-proof, Dust Ignition-proof, Intrinsically Safe, Division 2	*
KC ⁽⁴⁾	FM and ATEX Explosion-proof, Intrinsically Safe, Division 2	*
KD ⁽⁴⁾	FM, CSA, and ATEX Explosion-proof, Intrinsically Safe	*
N1 ⁽⁴⁾	ATEX Type n	*
N7 ⁽⁴⁾	IECEx Type n	*
ND ⁽⁴⁾	ATEX Dust	*
Shipboar	d Approvals	
SBS	American Bureau of Shipping (ABS) Type Approval	*
SBV	Bureau Veritas (BV) Type Approval	*
SDN	Det Norske Veritas (DNV) Type Approval	*
SLL	Lloyds Register (LR) Type Approval	*
Display a	nd interface options	
M4 ⁽⁷⁾	LCD display with LOI	*
M5	LCD display	*
Hardwar	e adjustments ⁽⁸⁾	
D4	Zero and span configuration buttons	*
DZ	Digital zero trim	*
Flange ad	lapters ⁽⁹⁾	
DF	1/2-14 NPT flange adapters	*
Conduit	olug ⁽¹⁰⁾	
DO	316 stainless steel conduit plug	*
Ground s	crew ⁽¹¹⁾	
V5	External ground screw assembly	*
Transient	protection ⁽¹²⁾	
T1	Transient terminal block	*
Software	configuration ⁽¹³⁾	
C1	Custom software configuration (completed Rosemount 2051 <u>Configuration Data Sheet</u> required with order)	*
Alarm lin	nit	
C4 ⁽⁸⁾ (14)	NAMUR alarm and saturation levels, high alarm	*
CN ⁽⁸⁾⁽¹⁴⁾	NAMUR alarm and saturation levels, low alarm	*
CR ⁽⁸⁾	Custom alarm and saturation signal levels, high alarm (requires C1 and Rosemount 2051 <u>Configuration Data Sheet</u>)	*
CS ⁽⁸⁾	Custom alarm and saturation signal levels, low alarm (requires C1 and Rosemount 2051 Configuration Data Sheet)	*
CT ⁽⁸⁾	Low alarm (standard Rosemount alarm and saturation levels)	*
Calibratio	on Certification	
Q4	Calibration Certificate	*
QG	Calibration Certificate and GOST Verification Certificate	*
GP	Calibration Certificate and tamper evident seal	*
Material	Traceability Certification	1
08	Material Traceability Certification per EN 10204 3.1.B	*
<u>`</u>		

The starred offerings represent the most common options and should be selected for best delivery. The non-starred offerings are subject to additional delivery lead time.

Quality C	Certification for Safety ⁽¹	3)			
QS	Prior-use certificate of F	Prior-use certificate of FMEDA data			*
QT	Safety Certified to IEC 6	1508 with certificate of FMEDA			*
Toolkit to	otal system performanc	e reports			
QZ	Remote seal system per	formance calculation report			*
Conduit	electrical connector				
GE	M12, 4-pin, male conne	ctor (eurofast)			*
GM	A size Mini, 4-pin, male	connector (minifast)			*
Lower ho	ousing flushing connect	ion options			
	Ring material		Number	Size (NPT)	
F1	316 stainless steel		1	¹ /4–18 NPT	*
F2	316 stainless steel		2	¹ /4–18 NPT	*
F3 ⁽¹⁵⁾	Alloy C-276		1	¹ /4–18 NPT	*
F4 ⁽¹⁵⁾	Alloy C-276		2	1/4-18 NPT	*
F7	316 stainless steel		1	¹ /2–14 NPT	*
F8	316 stainless steel		2	¹ /2–14 NPT	*
F9	Alloy C-276		1	¹ /2–14 NPT	*
FO	Alloy C-276 2 1/2-14 NPT		*		
HART Re	vision configuration ⁽⁸⁾				
HR5 ⁽¹⁶⁾	Configured for HART Re	vision 5			*
HR7 ⁽¹⁷⁾	Configured for HART Re	vision 7			*
Typical M	1odel Number:	2051L 2 A A0 X D 21 A	A B4 M5 F1		

HART Revision 5 is the default HART output. The Rosemount 2051 with Selectable HART can be factory or field configured to HART Revision 7. To order HART Revision 1. 7 factory configured, add option code HR7.

Materials of Construction comply with metallurgical requirements highlighted within NACE MR0175/ISO 15156 for sour oil field production environments. 2.

Environmental limits apply to certain materials. Consult latest standard for details. Selected materials also conform to NACE MR0103 for sour refining environments. 3. Requires option code S1.

- Not available with low power output code M. 4.
- 5. Only valid with FOUNDATION Fieldbus output code F.
- 6. "Assemble-to" items are specified separately and require a completed model number.
- 7. Not valid with FOUNDATION Fieldbus output code F.
- 8. Only available with 4–20 mA HART (output codes A and M).
- 9. Not available with remote mount seal assembly option S1.
- Transmitter is shipped with 316 stainless steel conduit plug (uninstalled) in place of standard carbon steel conduit plug.
 The V5 option is not needed with the T1 option; external ground screw assembly is included with the T1 option.
- 12. The T1 option is not needed with FISCO Product Certifications; transient protection is included in the FISCO product certification codes IA, IE, IF, and IG.
- Only available with HART 4–20 mA (output code A).
- Only available with the peration is pre-set at the factory.
 NAMUR-Compliant operation is pre-set at the factory.
 Not available with option codes A0, B0, and G0.
- Not available with option codes A0, b0, and G0.
 Configures the HART output to HART Revision 5. The device can be field configured to HART Revision 7 Safety Instrumented Systems Requirements.
 Configures the HART output to HART Revision 7. The device can be field configured to HART Revision 5 Safety Instrumented Systems Requirements.

A.6 Options

Standard configuration

Unless otherwise specified, transmitter is shipped as follows:

Engineering units differential/gage: Absolute/Rosemount 2051TA:	inH ₂ O (Range 0, 1, 2, and 3) psi (range 4 and 5) psi (all ranges)
4 mA:	0 (engineering units above)
20 mA:	Upper range limit
Output:	Linear
Flange type:	Specified model code option
Flange material:	Specified model code option
O-ring material:	Specified model code option
Drain/vent:	Specified model code option
LCD display:	Installed or none
Alarm:	High
Software tag:	(Blank)

Custom configuration

If option code C1 is ordered, the customer may specify the following data in addition to the standard configuration parameters.

- Output Information
- Transmitter Information
- LCD display configuration
- Hardware selectable information
- Signal selection

Refer to the Rosemount 2051 Configuration Data Sheet.

Tagging (three options available)

- Standard stainless steel hardware tag is wired to the transmitter. Tag character height is 0.125-in. (3,18 mm), 56 characters maximum.
- Tag may be permanently stamped on transmitter nameplate upon request, 56 characters maximum.
- Tag may be stored in transmitter memory. Character limit is dependent on protocol.
 - HART Revision 5: 8 characters
 - HART Revision 7: 32 characters

Optional Rosemount 304, 305, or 306 Integral Manifolds

Factory assembled to Rosemount 2051C and Rosemount 2051T transmitters. Refer to the Rosemount Manifold <u>Product Data Sheet</u> for Rosemount 304, 305, and 306 for additional information.

Other seals

Refer to Rosemount DP Level Transmitters and 1199 Diaphragm Seal System <u>Product Data Sheet</u> for additional information.

Output information

Output range points must be the same unit of measure. Available units of measure include:

Pressure				
atm	inH ₂ O@4 °C	g/cm ²	psi	
mbar	mmH ₂ O	kg/cm ²	torr	
bar	mmHg	Pa	cmH ₂ 0@4 °C	
inH ₂ 0	mmH ₂ O@4 °C	kPa	cmHG@0 °C	
inHg	ftH ₂ 0	MPa	ftH ₂ 0@60 °F	
hPa	inH ₂ 0@60 °F	kg/SqM	mH ₂ 0@4 °C	
mHg@0 °C	Psf	ftH ₂ O@4 °C		

Display and interface options

Both display options provide diagnostic messages for local troubleshooting and have 90-degree rotation capability for easy viewing.

M4 Digital display with LOI⁽¹⁾

- Commission the device with internal and external Local Configuration Buttons⁽¹⁾
- M5 Digital display
- 2-Line, 5-Digit LCD for 4–20 mA HART

Configuration buttons

Enhanced Rosemount 2051 requires option D4 (analog zero and span), DZ (digital zero), or M4 (LOI) for local configuration buttons.

Transient protection

T1 Integral Transient Protection Terminal Block Meets IEEE C62.41, category location B

6 kV crest (0.5 ms-100 kHz)

3 kA crest (8 x 20 microseconds)

6 kV crest (1.2 x 50 microseconds)

^{1.} LOI configuration buttons will be internal when either D4 or DZ option codes are ordered.

Bolts for flanges and adapters

- Options permit bolts for flanges and adapters to be obtained in various materials
- Standard material is plated carbon steel per ASTM A449, Type 1
- L4 Austenitic 316 stainless steel bolts
- L5 ASTM A 193, grade B7M bolts
- L6 Alloy K-500 bolts

Conduit plug

DO 316 stainless steel conduit plug

Single 316 stainless steel conduit plug replaces carbon steel plug

Rosemount 2051C Coplanar Flange and Rosemount 2051T bracket option

- B4 Bracket for 2-in. pipe or panel mounting
- For use with the standard coplanar flange configuration
- Bracket for mounting of transmitter on 2-in. pipe or panel
- Stainless steel construction with stainless steel bolts

Rosemount 2051C Traditional Flange bracket options

- B1 Bracket for 2-in. pipe mounting
- For use with the traditional flange option
- Bracket for mounting on 2-in. pipe
- Carbon steel construction with carbon steel bolts
- Coated with polyurethane paint
- B2 Bracket for panel mounting
- For use with the traditional flange option
- Bracket for mounting transmitter on wall or panel
- Carbon steel construction with carbon steel bolts
- Coated with polyurethane paint

- B3 Flat bracket for 2-in. pipe mounting
- For use with the traditional flange option
- Bracket for vertical mounting of transmitter on 2-in. pipe
- Carbon steel construction with carbon steel bolts
- Coated with polyurethane paint
- B7 B1 bracket with stainless steel bolts

Same bracket as the B1 option with Series 300 stainless steel bolts

B8 B2 bracket with stainless steel bolts

Same bracket as the B2 option with Series 300 stainless steel bolts

B9 B3 bracket with stainless steel bolts

Same bracket as the B3 option with Series 300 stainless steel bolts

BA Stainless steel B1 bracket with stainless steel bolts

B1 bracket in stainless steel with Series 300 stainless steel bolts

BC Stainless steel B3 bracket with stainless steel bolts

B3 bracket in stainless steel with Series 300 stainless steel bolts

Shipping weights

Table A-18. Transmitter Weights without Options

Transmitter	Add weight In lb (kg)
Rosemount 2051C	6.0 (2,7)
Rosemount 2051L	Table A-19
Rosemount 2051T	3.0 (1,4)

Table A-19.	Rosemount 2	051L Weights	without Options
-------------	-------------	--------------	-----------------

 Table A-20.
 Transmitter Options Weights

Flange	Flush lb (kg)	2-in. Ext. Ib (kg)	4-in. Ext. lb (kg)	6-in. Ext. lb (kg)
2-in., 150	12.5 (5,7)	N/A	N/A	N/A
3-in., 150	17.5 (7,9)	19.5 (8,8)	20.5 (9,3)	21.5 (9,7)
4-in., 150	23.5 (10,7)	26.5 (12,0)	28.5 (12,9)	30.5 (13,8)
2-in., 300	17.5 (7,9)	N/A	N/A	N/A
3-in., 300	22.5 (10,2)	24.5 (11,1)	25.5 (11,6)	26.5 (12,0)
4-in., 300	32.5 (14,7)	35.5 (16,1)	37.5 (17,0)	39.5 (17,9)
2-in., 600	15.3 (6,9)	N/A	N/A	N/A
3-in., 600	25.2 (11,4)	27.2 (12,3)	28.2 (12,8)	29.2 (13,2)
DN 50/ PN 40	13.8 (6,2)	N/A	N/A	N/A
DN 80/ PN 40	19.5 (8,8)	21.5 (9,7)	22.5 (10,2)	23.5 (10,6)
DN 100/ PN 10/16	17.8 (8,1)	19.8 (9,0)	20.8 (9,5)	21.8 (9,9)
DN 100/ PN 40	23.2 (10,5)	25.2 (11,5)	26.2 (11,9)	27.2 (12,3)

Code	Option	Add Ib (kg)
J, K, L, M	Stainless steel housing (T)	3.9 (1,8)
J, K, L, M	Stainless steel housing (C, L, H, P)	3.1 (1,4)
M5	LCD display for aluminum housing	0.5 (0,2)
M6	LCD display for stainless steel housing	1.25 (0,6)
B4	Stainless steel mounting bracket for coplanar flange	1.0 (0,5)
B1, B2, B3	Mounting bracket for traditional flange	2.3 (1,0)
B7, B8, B9	Mounting bracket for traditional flange	2.3 (1,0)
BA, BC	Stainless steel bracket for traditional flange	2.3 (1,0)
H2	Traditional flange	2.4 (1,1)
H3	Traditional flange	2.7 (1,2)
H4	Traditional flange	2.6 (1,2)
H7	Traditional flange	2.5 (1,1)
FC	Level flange—3-in., 150	10.8 (4,9)
FD	Level flange—3-in., 300	14.3 (6,5)
FA	Level flange—2-in., 150	10.7 (4,8)
FB	Level flange—2-in., 300	14.0 (6,3)
FP	DIN level flange, stainless steel, DN 50, PN 40	8.3 (3,8)
FQ	DIN level flange, stainless steel, DN 80, PN 40	13.7 (6,2)

00809-0100-4107, Rev CA

A.7 Spare parts

Rosemount 2051 upgrade kits	Rosemount 2051 upgrade kits Pa	
The following come with electronics board ar buttons (if applicable).	nd co	onfiguration
Aluminum/stainless steel		
4–20 mA HART with no configuration buttons	02	021-0020-2100
4–20 mA HART with digital zero trim	02	021-0020-2110
4–20 mA HART with analog zero and span	02	021-0020-2120
Rosemount 2051 LOI upgrade kit		
The following come with electronics board, Lu configuration buttons. Order display cover sa systems requirements. 4–20 mA HART with LOL	OI di fety 02	splay, and LOI instrumented
Rosemount 2051 LOI/LCD display		
LCD display is only compatilRosemount 2051 electronics4–20mA HART - aluminum4–20 mA HART - 316 stainless steel030		ble with enhanced 031-0199-0012 031-0199-0022
Terminal block, HART Protocol		Part number
4–20 mA HART output		
Standard terminal block assembly		02051-9005-0001
Transient terminal block assembly (option T1)		02051-9005-0002
1–5 Vdc HART low power output		
Standard terminal block assembly		02051-9005-0011
Transient terminal block assembly (option	T1)	02051-9005-0012
Electronics board, HART Protocol		Part number
Assemblies for 4–20 mA HART		
4–20 mA HART for use without D4 option		02051-9001-000
4–20 mA HART for use with D4 option	4–20 mA HART for use with D4 option	
4–20 mA HART NAMUR compliant for use with or without D4 option		02051-9001-0012
Assembly for 1–5 Vdc HART low pov	ver	
1–5 Vdc HART Protocol		02051-9001-100

LCD display, HART Protocol	Part number	
LCD display kit ⁽¹⁾		
4–20 mA with aluminum housing	03031-0193-0101	
4–20 mA with stainless steel housing	03031-0193-0111	
1–5 Vdc with aluminum housing	03031-0193-0001	
1–5 Vdc with stainless steel housing	03031-0193-0011	
LCD displays only ⁽²⁾		
For 4–20 mA output	03031-0193-0103	
For 1–5 Vdc low power output	03031-0193-0003	
LCD display hardware, both 4–20 mA a power	nd 1–5 Vdc low	
Aluminum display cover assembly ⁽³⁾	03031-0193-0002	
Stainless steel display cover assembly ⁽³⁾	03031-0193-0012	
O-ring package for electronics housing cover, pkg of 12	03031-0232-0001	
Zero and span hardware adjustments	(D4 option)	
Zero and span kit for 4–20 mA HART Pı	rotocol ⁽⁴⁾	
Zero and span kit for aluminum housing	02051-9010-0001	
Zero and span kit for stainless steel housing	02051-9010-0002	
Zero and span kit for 4–20 mA HART NAMUR compliant (C4/CN) option ⁽⁵⁾		
Zero and span kit for aluminum housing	02051-9010-1001	
Zero and span Kit for stainless steel housing	02051-9010-1002	
Zero and span kit for 1–5 Vdc HART low power ⁽⁵⁾		
Zero and span kit for aluminum housing	02051-9010-1001	
Zero and span kit for stainless steel housing	02051-9010-1002	
O-ring packages (package of 12)		
Electronic housing, cover (standard and meter)	03031-0232-0001	
Electronics housing, module	03031-0233-0001	
Process flange, glass-filled PTFE	03031-0234-0001	
Process flange, graphite-filled PTFE	03031-0234-0002	
Flange adapter, glass-filled PTFE	03031-0242-0001	
Flange adapter, graphite-filled PTFE	03031-0242-0002	

Kit includes LCD display, captive mounting hardware, 10-pin interconnection header, cover assembly. Displays include LCD display, captive mounting hardware, 10-pin interconnection header. No cover assembly. Display cover assembly includes the cover and O-ring only. Kit includes zero and span hardware adjustments and electronics board. Kit includes zero and span hardware adjustments only. 1.

2.

3. 4. 5.

Reference Manual

00809-0100-4107, Rev CA

Flanges	Part number
Differential coplanar flange	
Nickel-plated carbon steel	03031-0388-0025
316 stainless steel	03031-0388-0022
Cast C-276	03031-0388-0023
Gage coplanar flange	
Nickel-plated carbon steel	03031-0388-1025
316 stainless steel	03031-0388-1022
Cast C-276	03031-0388-1023
Coplanar flange alignment screw (package of 12)	03031-0309-0001
Traditional flange	
316 stainless steel	03031-0320-0002
Cast C-276	03031-0320-0003
Level flange, vertical mount	
2 in., Class 150, stainless steel	03031-0393-0221
2 in., Class 300, stainless steel	03031-0393-0222
3 in., Class 150, stainless steel	03031-0393-0231
3 in., Class 300, stainless steel	03031-0393-0232
DIN, DN 50, PN 40	03031-0393-1002
DIN, DN 80, PN 40	03031-0393-1012
Flange adapter	
Nickel-plated carbon steel	02024-0069-0005
316 stainless steel	02024-0069-0002
Cast C-276	02024-0069-0003
Drain/vent valve kits (each kit contains parts for one transmitter)	
Differential drain/vent kits	
316 stainless steel stem and seat kit	01151-0028-0022
Alloy C-276 stem and seat kit	01151-0028-0023
316 stainless steel ceramic ball drain/vent kit	03031-0378-0022
Alloy C-276 ceramic ball drain/vent kit	01151-0028-0123
Gage drain/vent kits	
316 stainless steel stem and seat kit	01151-0028-0012
Alloy C-276 stem and seat kit	01151-0028-0013
316 stainless steel ceramic ball drain/vent kit	03031-0378-0012
Alloy C-276 ceramic ball drain/vent kit	01151-0028-0113

Mounting brackets	
Rosemount 2051C and 2051L coplanar flange bracket kit	
B4 bracket, stainless steel, 2-in. pipe mount, stainless steel bolts	03031-0189-0003
Rosemount 2051T bracket kit	
B4 bracket, stainless steel, 2-in. pipe mount, stainless steel bolts	03031-0189-0004
Rosemount 2051C Traditional Flange bracket kits	
B1 bracket, 2-in. pipe mount, carbon steel bolts	03031-0313-0001
B2 bracket, panel mount, carbon steel bolts	03031-0313-0002
B3 flat bracket for 2-in. pipe mount, carbon steel bolts	03031-0313-0003
B7 (B1 style bracket with stainless steel bolts)	03031-0313-0007
B8 (B2 style bracket with stainless steel bolts)	03031-0313-0008
B9 (B3 style bracket with stainless steel bolts)	03031-0313-0009
BA (stainless steel B1 bracket with stainless steel bolts)	03031-0313-0011
BC (stainless steel B3 bracket with stainless steel bolts)	03031-0313-0013
Bolt kits	
Coplanar flange	
Flange bolt kit (44 mm [1.75-in.]) (set of 4)	
Carbon steel	03031-0312-0001
316 stainless steel	03031-0312-0002
ASTM A 193, Grade B7M	03031-0312-0003
ASTM A 193, Class 2, Grade B8M	03031-0312-0005
Flange/adapter bolt kit (73 mm [2.88-in.]) (Set of 4)	
Carbon steel	03031-0306-0001
316 stainless steel	03031-0306-0002
ASTM A 193, Grade B7M	03031-0306-0003
ASTM A 193, Class 2, Grade B8M	03031-0306-0005
Manifold/flange kit [57 mm (2.25 in.)] (set of 4)	
Carbon steel	03031-0311-0001
316 stainless steel	03031-0311-0002
ASTM A 193, Grade B7M	03031-0311-0003
ASTM A 193, Class 2, Grade B8M	03031-0311-0020

Traditional flange	
Differential flange and adapter bolt kit (44 mm [1.75-in.]) (Set of 8)	
Carbon steel	03031-0307-0001
316 stainless steel	03031-0307-0002
ASTM A 193, Grade B7M	03031-0307-0003
ASTM A 193, Class 2, Grade B8M	03031-0307-0005
Gage flange and adapter bolt Kit (set of 6)	
Carbon steel	03031-0307-1001
316 stainless steel	03031-0307-1002
ASTM A 193, Grade B7M	03031-0307-1003
ASTM A 193, Class 2, Grade B8M	03031-0307-1005
Manifold/traditional flange bolts	
Carbon steel	Use bolts supplied with manifold
316 stainless steel	Use bolts supplied with manifold
Level flange, vertical mount	
Flange bolt kit (set of 4)	
Carbon steel	03031-0395-0001
316 stainless steel	03031-0395-0002
Covers	
Aluminum field terminal cover + O-ring	03031-0292-0001 ⁽¹⁾
Stainless steel field terminal cover + O-ring	03031-0292-0002 ⁽¹⁾
Aluminum HART electronics cover: cover + O-ring	03031-0292-0001 ⁽¹⁾
316 stainless steel HART electronics cover: cover + O-ring	03031-0292-0002 ⁽¹⁾
Aluminum electronics/LCD display cover assembly: cover + O-ring	03031-0193-0002
Stainless steel electronics/LCD display cover assembly: cover + O-ring	03031-0193-0012
Miscellaneous	
External ground screw assembly	

Covers are blind, not for use with LCD display. Refer to LCD display section for LCD covers.

Appendix B Product Certifications

Rev 1.5		
	European Directive Information page	149
	Ordinary Location Certification page	149
	North America page	149
	Europe page	150
	International page	151
	Brazil	152
	China page	153
	Japan	154
	Technical Regulations Customs Union (EAC) page	154
	Additional Certifications page	155
	Approval drawings	156

B.1 European Directive Information

A copy of the EU Declaration of Conformity can be found at the end of the Quick Start Guide. The most recent revision of the EU Declaration of Conformity can be found at <u>Emerson.com/Rosemount</u>.

B.2 Ordinary Location Certification

As standard, the transmitter has been examined and tested to determine that the design meets the basic electrical, mechanical, and fire protection requirements by a nationally recognized test laboratory (NRTL) as accredited by the Federal Occupational Safety and Health Administration (OSHA).

B.3 North America

- USA Intrinsic Safety (IS) and Nonincendive (NI) Certificate: FM16US0231X Standards: FM Class 3600 - 2011, FM Class 3610 - 2010, FM Class 3611 - 2004, FM Class 3810 - 2005, ANSI/NEMA 250 -2008 Markings: IS CL I, DIV 1, GP A, B, C, D; CL II, DIV 1, GP E,
 - F, G; Class III; DIV 1 when connected per Rosemount drawing 02051-1009; Class I, Zone 0; AEx ia IIC T4; NI CL 1, DIV 2, GP A, B, C, D; T4(-50 °C \leq T_a \leq +70 °C); Type 4X

Special Condition for Safe Use (X):

- 1. The Rosemount 2051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.
- IE USA FISCO

Certificate: 3033457 Standards: FM Class 3600 – 2011, FM Class 3610 – 2010, FM Class 3611 – 2004, FM Class 3810 – 2005 Markings: IS CLI DIV 1, GPA, B, C, I

Markings: IS CL I, DIV 1, GP A, B, C, D when connected per Rosemount drawing 02051-1009 $(-50 \text{ °C} \le T_a \le +60 \text{ °C})$; Type 4X

Special Condition for Safe Use (X):

The Rosemount 2051 Transmitter housing contains aluminum and is considered a potential risk of ignition by impact or friction. Care must be taken into account during installation and use to prevent impact and friction.

Reference Manual

00809-0100-4107, Rev CA

E6 Canada Explosion-Proof, Dust Ignition Proof Certificate: 2041384 Standards: CAN/CSA C22.2 No. 0-10.

Standards: CAN/CSA C22.2 No. 0-10, CSA Std C22.2 No. 25-1966, CSA Std C22.2 No. 30-M1986, CAN/CSA-C22.2 No. 94-M91, CSA Std C22.2 No. 142-M1987, CAN/CSA-C22.2 No. 157-92, CSA Std C22.2 No. 213-M1987, CAN/CSA-E60079-0:07, CAN/CSA-E60079-1:07, CAN/CSA-E60079-11-02, CAN/CSA-C22.2 No. 60529:05, ANSI/ISA-12.27.01–2003

- Markings: Explosion-Proof for Class I, Divisions 1, Groups B, C, and D. Dust-Ignition Proof for Class II and Class III, Division 1, Groups E, F, and G. Suitable for Class I, Division 2; Groups A, B, C, and D for indoor and outdoor hazardous locations. Class I Zone 1 Ex d IIC T5. Enclosure type 4X, factory sealed. Single Seal
- Canada Intrinsic Safety Certificate: 2041384 Standards: CSA Std. C22.2 No. 142 - M1987, CSA Std.C22.2 No. 213 - M1987,

CSA Std. C22.2 No.157 - 92, CSA Std. C22.2 No. 213 - M1987, ANSI/ISA 12.27.01 – 2003, CAN/CSA-E60079-0:07, CAN/CSA-E60079-11:02

Markings: Intrinsically safe for Class I, Division 1, Groups A,B, C, and D when connected in accordance with Rosemount drawing 02051-1008. Ex ia IIC T3C. Single Seal. Enclosure Type 4X

B.4 Europe

E1 ATEX Flameproof Certificate: KEMA 08ATEX0090X Standards: EN 60079-0:2012 + A11:2013, EN 60079-1:2014, EN 60079-26:2015 Markings: ⓒ II 1/2 G Ex db IIC Ga/Gb T6 (-60 °C ≤ $T_a ≤ 70$ °C); T4/T5 (-60 °C ≤ $T_a ≤ 80$ °C)

Table B-1. Process Connection Temperature

Temperature	Process	Ambient
class	temperature	temperature

Table B-1. Process Connection Temperature

T6	–60 °C to +70 °C	–60 °C to +70 °C
T5	–60 °C to +80 °C	–60 °C to +80 °C
T4	–60 °C to +120 °C	–60 °C to +80 °C

Special Conditions for Safe Use (X):

- 1. Appropriate cable, glands and plugs need to be suitable for a temperature of 5 °C greater than maximum specified temperature for location where installed.
- 2. Non- standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces, and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.
- 3. The device contains a thin wall diaphragm less than 1 mm thickness that forms a boundary between zone 0 (process connection) and zone 1 (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm shall be subjected. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.
- 4. Flameproof joints are not intended for repair.
- ATEX Intrinsic Safety Certificate: Baseefa08ATEX0129X Standards: EN60079-0:2012, EN60079-11:2012 Markings: Ex II 1 G Ex ia IIC T4 Ga (-60 °C ≤ T_a ≤ +70 °C) Table B-2. Input Parameters

Parameter	HART	Fieldbus/PROFIBUS
Voltage U _i	30 V	30 V
Current l _i	200 mA	300 mA
Power P _i	1.0 W	1.3 W
Capacitance C _i	0.012 μF	0 μF
Inductance L _i	0 mH	0 mH

Special Condition for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V isolation from earth test and this must be taken into account during installation.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however care should be taken to protect it from impact and abrasion when located in Zone 0.
- IA ATEX FISCO

Certificate: Baseefa08ATEX0129X Standards: EN60079-0:2012, EN60079-11:2012 Markings: Ex II 1 G Ex ia IIC T4 Ga ($-60 \degree C \le T_a \le +60 \degree C$)

Table B-3. Input Parameters

Parameter	FISCO
Voltage U _i	17.5 V
Current l _i	380 mA
Power P _i	5.32 W
Capacitance C _i	0 μF
Inductance L _i	0 mH

Special Conditions for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V isolation from earth test and this must be taken into account during installation.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however care should be taken to protect it from impact and abrasion when located in Zone 0.
- N1 ATEX Type n Certificate: Baseefa08ATEX0130X Standards: EN60079-0:2012, EN60079-15:2010 Markings: Ex II 3G Ex nA IIC T4 Gc ($-40 \degree C \le T_a \le +70 \degree C$)

Special Condition for Safe Use (X):

 If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V electrical strength test as defined in clause 6.5.1 of by EN 60079-15:2010. This must be taken into account during installation.

ND ATEX Dust

Certificate: Baseefa08ATEX0182X Standards: EN60079-0:2012, EN60079-31:2009 Markings: 🐵 II 1 D Ex ta IIIC T95 °C T₅₀₀ 105 °C Da (-20 °C $\leq T_a \leq +85$ °C)

Special Condition for Safe Use (X):

1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V isolation from earth test and this must be taken into account during installation.

B.5 International

E7 IECEx Flameproof

Certificate: IECExKEM08.0024X Standards: IEC 60079-0:2011, IEC 60079-1:2014-06, IEC 60079-26:2014-10

Markings: Ex db IIC T6...T4 Ga/Gb

T6(-60 °C \le T_a \le +70 °C),

 $T4/T5(-60 \degree C \le T_a \le +80 \degree C)$

Table B-4. Process Connection Temperature

Temperature class	Process temperature	Ambient temperature
T6	–60 °C to +70 °C	–60 °C to +70 °C
T5	–60 °C to +80 °C	–60 °C to +80 °C
T4	–60 °C to +120 °C	–60 °C to +80 °C

Special Conditions for Safe Use (X):

- The device contains a thin wall diaphragm less than 1 mm thickness that forms a boundary between zone 0 (process connection) and zone 1 (all other parts of the equipment). The model code and datasheet are to be consulted for details of the diaphragm material. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm shall be subjected. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.
- 2. Appropriate cable, glands and plugs need to be suitable for a temperature of 5 °C greater than maximum specified temperature for location where installed.
- 3. Flameproof joints are not intended for repair.
- 4. Non-standard paint options may cause risk from electrostatic discharge. Avoid installations that could cause electrostatic build-up on painted surfaces, and only clean the painted surfaces with a damp cloth. If paint is ordered through a special option code, contact the manufacturer for more information.

17 IECEx Intrinsic Safety

Certificate: IECExBAS08.0045X Standards: IEC60079-0:2011, IEC60079-11:2011 Markings: Ex ia IIC T4 Ga (-60 °C $\leq T_a \leq +70$ °C)

Table B-5. Input Parameters

Parameter	HART	Fieldbus/PROFIBUS
Voltage U _i	30 V	30 V
Current l _i	200 mA	300 mA
Power P _i	1.0 W	1.3 W
Capacitance C _i	0.012 μF	0 μF
Inductance L _i	0 mH	0 mH

Special Condition for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V isolation from earth test and this must be taken into account during installation.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however care should be taken to protect it from impact and abrasion when located in Zone 0.
- IG IECEx FISCO

Certificate: IECExBAS08.0045X Standards: IEC60079-0:2011, IEC60079-11:2011 Markings: Ex ia IIC T4 Ga ($-60 \degree C \le T_a \le +60 \degree C$)

Table B-6. Input Parameters

Parameter	FISCO
Voltage U _i	17.5 V
Current l _i	380 mA
Power P _i	5.32 W
Capacitance C _i	0 nF
Inductance L _i	0 μΗ

Special Condition for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V isolation from earth test and this must be taken into account during installation.
- 2. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however care should be taken to protect it from impact and abrasion when located in Zone 0.
- N7 IECEx Type n

Certificate: IECExBAS08.0046X Standards: IEC60079-0:2011, IEC60079-15:2010 Markings: Ex nA IIC T4 Gc ($-40 \degree C \le T_a \le +70 \degree C$)

Special Condition for Safe Use (X):

1. If fitted with a 90 V transient suppressor, the equipment is not capable of withstanding the 500 V electrical strength test as defined in clause 6.5.1 of IEC60079-15:2010. This must be taken into account during installation.

B.6 Brazil

E2 INMETRO Flameproof Certificate: UL-BR 14.0375X Standards: ABNT NBR IEC60079-0:2008 + Errata 1:2011, ABNT NBR IEC 60079-1:2009 + Errata 1:2011,ABNT NBR IEC 60079-26:2008 + Errata 1:2009 Markings: Ex d IIC T6/T5 Gb IP66, T6(-50 °C $\leq T_a \leq +65$ °C), T5(-50 °C $\leq T_a \leq +80$ °C)

Special Condition for Safe Use (X):

- 1. The device contains a thin wall diaphragm. Installation, maintenance and use shall take into account the environmental conditions to which the diaphragm will be subjected. The manufacturer's instructions for installation and maintenance shall be followed in detail to assure safety during its expected lifetime.
- 2. The Ex d blanking elements, cable glands, and wiring shall be suitable for a temperature of 90 °C.
- 3. In case of repair, contact the manufacturer for information on the dimensions of the flameproof joints.
- I2 INMETRO Intrinsic Safety Certificate: UL-BR 14.0759X Standards: ABNT NBR IEC 60079-0:2008 + Errata 1:2011; ABNT NBR IEC 60079-11:2009 Markings: Ex ia IIC T4 Ga ($-60 \degree C \le T_a \le +70 \degree C$)

Table B-7. Input Parameters

Parameter	HART	Fieldbus/PROFIBUS
Voltage U _i	30 V	30 V
Current l _i	200 mA	300 mA
Power P _i	1 W	1.3 W
Capacitance C _i	0.012 μF	0 nF
Inductance L _i	0 mH	0 μΗ

Special Conditions for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V insulation from earth test and this must be taken into account during installation.
- 2. The enclosure may be made of aluminium alloy and given a protective polyurethane paint finish; however care should be taken to protect it from impact and abrasion when located in atmospheres that require ELP Ga.
- **IB** INMETRO FISCO
 - Certificate: UL-BR 14.0759X Standards: ABNT NBR IEC 60079-0:2008 + Errata 1:2011; ABNT NBR IEC 60079-11:2009 Markings: Ex ia IIC T4 Ga ($-60 \degree C \le T_a \le +60 \degree C$)

Table B-8. Input Parameters

Parameter	FISCO
Voltage U _i	17.5 V
Current l _i	380 mA
Power P _i	5.32 W
Capacitance C _i	0 nF
Inductance L _i	0 μΗ

Special Condition for Safe Use (X):

- 1. If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding the 500 V insulation from earth test and this must be taken into account during installation.
- 2. The enclosure may be made of aluminium alloy and given a protective polyurethane paint finish; however care should be taken to protect it from impact and abrasion when located in atmospheres that require ELP Ga.

B.7 China

Special Conditions for Safe Use (X):

- 1. Symbol "X" is used to denote specific conditions of use:
 - The Ex d blanking elements, cable glands, and wiring shall be suitable for a temperature of 90 °C.
 - This device contains a thin wall diaphragm. Installation, maintenance and use shall take into account the environment conditions to which the diaphragm will be subjected.
- 2. The relation between T code and ambient temperature range is:

T _a	Temperature class
–50 ° C ≤ T _a ≤ +80 °C	T5
–50 ° C ≤T _a ≤ +65 °C	Т6

- 3. The earth connection facility in the enclosure should be connected reliably.
- 4. During installation, use and maintenance of the product, observe the warning "Don't open the cover when the circuit is alive."
- 5. During installation, there should be no mixture harmful to flameproof housing.
- 6. Cable entry and conduit, certified by NEPSI with type of protection Ex d IIC and appropriate thread form, should be applied when installed in a hazardous location. Blanking elements should be used on the redundant cable entries.
- 7. End users are not permitted to change any internal components, but to settle the problem in conjunction with the manufacturer to avoid damage to the product.
- 8. Maintenance should be done in a non-hazardous location.
- 9. During installation, use and maintenance of this product, observe the following standards: GB3836.13-2013, GB3836.15-2000, GB3836.16-2006, GB50257-2014.
- I3 China Intrinsic Safety Certificate: GYJ12.1295X; GYJ15.1365X [Flowmeters] Standards: GB3836.1-2010, GB3836.4-2010, GB3836.20-2010 Markings: Ex ia IIC T4 Ga (-60 °C ≤ T_a ≤ +70 °C)

Special Conditions for Safe Use (X):

- 1. Symbol "X" is used to denote specific conditions of use:
 - a. If the apparatus is fitted with an optional 90 V transient suppressor, it is not capable of withstanding the 500 V insulation test for 1 minute. This must be taken into account when installing the apparatus.
 - b. The enclosure may be made of aluminum alloy and given a protective polyurethane paint finish; however, care should be taken to protect it from impact or abrasion if located in Zone 0.
- 2. The relation between T code and ambient temperature range is:

Model	T code	Temperature range
HART, Fieldbus, PROFIBUS, and Low Power	T4	$-60 ^{\circ}\text{C} \le \text{T}_{a} \le +70 ^{\circ}\text{C}$

3. Intrinsically safe parameters:

Parameter	HART	Fieldbus/ PROFIBUS	FISCO
Voltage U _i	30 V	30 V	17.5 V
Current l _i	200 mA	300 mA	380 mA
Power P _i	1 W	1.3 W	5.32 W
Capacitance C _i	0.012 μF	0 μF	0 nF
Inductance L _i	0 mH	0 mH	0 μF

Note

FISCO parameters comply with the requirements for FISCO field devices in GB3836.19-2010.

[For Flowmeters] When Rosemount 644 Temperature Transmitter is used, the transmitter should be used with Ex-certified associated apparatus to establish explosion protection system that can be used in explosive gas atmospheres. Wiring and terminals should comply with the instruction manual of both Rosemount 644 and associated apparatus. The cables between Rosemount 644 and associated apparatus should be shielded cables (the cables must have insulated shield). The shielded cable has to be grounded reliably in a non-hazardous area.

4. The product should be used with Ex-certified associated apparatus to establish explosion protection system that can be used in explosive gas atmospheres. Wiring and terminals should comply with the instruction manual of the product and associated apparatus.

- 5. The cables between this product and associated apparatus should be shielded cables (the cables must have insulated shield). The shielded cable has to be grounded reliably in a non-hazardous area.
- 6. End users are not permitted to change any internal components, and needs to settle the problem in conjunction with the manufacturer to avoid damage to the product.
- 7. During installation, use and maintenance of this product, observe the following standards: GB3836.13-2013, GB3836.15-2000, GB3836.16-2006, GB3836.18-2010, GB50257-2014.

B.8 Japan

E4 Japan Flameproof Certificate: TC20598, TC20599, TC20602, TC20603 [HART]; TC20600, TC20601, TC20604, TC20605 [Fieldbus] Markings: Ex d IIC T5

B.9 Technical Regulations Customs Union (EAC)

EM EAC Flameproof

Certificate: RU C-US.GB05.B.01199 Markings: Ga/Gb Ex d IIC T5/T6 X, T5(-50 °C \leq T_a \leq +80 °C), T6(-50 °C \leq T_a \leq +65 °C)

Special Condition for Safe Use (X):

- 1. See certificate for special conditions.
- $\begin{array}{ll} \textbf{IM} & \textbf{EAC Intrinsically Safe} \\ & \textbf{Certificate: RU C-US.GB05.B.01199} \\ & \textbf{Markings:} & \textbf{0Ex ia IIC T4 Ga X (-60 \ ^{\circ}\text{C} \leq T_a \leq +70 \ ^{\circ}\text{C}) \end{array} \end{array}$

Special Condition for Safe Use (X):

1. See certificate for special conditions.

B.9.1 Combinations

- **K1** Combination of E1, I1, N1, and ND
- **K2** Combination of E2 and I2
- K5 Combination of E5 and I5
- K6 Combination of E6 and I6

Product Certifications

July 2017

K7 Combination of E7, I7, N7 and IECEx Dust IECEx Type n Certificate: IECExBAS08.0058X Standards: IEC60079-0:2011, IEC60079-15:2010 Markings: Ex nA IIIC T95 °C T₅₀₀ 105 °C Da $(-20 °C \le T_a \le +85 °C)$

Special Condition for Safe Use (X):

- If the equipment is fitted with an optional 90 V transient suppressor, it is incapable of withstanding a 500 V isolation from earth test and this must be taken into account during installation.
- KA Combination of E1, I1, and K6
- KB Combination of K5 and K6
- **KC** Combination of E1, I1, and K5
- **KD** Combination of K1, K5, and K6
- **KM** Combination of EM and IM

B.10 Additional Certifications

- SBS American Bureau of Shipping (ABS) Type Approval Certificate: 09-HS446883B-3-PDA Intended Use: Marine and Offshore Applications Measurement of either Gauge or Absolute Pressure for Liquid, Gas, and Vapor
 ABS Rules: 2013 Steel Vessels Rules 1-1-4/7.7, 1-1-Appendix 3, 4-8-3/1.7, 4-8-3/13.1
 SBV Bureau Veritas (BV) Type Approval Certificate: 23157/B0 BV
 - BV Rules: Bureau Veritas Rules for the Classification of Steel Ships

Application: Class notations: AUT-UMS, AUT-CCS, AUT-PORT and AUT-IMS; Pressure transmitter type 2051 cannot be installed on diesel engines **SDN** Det Norske Veritas (DNV) Type Approval Certificate: TAA00004F Intended Use: DNV GL Rules for Classification — Ships and offshore units

Application:

Locatio	ons classes
Туре	2051
Temperature	D
Humidity	В
Vibration	A
EMC	В
Enclosure	D

SLL Lloyds Register (LR) Type Approval Certificate: 11/60002 Application: Environmental categories ENV1, ENV2, ENV3, and ENV5

B.11 Approval drawings

Figure B-1. Factory mutual 02051-1009

				\forall				
	CONFIDENTIAL AND F	PROPRIETARY CONTAINED			REVISIONS			
	HEREIN AND MU HANDLED ACCOF	JST BE RDINGLY RI	ΞV	DESCRIPTIC	IN	CHG. NO.	APP'D	DATE
		A	B ADD AI	MBIENT TE	MP LIMITS	RTC1026995	J.G.K.	9/24/08
		A	CREMO	/E LOW F	'OWER	RTC1027021	J.G.K.	10/2/08
		A	D ADD L	_OW POWE	R	RTC1027539	J.G.K.	12/22/08
Ą	OUTPL OUTF OUTF OUTP ALL INTRINSICA WHICH MEE DIVISION 1 751 FIELD CONNECTED APPROVED CLASS I, II TO ASSL MUST BE V INSTRUCTIO	UT CODE A (PUT CODE M PUT CODE M PUT CODE F/ OUTPUT CO SEMOUNT TRANS UL Y SAFE WHE T THE ENTITY GROUPS INDICA SIGNAL INDICA IN CIRCUIT W BARRIERS WHIG SIGNAL INDICA IN CIRCUIT W BARRIERS WHIG IN CIRCUIT W BARRIERS WHIG SIGNAL INTRINS URE AN INTRINS ONS AND THE A	TITY APF 20 20 4-20 mA (LOW PC W (FIELE DES NON MITTERS L N USED IN PARAMETE ATED, TEMP TOR IS FA TOR IS FA CH MEET T SION 1, GRO SICALLY SA RDANCE WI APPLICABLE	PROVALS F(51C 51L 51T HART) I.S. WER) I.S. S WER) I.S. S BUS) I.S. S INCENDIVE INCENDIVE INCENDIVE INCENDIVE INCENTITY P UPS INDICAT AFE SYSTEM, TH THE BARF CIRCUIT DI	SEE SHEE EE SHEETS EE SHEETS SEE SHEE SEE SHEE SEE SHEE DITIONALLY AS INTRINSI MITTERS (FF ARAMETERS ED, TEMP CO THE TRANSM RIER MANUFA AGRAM.	TS 2-5 5 6-7 5 8-12 T 13 PPROVED AS OVED BARRIER S I, II, AND III, THE ROSEMOU CALLY SAFE W CALLY SAFE W CALLY SAFE W CALLY SAFE W LISTED FOR DE T4. IITTER AND BAI CTURER'S FIEL	S NT HEN D F.M. RRIER D WIRI	NG
				&		CAD MAINTAINED	(MicroS	tation)
	UNLESS OTHERWISE SPECIFIED DMENSIONS IN INCHES ImmJ. REMOVE ALL BURRS AND SHARP FORCE MACHINE	CONTRACT NO.		EMERS Process Manag	ON. 8200 Mar	CAD MAINTAINED	(Micros NT® N 55317 USA	tation)
	UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES Imm], REMOVE ALL BURRS AND SHARP EDGES, MACHINE SURFACE FINISH 125	CONTRACT NO. DR. Myles Lee M	i ller 4/16/08	EMERS Process Manag	ON. 8200 Mar EXOFI.S	CAD MAINTAINED	(Micros NT ® IN 55317 USA	ve
	UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES Emm]. REMOVE ALL BURRS AND SHARP EDCES. MACHINE SURFACE FINISH 125 - <u>TOLERANCE-</u> .X ± .1 [2,5]	CONTRACT NO. DR. <u>Myles Lee M</u> CHK'D	i ller 4/16/08	EMERS Process Manag	ON. 8200 Mar EXOFI.S F.M.FO	CAD MAINTAINED ROSEMOU ket Boulevard + Chanhassen, M S. & NONING R 2051C/L	(Micros NT° N 55317 USA CENDI / T	ve
	UNLESS OTHERWISE SPECIFIED DMENSIONS IN INCHES Imm], REMOVE ALL BURRS AND SHARP EDGES, MACHINE SURFACE FINISH 125 TOLERANCE- , X ± ,1 [2,5] ,XXX ± ,010 [0,25]	CONTRACT NO. DR. Myles Lee M CHK'D APP'D.	i ller 4/16/08	EMERS Process Manag	ON. 8200 Mar EXOFI.S F.M.FO	CAD MAINTAINED ROSEMOU ket Boulevard • Chanhassen, M S. & NONING R 2051C/L	(Micros NT 10 55317 USA CENDI / T	ve
	UNLESS OTHERWISE SPECIFIED DIMENSIONS IN INCHES (mm), REMOVE ALL BURRS AND SHARP EDCES, MACHINE SURFACE FINISH 125 	CONTRACT NO. DR. Myles Lee M CHK'D APP'D.	i ller 4/16/08	TITLE INDE	EX OF I.S F.M. FO	CAD MAINTAINED ROSEMOU Ret Boulevard - Chanhassen, M S. & NONING R 2051C/L · 02051	(Micros NT 10 55317 USA CENDI / T - 100	VE

REVISIONS REV DESCRIPTION CHG. NO. APP'D DATE AD CIRCUIT DIAGRAM I ONE BARRIER OR CONVERTER: SINGLE OR DUAL CHANNEL HAZARDOUS AREA NON-HAZARDOUS AREA I T BARRIER OR POWER CONVERTER SUPPLY I I UP TO FOUR MODEL 751 INDICATORS MAY BE WIRED IN SERIES WITH THE TRANSMITTERS SHOWN ABOVE AND MAY BE LOCATED IN EITHER THE HAZARDOUS OR NON-HAZARDOUS AREA. T. I. T OUTPUT CODE A MODELS INCLUDED 205IC, L, T CIRCUIT DIAGRAM 2 SUPPLY AND RETURN BARRIERS (ONLY FOR USE WITH BARRIERS APPROVED IN THIS CONFIGURATION) \rightarrow \triangleleft NON-HAZARDOUS AREA \sim HAZARDOUS AREA SUPPLY L O BARRIER O I POWER SUPPLY I I RETURN Ο OUTPUT CODE A UP TO FOUR MODEL 751 INDICATORS MAY BE WIRED IN SERIES WITH THE TRANSMITTERS SHOWN ABOVE AND MAY BE LOCATED IN EITHER THE HAZARDOUS OR NON-HAZARDOUS AREA. MODELS INCLUDED 205IC, L, T Rosemount Inc. 8200 Market Boulevard CAD MAINTAINED (MicroStation) Chanhassen, MN 55317 USA FSCM NO DWG NO. SIZE 02051-1009 DR. Myles Lee Miller А ÅĈ Rav ISSUED 13 SCALE N/A|wt. SHEET 3 OF eno.

			REVIS	SIONS			
		REV	DESCRIPTION		CHG.NO.	APP'D	DATE
		AD					
	l	ENTITY CON	CEPT APPROVALS	I		1	
	THE ENTITY CONCEPT ALL TO ASSOCIATED APPARATUS THE APPROVED VALUES OF I CIRCUIT CURRENT (Isc OR I ASSOCIATED APPARATUS MUS VOLTAGE (Vmax), MAXIMUM S (Pmax) OF THE INTRINSICALL ABLE CONNECTED CAPACITAN THAN THE SUM OF THE INTI INTERNAL CAPACITANCE (C1) APPROVED MAX. ALLOWABLE MUST BE GREATER THAN TH UNPROTECTED INTERNAL IND	LOWS INTER NOT SPECI (t) AND MAX. 5) BE LESS AFE INPUT Y SAFE AP ICE (Ca) OF ERCONNECT. OF THE IN CONNECTED E SUM OF UCTANCE (I	CONNECTION OF INTR FICALLY EXAMINED IN CIRCUIT VOLTAGE (Vo POWER (Voc X Isc/4) THAN OR EQUAL TO CURRENT (Imax), AND PARATUS. IN ADDITION THE ASSOCIATED AP NG CABLE CAPACITAN TRINSICALLY SAFE AF INDUCTANCE (La) OF THE INTERCONNECTIN 1) OF THE INTRINSICA	INSICALL N COMBIN C OR Vt) OR (Vt THE MA MAXIMUI N, THE AF PARATUS NCE AND PPARATUS THE ASS G CABLE ALLY SAI	LY SAFE AF NATION AS) AND MAX. X It/4),FO XIMUM SAF M SAFE INF PPROVED MA MUST BE THE UNPRO S, AND THE SOCIATED A C INDUCTANO FF APPARA	PPARATU A SYST SHORT R THE E INPUT PUT POW AX.ALLC GREATE DTECTED PPARAT CE AND TUS.	S EM. /ER)W- R I US THE
	FOR OUTPUT CODE A NO	TE: ENTITY Appara	PARAMETERS LISTED TUS WITH LINEAR OU) APPLY Itput.	ONLY TO A	SSOCIA	TED
	CLASS I, DIV. 1, GR	JUPS A ANI]	
	$V_{\rm T} = 300$	VT U	R V _{oc} is less than	OR EUU	JAL IU 30V	^	
	$\frac{I_{T} - 200 \text{mH}}{P_{111} - 1 \text{ WATT}}$		Voc x Isc, ic i ecc ti	JAN OD D	AL IU 2008 Foilaí to 1		
	$\Box_{MAX} = I WHIII$		<u>(4) is less if</u> Is greater than <i>n</i> '	<u>1410 UR E</u> 1.,f	EQUAL IU I	. WHII	
	$1 = 10 \mu H$		IS GREATER THAN 10	-μ. Η			
	$T4 (Ta=-50^{\circ}C to +70^{\circ}C)$			μ., .			
							*
	$\begin{array}{c} \mbox{CLASS I, DIV. 1, GR} \\ \hline V_T = 30V \\ \hline I_T = 225mA \\ \hline P_{MAX} = 1 \mbox{WATT} \\ \hline C_I = .01\mu f \\ \hline L_I = 10\mu H \\ \hline T4 \ (Ta=-50^{\circ}\mbox{C to } +70^{\circ}\mbox{C}) \end{array}$	DUPS C ANI V _T O I _T OR (<u>VTX II</u>) OR C _A L _A) D R V _{OC} IS LESS THAN I _{SC} IS LESS THAN (^{Voc x Isc})IS LESS TH IS GREATER THAN .Ø1 IS GREATER THAN 10	i or equ or equa han or e 1μf μΗ	JAL TO 3ØV AL TO 225m EQUAL TO 1	NATT	•
	$\begin{array}{c} \text{CLASS I, DIV. 1, GR}\\ \hline V_{T} = 30V\\ \hline I_{T} = 225\text{mA}\\ \hline P_{MAX} = 1 \text{ WATT}\\ \hline C_{I} = .01\mu\text{f}\\ \hline L_{I} = 10\mu\text{H}\\ \hline T4 (Ta=-50^{\circ}\text{C to } +70^{\circ}\text{C})\\ \hline \end{array}$	DUPS C ANI V _T O I _T OR (<u>VT 4</u> IT) OR C _A L _A HAZARDOUS	D R V _{OC} IS LESS THAN I _{SC} IS LESS THAN (Voc 4 Isc) IS LESS THAN IS GREATER THAN .01 IS GREATER THAN 10 AREA NON-HAZARI	I OR EQU OR EQUA HAN OR E 1μf μH DOUS AR	IAL TO 30V AL TO 225m EQUAL TO 1 EA	NA WATT	
	$\begin{array}{c} \text{CLASS I, DIV. 1, GR} \\ \hline V_{T} = 30V \\ \hline I_{T} = 225\text{mA} \\ \hline P_{MAX} = 1 \text{ WATT} \\ \hline C_{I} = .01\mu\text{f} \\ \hline L_{I} = 10\mu\text{H} \\ \hline T4 (Ta = -50^{\circ}\text{C to } +70^{\circ}\text{C}) \end{array}$	DUPS C ANI V _T O I _T OR (<u>VT 4</u> IT) OR C _A L _A AZARDOUS	D R V _{OC} IS LESS THAN I _{SC} IS LESS THAN (Voc <u>4</u> Isc) IS LESS THAN IS GREATER THAN .Ø1 IS GREATER THAN 10 AREA I NON-HAZARI AREA I SEE I (SEE A I DED I I	I OR EQU OR EQUA HAN OR E 1μf μH DOUS AR SOCIATED PARATUS SHEET	JAL TO 30V AL TO 225m EQUAL TO 1 EA 3)	NATT	
	CLASS I, DIV. 1, GRI $V_T = 30V$ $I_T = 225mA$ $P_{MAX} = 1 WATT$ $C_I = .01\mu f$ $L_I = 10\mu H$ T4 (Ta=-50°C to +70°C) H Rosemount Inc 8200 Market B Chanhassen, M	DUPS C ANE VT O IT OR (VT I) OR CA LA HAZARDOUS ITPUT CODE DELS INCLU 205IC, L, T OULEVARD	D D R V _{OC} IS LESS THAN I _{SC} IS LESS THAN (Voc <u>4</u> Isc) IS LESS THAN IS GREATER THAN .01 IS GREATER THAN 10 AREA I NON-HAZARI AREA I SIZE SCM NO	I OR EQU OR EQUA HAN OR E 1μf μH DOUS AR SOCIATED PARATUS SHEET SHEET	JAL TO 30V AL TO 225m EQUAL TO 1 EA 3)		tation)
νc	$\begin{array}{c} \text{CLASS I, DIV. 1, GR}\\ \hline V_T = 30V\\ \hline I_T = 225\text{mA}\\ \hline P_{MAX} = 1 \text{ WATT}\\ \hline C_I = .01\mu\text{f}\\ \hline L_I = 10\mu\text{H}\\ \hline T4 \ (Ta = -50^\circ\text{C to } +70^\circ\text{C}) \end{array}$	DUPS C ANI VT O IT OR (VT IT) OR CA LA HAZARDOUS HAZARDOUS DELS INCLU 205IC, L, T OULEVART N 55317 USA	D D R V _{OC} IS LESS THAN I _{SC} IS LESS THAN (Voc <u>4</u> Isc) IS LESS THAN IS GREATER THAN .Ø1 IS GREATER THAN 10 AREA I NON-HAZARI AREA I SEE I (SEE A I DED I I SIZE FSCM NO D	I OR EQU OR EQUA HAN OR E 1μf μH DOUS AR SOCIATED PARATUS SHEET SHEET	JAL TO 30V AL TO 225m EQUAL TO 1 EA 3) CAD MAINTAINED) (MicroS	tation)

					REV	ISIONS				
		REV		DESCRIPTI	ЛС		CHG.	NO.	APP'D	DAT
		AD								
	FOR OUTPUT CODE M									
	CLASS I, DIV. 1, GROUPS A AND B									
	$V_{MAX} = 30V$		V _T OR V	_{oc} is le	SS TH	AN OR	EQUAL	TO 30	V	
	$I_{MAX} = 200 \text{mA}$	VT Y I	I _T OR I _{SC}	<u>: IS LES</u>	<u>s tha</u>	IN OR L	LQUAL I	0 200	mA	
	$P_{MAX} = 1 WATT$	(1/1/4	<u>) OR (****</u>	$\frac{1}{4}$ (S	LESS	THAN	OR EQUA	AL TO	1 WATT	
	$L_{I} = .02\mu$ t		LA IS	GREATER	THAN	.UZμ†				
	$L_{I} = 10 \mu \text{H}$		l _a is	GREATER	THAN	10μΗ				
	14 (1a=-50) to +/0)	,)								ļ
*	FOR T1 OPTION:									
	L _I =0.75mH		L _a is i	GREATER	THAN	0.75mH	1]
	CLASS I, DIV. 1, GR	OUPS C	AND D							
	$V_{MAX} = 30V$		V _T OR V	_{oc} is le	SS TH	AN OR	EQUAL	TO 30	V	
	I _{MAX} = 225mA		IT OR ISC	IS LES	S THA	N OR E	EQUAL T	0 225	mА	
	P _{MAX} = 1 WATT	$\left(\frac{V_{T} X I_{T}}{4}\right)$	OR (Voc	<u>× Isc</u>) IS	LESS	THAN	OR EQUA	AL TO	1 WATT	1
	$C_{I} = .02\mu f$		C _A IS I	GREATER	THAN	.Ø2µf				1
	$L_{I} = 10 \mu H$		L _A IS I	GREATER	THAN	1ØμH				
	T4 (Ta=-50°C to +70°C	()				, , , , , , , , , , , , , , , , , , ,				
¥										1
木					τυλΝ	0.75	1			1
	HAZARD	ous are	A	I NOI	N-HAZA	AS	AREA SSOCIATE PARATU	.D S		
<u>AV</u>	OUTPUT CODE M AILABLE FOR THE MODELS 205IC 205IT	SIISTED								

Reference Manual

Electronic Master – PRINTED COPIES ARE UNCONTROLLED – Rosemount Proprietary

REVISIONS REV DESCRIPTION CHG. NO. APP'D DATE AD CIRCUIT DIAGRAM I ONE BARRIER OR CONVERTER: SINGLE OR DUAL CHANNEL HAZARDOUS AREA NON-HAZARDOUS AREA L L BARRIER OR POWER CONVERTER SUPPLY L I OUTPUT CODE F or W MODELS INCLUDED 205IC, L, T CIRCUIT DIAGRAM 2 SUPPLY AND RETURN BARRIERS (ONLY FOR USE WITH BARRIERS APPROVED IN THIS CONFIGURATION) \rightarrow \triangleleft NON-HAZARDOUS AREA \sim HAZARDOUS AREA I SUPPLY OBARRIER O I POWER SUPPL Y Т T. O RETURN C OUTPUT CODE F or W MODELS INCLUDED 205IC, L, T Rosemount Inc. 8200 Market Boulevard CAD MAINTAINED (MicroStation) Chanhassen, MN 55317 USA DWG NO. SIZE FSCM NO 02051-1009 DR. Myles Lee Miller А Ŷ Rev ISSUED SCALE N/A WT. SHEET 8 OF 13 E o

				REVISION	NS			
		REV	DESCRIPTI	ON	CI	HG.NO.	APP'D	DATE
		AD						
THE ENTITY TO ASSOCIATE(THE APPROVED CIRCUIT CURRE ASSOCIATED AF VOLTAGE (Vmax) (Pmax) OF THE ABLE CONNECT THAN THE SUM INTERNAL CAP4 APPROVED MAX MUST BE GREA UNPROTECTED FOR OUTPUT CI CLAS	E CONCEPT ALL D APPARATUS VALUES OF M ENT (Isc OR It PPARATUS MUS X), MAXIMUM SA INTRINSICALL ED CAPACITAN ED CAPACITAN 1 OF THE INTE ACITANCE (C.) (ALLOWABLE C NTER THAN THE INTERNAL INDU NOT ODE F or W (S I, DIV. 1, GRC / 2mA	NTITY CONC OWS INTERC NOT SPECIF IAX. OPEN C) AND MAX.F T BE LESS AFE INPUT (Y SAFE APP CE (Ca) OF RCONNECTIN OF THE INT CONNECTED SUM OF T JCTANCE (L) TE: ENTITY APPARAT	EPT APPROV CONNECTION (ICALLY EXAN IRCUIT VOLTA OWER (Voc) THAN OR EG CURRENT (Ima ARATUS, IN A THE ASSOCIA IG CABLE CA RINSICALLY INDUCTANCE HE INTERCON) OF THE INT PARAMETERS US WITH LIN AND D Voc IS LESS	ALS OF INTRINS AGE (Voc (X Isc/4) OF DUAL TO TH ax), AND MA ADDITION, T ATED APPAF (La) OF TH NNECTING (TRINSICALL LISTED A IEAR OUTPO	GICALLY COMBINAT DR Vt) AN (Vt X HE MAXIN AXIMUM S CHE APPF RATUS M AND TH RATUS A IE ASSOC CABLE IN LY SAFE PPLY ON JT.	SAFE AF ION AS ID MAX. It/4), FO 4UM SAF SAFE INF COVED MF UST BE UNPRC IND THE IATED A IDUCTANC APPARA LY TO A LY TO A	PPARATU A SYSTI SHORT R THE E INPU ⁻ PUT POW AX. ALLC GREATE DTECTED IPPARAT CE AND TUS.	IS EM. VER DW- R DW- R DW- R DW- R DW- R DW- R DW- R
$\frac{C_{I}}{C_{I}} = 0\mu t$ $\frac{C_{I}}{L_{I}} = 0\mu t$ $T4 (Ta=-50^{\circ})$	3 WATT (f H C to +70°C)	C _A IS	<u>SC IS LESS</u> <u>4</u> GREATER TH GREATER TH	THAN OR ESS THAN HAN Øμf HAN ØμH	EQUAL T OR EQUA	0 300mA 1L TO 1.3	A 3 WATT	
$ \begin{array}{c} \Gamma_{MAX} = I_{A}, \\ C_{I} = 0 \mu I \\ L_{I} = 0 \mu I \\ T4 (Ta=-50^{\circ}(Ta)) \\ T4 (Ta=-50^{\circ}(Ta)) \\ \end{array} $	3 WATT (f H C to +70°C) C to +60°C) FI	VT X II) OR (Va C _A IS L _A IS SCO	AZARDOUS A JTPUT CODE DELS INCLUD	THAN OR ESS THAN HAN Øμf HAN ØμH AREA I I F I ED I I	CAD	O 300mA L TO 1.3 RDOUS A SSOCIATE PPARATU E SHEET	REA 3) (Micros	tation
C _I = 0 µt L _I = 0 µt T4 (Ta=-50°(T4 (Ta=-50°(3 WATT (f H C to +70°C) C to +60°C) FI	VT X II) OR (Ve C _A IS L _A IS SCO	AZARDOUS A HAZARDOUS A JTPUT CODE DELS INCLUD 205IC, L, T SIZE FSCM NO A	THAN OR ESS THAN HAN Øμf HAN ØμH AREA I I I F I ED I Dwg	CAD	0 300m2 1 TO 1.3 RDOUS A SSOCIATE PPARATU E SHEET MAINTAINED 2051	REA D 3) (Micros	tation 9

	REVISIONS									
		RE	V	DESCRI	PTION	C	HG.NO.	APP'D	DATE	
		A	D							
		FISCO	CONC	EPT	APPF	ROVALS	\geq			
	THE FISCO CONCE ASSOCIATED APPA INTERCONNECTION THE POWER (P1 or INTRINSICALY SAF (Uo, Voc, or Vt), T CAN BE DELIVERE FACTORS. ALSO, T (L1) OF EACH APPA BE LESS THAN OF ONLY ONE ACTIVE ALLOWED TO CONT ASSOCIATED APPA 24 V.D.C. ALL OT CANNOT PROVIDE EACH CONNECTED ISOLATION TO AFF PASSIVE. THE PAR BE IN THE FOLLO	PT ALLOWS IN RATUS NOT SF TO BE VALID Pma) THAT IN FE, INCLUDING HE CURRENT (D BY THE ASS HE MAXIMUM (ARATUS (BESIC REQUAL TO 5 DEVICE IN E RATUS' VOLTA(HER EQUIPENT ENERGY TO TH DEVICE) SEPA FIRM THAT TH AMETER OF TH WING RANGE:	NTERCONNE PECIALLY I THE VOLT NTRINSICAL FAULTS, M Io, Isc, or SOCIATED UNPROTECT DES THE TI AF AND 10 ACH SECTI DESIRED E GE Uo (or COMBINED HE SYSTEM RATELY PO HE INTRINS HE CABLE	CTION OF EXAMINED TAGE (U1 d LY SAVE UST BE E It), AND ED CAPAC ERMINATIC PARATU ED CAPAC ERMINATIC FRINCE CON (USUA NERGY FC Voc or N IN THE I, EXCEPT DWERED E USED TO	INTRINS IN SUCH APPARAT QUAL OR THE POWI S, CONSIE CITANCE ITANCE LITANCE LLY THE R THE F (t) IS LIN BUS CAB A LEAKA QUIPMENT AFE FIEL INTERCO	ICALY SAFE COMBINATIO THE CURREN US CAN REC GREATER T ER (Po or P DERING FAUL C1) AND THE CTED TO TH ASSOCIATED IELDBUS SYS MITED TO A LE MUST BE GE CURRENT REQUIRES .DBUS CIRCU NNECT THE	APPARAT DN. FOR IT (I1 or EIVE ANI HAN THE max) LEVI TS AND INDUCTA IE FIELDI APPARA STEM. TH RANGE O PASSIVE OF 50 A GALVA IT WILL DEVICES	US TO THIS Imax), π O REMA VOLTA(ELS WH APPLICA ANCE BUS MUS TUS) IS E TUS) IS E TUS TUS TUS TUS TUS TUS TUS TUS TUS TUS	AND AIN JE ICH IBLE ST	
	LOOP RE Inducta Capacit	ESISTANCE R': Ance per unit Ance per uni	「 LENGTH LIT LENGT	1 L': @ H C': &	5150 OH 1.41mH/1 10200nF	HM∕km ≺M				
\wedge	C' = C' L C' = C' L TRUNK (SPUR CA SPLICE	INE/LINE +0.5 INE/LINE +C' Cable length Able length: Length:	5C′LINE/S LINE/SCRE I:	CREEN, IF EN, IF TH ≤ 100 ≤ 30 ≤ 1 r	BOTH LI IE SCREE 30 m m	NES ARE FL N IS CONNE(OATING,(Cted to	OR ONE LI	NE	
	AN APPROVED INF The following p	ALLIBLE LINE Parameters is	TERMINAT 6 APPROPR	ION TO E IATE:	ACH END	OF THE TR	UNK CABI	_E,WIT⊦	ł	
	R = 90.	100 OHMS		C = 2	2.2µF					
AN ALLOWED TERMINATION MIGHT ALREADY BE LINKED IN THE ASSOCIATED APPARA DUE TO I.S. REASONS, THE NUMBER OF PASSIVE APPARATUS CONNECTED TO THE BUS SEGMENT IS NOT LIMITED. IF THE RULES ABOVE ARE FOLLOWED, UP TO A TOTAL L OF 1000 m (THE SUMMATION OF TRUNK AND ALL SPUR CABLES), THE INDUCTANCE A CAPACITANCE OF THE CABLE WILL NOT DAMAGE THE INTRINSIC SAFETY OF THE SY									TH The M.	
	NOTES: Intrinsically sa	FE CLASS I,[DIV. 1, GROL	JPS A, B, I	C, D					
	1. THE MAXIMUM I 2. CAUTION: ONLY TEMPERATURE. 3. WARNING: REPL	NON-HAZARDOU USE SUPPLY ACEMENT OF	IS AREA VO WIRES SU Component	DLTAGE M Itable f Is may d	UST NOT DR 5°C A AMAGE IN	EXCEED 25 BOVE SURRO ITRINSIC SAF	2 V. UNDING Fety.			
		Rosemount Inc. 8200 Market Boul Chanhassen, MN	evard 55317 USA	SIZE ESCM	NO) (Micros	tation)	
W AC		DR. Myles Lee	Miller	A			12051	-100	9	
Form Re		ISSUED		scale N/	′A wt.		SHEET 10) of 1	.3	

	REVISIONS													
				REV	DES	CRIPTION		CHG. NO.	APP'D	DATE				
				AD										
	NC	NOTES:												
	1. NO REVISION TO THIS DRAWING WITHOUT PRIOR FM APPROVAL.													
	2. ASSOCIATED APPARATUS MANUFACTURER'S INSTALLATION DRAWING MUST BE FOLLOWED WHEN INSTALLING THIS EQUIPMENT.													
	3. DUST-TIGHT CONDUIT SEAL MUST BE USED WHEN INSTALLED IN CLASS II AND CLASS III ENVIRONMENTS.													
	4.	CONTROL EC USE OR GEN	QUIPMENT C Nerate Mor	ONNECTED Re than 25	TO ASS Ø Vrms	OCIATED A s or Vdc.	APPARATUS	MUST NO	ЭТ					
	5. RESISTANCE BETWEEN INTRINSICALLY SAFE GROUND AND EARTH GROUND MUST BE LESS THAN 1.0 OHM.													
	6. INSTALLATION SHOULD BE IN ACCORDANCE WITH ANSI/ISA-RP12.06.01 "INSTALLATION OF INTRINSICALLY SAFE SYSTEMS FOR HAZARDOUS (CLASSIFIED) LOCATIONS" AND THE NATIONAL ELECTRICAL CODE (ANSI/NFPA 70).													
	7. THE ASSOCIATED APPARATUS MUST BE FM APPROVED.													
	8.	WARNING -	SUBSTITUTI	ON OF COM	PONENT	'S MAY IM	PAIR INTR	INSIC SAF	ETY.					
Ð	9. THE ENTITY CONCEPT ALLOWS INTERCONNECTION OF INTRINSICALLY SAFE APPARATUS WITH ASSOCIATED APPARATUS WHEN THE FOLLOWING IS TRUE: Vmax or U1 IS GREATER THAN or EQUAL TO Voc,Vt or Uo Imax or I1 IS GRETER THAN or EQUAL TO Isc,It or Io Pmax or P1 IS GRETER THAN or EQUAL TO Po Ca IS GREATER THAN or EQUAL TO THE SUM OF ALL C1'S PLUS Ccable La IS GREATER THAN or EQUAL TO THE SUM OF ALL L1'S PLUS Lcable													
	10. WARNING - TO PREVENT IGNITION OF FLAMMABLE OR COMBUSTIBLE Atmospheres, disconnect power before servicing.													
	11. THE ASSOCIATED APPARATUS MUST BE A RESISTIVELY LIMITED SINGLE OR MULTIPLE CHANNEL FM APPROVED BARRIER HAVEING PARAMETERS LESS THAN THOSE QUOTED, AND FOR WHICH THE OUTPUT AND THE COMBINATIONS OF OUTPUTS IS NON-IGNITION CAPABLE FOR THE CLASS, DIVISION AND GROUP OF USE.													
	12.	FIELD WIRIN	NG SHOULD	BE RATED	TO 70°	С.								
			Rosemount Inc 8200 Market E Chanhassen, N	: Boulevard IN 55317 USA			CA	d maintained	(Micros	tation)				
AC			DR. Myles	Lee Miller	- size fs A	CM NO	DWG NO.	Ø2Ø51	-100	9				
arm Rev			ISSUED		SCALE	N/A WT.		SHEET 13	3 OF 1	3				

Figure B-2. Canadian standards association (CSA) 02051-1008

					\forall							
[CONFIDENTIAL AND P	PROPRIETARY			×		RE	VISIONS				
	HEREIN AND MU HANDLED ACCOF	JST BE RDINGLY	REV		DE	SCRIPTI	ON		С	HG.NO.	APP'D	DATE
			AA	NEW I	RELE	EASE			RTC	1025889	J.G.K.	4/21/08
			AB	UPDAT	FE P	ERC	SA		RTC	1026355	J.G.K.	6/18/08
		l		REQUI	REM	ENI						
			f	APPROV	ALS	FOR						
				2Ø5	i1C							
				205	1L							
			(1-	200		TIC	CEE	CHEE.	TC 2	-3		
	OUTF	PUT CODE A	M (_0V P(DWER	• I.S. 9	SEE S	SHEETS	5 3-4	1		
	OUTPUT CODE F/W (FIELDBUS) I.S. SEE SHEETS 5-7											
	OUTPUT CODES A,F,W I.S. ENTITY PARAMETERS SHEET 8-9											
₽	TO ASSURE AN INTRINSICALLY SAFE SYSTEM,THE TRANSMITTER AND BARRIER											
	MUST BE W Instructio	/IRED IN ACC DNS AND THE	ORD: APF	ANCE WI Plicable	TH TH E CIRC	IE BAR Cuit d	RIER IAGRAI	MANUFA M.	CTURE	ER'S FIEL	.D WIRI	NG
	WARNING MAY IMP/	- EXPLOSION	HAZ	ARD - S	SUBST		I OF (COMPON	ENTS			
	MAY IMPAIR SUITABILITY FOR CLASS I, DIVISION I.											
	PEUT REI	NDRE CE MA	FERIE	L INACC	EPTAE	LE PO	JR LE	S EMPL	ACEME	ENTS	13	
	DE CLASS	SE I, DIVISION										
									CAD	MAINTAINED	(MicroS	tation)
	UNLESS OTHERWISE SPECIFIED	CONTRACT NO.				EMED	:ON	R	tosi	EMOU	NT ®	
	DIMENSIONS IN INCHES [mm]. REMOVE ALL BURRS AND SHARP EDGES. MACHINE				T.T. C	Process Mana	gement	8200 Mari	ket Bouleva	rd • Chanhassen, N	/IN 55317 USA	
	-TOLERANCE-	DR. Myles Lee Mille 2E- CHK'D CHK'D [2,5] ADD(D)		er 4/15/08	IIILE	INE)EX	OF	I.S	. CSA	FO	R
	.X ± .1 [2,5]						2	Ø51C	/L/	/Τ		
	.XXX ± .010 [0,25]				SIZF	SCM NO		DWG NO.	. ~		100	
w AC	± 1/32 ± 2°				A	55 110	1			JZØ51	-100	8
Form Re	DO NOT SCALE PRINT	APP'D.GOVI.			SCALE	N/A	WT			SHEET]	OF	9
le	ctronic Master – P	PRINTED C	OP	IES AR	EUN	ICON	TRO	LED -	- Ros	emount l	Proprie	tarv

			RE	VISIONS			
	REV	/	DESCRIPTION	C	HG.NO.	APP'D	DATE
	 DE)						
DEVICE		PARAM	IETERS		APPROVED FOR CLASS I,DIV.I		
30 V OR LESS * 330 OHMS OR MORE * 28 V OR LESS 300 OHMS OR MORE SAFETY BARRIER 25 V OR LESS 200 OHMS OR MORE * 22 V OR LESS 180 OHMS OR MORE						5 A, B, C	, D
FOXBORO CONVE 2AI-I2V-CGB, 2AS-I3I-CGB, 3A2-I3D-CGB, 3A4-I2D-CGB, 3F4-I2DA	ERTER 2AI-13V-CGB, 3A2-12D-CGB, 3AD-13I-CGB, 2AS-12I-CGB,				GROUF	°S B,C,	D
CSA APPROVED SAFETY BARRIEF	२	30 V C 150 OHMS	OR LESS OR MORE		GROL	IPS C,D	
DEVICE	LOW PO	DWER, ("M" param	OUTPUT C	ODE)	APPRC CLAS)VED FO S I, DIV.	R
		Supply ≤2 Return ≤	8V,≥300 Ω 10V,≥47 Ω		GROUPS	5 A, B, C	., D
CSA APPROVED SAFETY BARRIEF	२	Supply ≤3 Return ≤	ØV,≥150 Ω 10V,≥47 Ω		GROL	JPS C,D	ŀ
	* MAY BE US	ED WITH ROS SMART FAN	EMOUNT MODEL MILY INTERFACE	. 275 or 37!	5		
	Rosemount Inc.						
	Rosemount Inc. 8200 Market Boulev Chanhassen, MN 59	vard 5317 USA SIZE	FSCM NO	CAD	MAINTAINED) (Micros) - 1 (7) (7)	tation R

				REVISIONS							
			REV	DES	CRIPTION		CHG. NO.	APP'D	DATE		
		l	AB								
		FIELDE	SUS,("F" o	r "W"	OUTPUT	CODE)				
	DEVICE		PA	RAMETE	RS		APP CL <i>4</i>	ROVED FO SS I, DIV	JR .I		
	CSA APPROVED SAFETY BARRIEF	}	30 300 C 28 235 0 25 160 0 22 100 0	V OR L HMS OF V OR L HMS OR V OR L HMS OR V OR L HMS OR	ESS MORE ESS MORE ESS MORE ESS MORE		GROUI	PS A, B, (C, D		
	CSA INTRINSIC SAFETY APPROVALS CIRCUIT CONNECTION WITH BARRIER OR CONVERTER Ex id INTRINSICALLY SAFE/SECURITE INTRINSFOLIE										
		FIELDBUS, ("F" or "W" OUTPUT CODE)									
	HAZARDOUS AREA					I	NON-HAZARI) ous are	-A		
\rightarrow						1	+ BARRIE	R OR	Ŕ		
	ROSE MODELS [WITH OR (TRANSIENT PRO 205)	MOUNT ** INCLUDED WITHOUT TI DTECTION) OP IC, L, T] Tionj				Convei	RTER			
	WARNING - EXPLOSION HAZARD - SUBSTITUTION OF COMPONENTS May impair suitability for class i, division i.										
	AVERTISSEMENT - RISQUE D'EXPLOSION - LA SUBSTITUTION DE COMPOSANTS PEUT RENDRE CE MATERIEL INACCEPTABLE POUR LES EMPLACEMENTS DE CLASSE I, DIVISION I.										
		Rosemount Inc 8200 Market B Chanhassen, M	oulevard N 55317 USA			1	CAD MAINTAIN	IED (Micros	station)		
AC	-	DR. Myles	Lee Miller	size fs A	CM NO	DWG NO.	Ø2Ø5	1-100	18		
orm Rev		ISSUED		SCALE	N/A WT.		- SHEET	5 OF	9		

	REVISIONS									
		REV	[DESCRIPTIO	ОN		СНС	G. NO.	APP'D	DATE
		AB								
	FISCO CONCEPT APPROVALS									
	INTERCONNECTION TO BE VALID THE VOLTAGE (U1 or Vmax), THE CURRENT (11 or Imax), AND THE POWER (P1 or Pma) THAT INTRINSICALLY SAVE APPARATUS CAN RECEIVE AND REMAIN INTRINSICALY SAFE, INCLUDING FAULTS, MUST BE EQUAL OR GREATER THAN THE VOLTAGE (Uo, Voc, or Vt), THE CURRENT (Io, Isc, or It), AND THE POWER (Po or Pmax) LEVELS WHICH CAN BE DELIVERED BY THE ASSOCIATED APPARATUS, CONSIDERING FAULTS AND APPLICABLE FACTORS, ALSO, THE MAXIMUM UNPROTECTED CAPACITANCE (C1) AND THE INDUCTANCE (L1) OF EACH APPARATUS (BESIDES THE TERMINATION) CONNECTED TO THE FIELDBUS MUST BE LESS THAN OR EQUAL TO 5nF AND 10µH RESPECTVELY. ONLY ONE ACTIVE DEVICE IN EACH SECTION (USUALLY THE ASSOCIATED APPARATUS) IS ALLOWED TO CONTRIBUTE THE DESIRED ENERGY FOR THE FIELDBUS SYSTEM. THE ASSOCIATED APPARATUS' VOLTAGE Uo (or Voc or Vt) IS LIMITED TO A RANGE OF 14V TO 24 V.D.C. ALL OTHER EQUIPENT COMBINED IN THE BUS CABLE MUST BE PASSIVE (THEY CANNOT PROVIDE ENERGY TO THE SYSTEM, EXCEPT A LEAKAGE CURRENT OF 50 µA FOR EACH CONNECTED DEVICE) SEPARATELY POWERED EQUIPMENT REQUIRES A GALVANIC ISOLATION TO AFFIRM THAT THE INTRINSICALLY SAFE FIELDBUS CIRCUIT WILL REMAIN PASSIVE. THE PARAMETER OF THE CABLE USED TO INTERCONNECT THE DEVICES MUST BE IN THE FOLLOWING RANGE:									
	LOOP F Induct Capaci	RESISTANCE R': Ance per unit len Tance per unlit li	GTH L': Ength C'	15 Ø.4. 80	150 OH 1mH/I .200nF	HM/km KM				
A	C' = C' C' = C' TRUNK SPUR C SPLICE	LINE/LINE +0.5C'LI LINE/LINE +C'LINE/ CABLE LENGTH: CABLE LENGTH: LENGTH:	NE/SCREE SCREEN, I	N,IF BC IF THE ≤1000 ≤30 m ≤1 m)TH LI SCREE m	NES ARE N IS COM	FLO NNECT	ATING, C Ed to	DR ONE LI	NE
	AN APPROVED IN The Following	FALLIBLE LINE TERM PARAMETERS IS APP	1INATION ROPRIATE	TO EACI	H END	OF THE	TRUN	NK CABL	.E,WIT⊦	4
	R = 90	100 OHMS		C = 2.2,	μF					
	AN ALLOWED TERMINATION MIGHT ALREADY BE LINKED IN THE ASSOCIATED APPARATUS. DUE TO I.S. REASONS, THE NUMBER OF PASSIVE APPARATUS CONNECTED TO THE BUS SEGMENT IS NOT LIMITED. IF THE RULES ABOVE ARE FOLLOWED, UP TO A TOTAL LENGTH OF 1000 m (THE SUMMATION OF TRUNK AND ALL SPUR CABLES), THE INDUCTANCE AND THE CAPACITANCE OF THE CABLE WILL NOT DAMAGE THE INTRINSIC SAFETY OF THE SYSTEM.									
	NOTES: Intrinsically safe class I, div. 1, groups A, B, C, d									
 THE MAXIMUM NON-HAZARDOUS AREA VOLTAGE MUST NOT EXCEED 250 CAUTION: ONLY USE SUPPLY WIRES SUITABLE FOR 5°C ABOVE SURROU TEMPERATURE. WARNING: REPLACEMENT OF COMPONENTS MAY DAMAGE INTRINSIC SAFE 								V. Nding Ety.		
		Rosemount Inc. 8200 Market Boulevard Chanhassen, MN 55317 U	JSA	ESCM NO			CAD M		(Micros	tation)
/ AC		DR. Myles Lee Miller		IFSUM NU		DWG NU.	Ø	2051	-100	8
Form Rev		ISSUED	SCAL	= N/A	WT.			SHEET () OF	9

					REV	ISIONS				
		REV		DESCRIPT	ION		СН	G.NO.	APP'D	DATE
		AB								
		ENTIT	Y CONCE	PT APPRO	VALS					
	THE ENTITY CONCEPT AL TO ASSOCIATED APPARATUS THE APPROVED VALUES OF CIRCUIT CURRENT (Isc) AND ASSOCIATED APPARATUS MU VOLTAGE (Vmax), MAXIMUM S (Pmax) OF THE INTRINSICALI ABLE CONNECTED CAPACITA THAN THE SUM OF THE INT INTERNAL CAPACITANCE (CI APPROVED MAX. ALLOWABLE MUST BE GREATER THAN TH UNPROTECTED INTERNAL INT	LOWS NOT MAX.(ST BE SAFE LY SA NCE (I ERCON OF T CONNI IE SUI DUCTA	INTERCOI SPECIFIC DPEN CIR POWER (V E LESS T INPUT CU FE APPAF Ca) OF TH NECTING HE INTRI ECTED IN M OF THE NCE (L1) (NNECTION ALLY EXA CUIT VOLT DE X ISE/ HAN OR E RRENT (IN RRENT (IN RATUS.IN IE ASSOCI CABLE C NSICALLY DUCTANCE INTERCO DF THE IN	OF INT MINED FAGE (V '4), FOR QUAL T ADDITIO ADDITIO ATED A SAFE ((La) OF DNNECTI VTRINSIO	RINSICA IN COME OCOME OTHE 1 OMAXIM DN, THE PPARATI NOCE AN APPARAT THE A NG CABL CALLY S	LLY S BINATI MAX. MAXIM 1UM S APPRI JS ML JS ML US, AI SSOC LE INI SAFE	SAFE AP ON AS A SHORT UM SAF AFE INP OVED MA JST BE I ST BE UNPRO ND THE IATED A DUCTANC APPARAT	PARATU A SYSTI UT POW AX.ALLC GREATEI TECTED PPARATI CE AND US.	S EM. (ER)W- R US THE
	FOR OUTPUT CODE A CLASS I, DIV. 1, GR		A,B,C A	ND D:CLA	ISS I, ZI	DNE Ø,C	GROUP	IIC		
	$V_{T} = 30V$		V _{oc} IS L	ESS THAN	I OR EG	UAL TO	3ØV			
	$I_T = 200 \text{mA}$	Vee	I _{SC} IS L	ESS THAN	I OR EG	UAL TO	200r	nA		
	$P_{MAX} = I WATT$	(100 4	<u> </u>	ESS THAN	UR EQ	UAL IO	1 WA			
	$C_{I} = 10 \mu H$		LA IS C	REATER 1	пніл .0 Гналі 10	и <u>мт + с</u> и H + I		F		
	$\Box_{I} = 10 \mu \Pi$		LA IS L		TIHIN IU		CHDL	. ∟		
\land	$\begin{array}{c c} \hline & CLASS I, DIV. 1, GF\\ \hline & CLASS I, DIV. 1, GF\\ \hline & V_T = 30V\\ \hline & I_T = 300 \text{mA}\\ \hline & P_{MAX} = 1.3 \text{ WATT}\\ \hline & C_I = 0 \mu \text{f}\\ \hline & L_I = 0 \mu \text{H} \end{array}$	OUPS	A, B, C A V_{0C} IS L I_{SC} IS L I_{SC} IS L C_A IS C L_A IS C	ND D: CLA ESS THAN ESS THAN ESS THAN REATER 1 REATER 1	ISS I, ZI I OR EG I OR EG OR EQ THAN Ø _P	DNE Ø, 0 UAL TO UAL TO UAL TO uf + C .H + L	GROUP 30V 300n 1.3 W CABLE CABLE	IIC nA VATT E		
	FOR OUTPUT CODE M CLASS I, DIV. 1, GR	OUPS	A,B,C A	ND D:CLA	ISS I, ZI	DNE Ø, (GROUP	IIC		
	$V_{\rm T} = 30V$		V _{oc} IS L	ESS THAN	I OR EG	UAL TO	300			
	$\frac{1_{T}}{P_{MAY}} = 1 W \Delta T T$	(Voc x	ISC IS L Ischich	ESS IHAN ESS TUAN	NR EO	IUAL IU	200r 1 WA	nh TT		
	$\frac{1}{C_{T}} = .02 \mu f$	4		REATER 1	HAN .0	<u>онс то</u> L _u f + С	CABI	.E		
	$L_{\rm I} = 10 \mu {\rm H}$		L _A IS C	REATER 1	HAN 10	μH + L	CABL	.E		
	* FOR T1 OPTION:									
	L _I =Ø.75mH									
	NOTE: ENTITY PAF Apparatus	RAMET WITH	ERS LIST LINEAR	ED APPLY Output.	ONLY	TO ASSI	OCIAT	ED		
	Rosemount Ind 8200 Market E Chanhassen, N	c. 3oulevar 4N 553	rd 17 USA	IZE ESCM N	0	DWG NO	CAD N		(MicroS	tation)
AC	DR. Myles	Lee Mi	iller	A	-	2110 1101	Ø	2051	-100	8
Rev	ISSUED		5	CALE NIZA	WT			SHEET C) UE	9

Appendix C Field Communicator Menu Trees and Fast Keys

Field Communicator menu trees	. page 179
Field Communicator Fast Keys	. page 184

C.1 Field Communicator menu trees

Figure C-1. Rosemount[™] 2051 Field Communicator Menu Tree: Overview

Figure C-4. Rosemount 2051 Field Communicator menu tree: Configure - Alert Setup

C.2

Field Communicator Fast Keys

- A (✓) indicates the basic configuration parameters. At minimum these parameters should be verified as a part of configuration and startup.
- A (7) indicates availability only in HART revision 7 mode.

Table C-1. Device Revision 9 and 10 (HART7), DD Revision 1 Fast Key Sequence

Function		Fast Key sequence			
Fund		HART 7	HART 5		
\checkmark	Alarm and Saturation Levels	2, 2, 2, 5	2, 2, 2, 5		
\checkmark	Damping	2, 2, 1, 1, 5	2, 2, 1, 1, 5		
\checkmark	Primary Variable	2, 2, 5, 1, 1	2, 2, 5, 1, 1		
\checkmark	Range Values	2, 2, 2, 1	2, 2, 2, 1		
\checkmark	Tag	2, 2, 7, 1, 1	2, 2, 7, 1, 1		
\checkmark	Transfer Function	2, 2, 1, 1, 6	2, 2, 1, 1, 6		
\checkmark	Pressure Units	2, 2, 1, 1, 4	2, 2, 1, 1, 4		
	Date	2, 2, 7, 1, 5	2, 2, 7, 1, 4		
	Descriptor	2, 2, 7, 1, 6	2, 2, 7, 1, 5		
	Digital to Analog Trim (4–20 mA / 1–5 V output)	3, 4, 2, 1	3, 4, 2, 1		
	Digital Zero Trim	3, 4, 1, 3	3, 4, 1, 3		
	Display Configuration	2, 2, 4	2, 2, 4		
	LOI Password Protection	2, 2, 6, 5	2, 2, 6, 4		
	Loop Test	3, 5, 1	3, 5, 1		
	Lower Sensor Trim	3, 4, 1, 2	3, 4, 1, 2		
	Message	2, 2, 7, 1, 7	2, 2, 7, 1, 6		
	Pressure Trend	3, 3, 1	3, 3, 1		
	Rerange with Keypad	2, 2, 2, 1	2, 2, 2, 1		
	Scaled D/A Trim (4–20 mA / 1–5 V) output)	3, 4, 2, 2	3, 4, 2, 2		
	Scaled Variable	2, 2, 3	2, 2, 3		
	Sensor Temperature Trend	3, 3, 3	3, 3, 3		
	Switch HART Revision	2, 2, 5, 2, 4	2, 2, 5, 2, 3		
	Upper Sensor Trim	3, 4, 1, 1	3, 4, 1, 1		
7	Long Tag	2, 2, 7, 1, 2			
7	Locate Device	3, 4, 5			
7	Simulate Digital Signal	3, 5			

Appendix D Local Operator Interface

LOI Menu Tree	bage 185
LOI Menu Tree - Extended Menu p	bage 186
Number entry r	bage 187
Text entry r	bage 188

D.1 LOI Menu Tree

D.3 Number entry

Floating-point numbers can be entered with the LOI. All eight number locations on the top line can be used for number entry. Refer to Table 2-2 on page 11 for LOI button operation. Below is a floating-point number entry example for changing a value of "-0000022" to "000011.2"

Step	Instruction	Current position (indicated by underline)
1	When the number entry begins, the left most position is the selected position. In this example, the negative symbol, "-", will be flashing on the screen.	<u>-</u> 0000022
2	Press the scroll button until the "0" is blinking on the screen in the selected position.	<u>0</u> 0000022
3	Press the enter button to select the "0" as an entry. The second digit from the left will be blinking.	0 <u>0</u> 000022
4	Press the enter button to select "0" for second digit. The third digit from the left will be blinking.	00 <u>0</u> 00022
5	Press the enter button to select "0" for the third digit. The fourth digit from the left will now be blinking.	000 <u>0</u> 0022
6	Press the enter button to select "0" for the fourth digit. The fifth digit from the left will now be blinking.	0000 <u>0</u> 022
7	Press scroll to navigate through the numbers until the "1" is on the screen.	0000 <u>1</u> 022
8	Press the enter button to select the "1" for the fifth digit. The sixth digit from the left will now be blinking.	00001 <u>0</u> 22
9	Press scroll to navigate through the numbers until the "1", is on the screen.	00001 <u>1</u> 22
10	Press the enter button to select the "1" for the sixth digit. The seventh digit from the left will now be blinking.	00001122
11	Press scroll to navigate through the numbers until the decimal, ".", is on the screen.	000011 <u>.</u> 2
12	Press the enter button to select the decimal, ".", for the seventh digit. After pressing enter, all digits to the right of the decimal will now be zero. The eighth digit from the left will now be blinking.	000011. <u>0</u>
13	Press the scroll button to navigate through the numbers until the "2", is on the screen.	000011. <u>2</u>
14	Press the enter button to select the "2" for the eighth digit. The number entry will be complete and a "SAVE" screen will be shown.	000011.2

Usage notes:

- It is possible to move backwards in the number by scrolling to the left arrow symbol and pressing enter.
- The negative symbol is only allowed in the left most position.
- Numbers can be entered in scientific notation by placing an "E" in the 7th position.

D.4 Text entry

1. Text can be entered with the LOI. Depending on the edited item, up to eight locations on the top line can be used for text entry. Text entry follows the same rules as the number entry rules in "LOI Menu Tree" on page 185, except the following characters are available in all locations: A–Z, 0–9, –, /, space.

Usage note:

If the current text contains a character the LOI cannot display, it will be shown as an asterisk "*".

Reference Manual

00809-0100-4107, Rev CA July 2017

Global Headquarters

Emerson Automation Solutions

6021 Innovation Blvd. Shakopee, MN 55379, USA +1 800 999 9307 or +1 952 906 8888 +1 952 949 7001

RFQ.RMD-RCC@Emerson.com

North America Regional Office

Emerson Automation Solutions

8200 Market Blvd. Chanhassen, MN 55317, USA 1 800 999 9307 or +1 952 906 8888 +1 952 949 7001 RMT-NA.RCCRFQ@Emerson.com

Latin America Regional Office

Emerson Automation Solutions 1300 Concord Terrace, Suite 400

Sunrise, FL 33323, USA

- +1 954 846 5030
- 🙃 +1 954 846 5121
- RFQ.RMD-RCC@Emerson.com

Europe Regional Office

Emerson Automation Solutions Europe GmbH Neuhofstrasse 19a P.O. Box 1046 CH 6340 Baar Switzerland +41 (0) 41 768 6111 +41 (0) 41 768 6300

RFQ.RMD-RCC@Emerson.com

Asia Pacific Regional Office

Emerson Automation Solutions Asia Pacific Pte Ltd
1 Pandan Crescent
Singapore 128461
+65 6777 8211
+65 6777 0947
Enquiries@AP.Emerson.com

Middle East and Africa Regional Office

Emerson Automation Solutions Emerson FZE P.O. Box 17033 Jebel Ali Free Zone - South 2 Dubai, United Arab Emirates +971 4 8118100

- +971 4 8865465
- RFQ.RMTMEA@Emerson.com

In Lin

Linkedin.com/company/Emerson-Automation-Solutions

Twitter.com/Rosemount_News

Facebook.com/Rosemount

You Tube

Youtube.com/user/RosemountMeasurement

Google.com/+RosemountMeasurement

Standard Terms and Conditions of Sale can be found on the Terms and Conditions of Sale page. The Emerson logo is a trademark and service mark of Emerson Electric Co. AMS, Annubar, Instrument Toolkit, Hot Backup, Rosemount, and Rosemount logotype are trademarks of Emerson. HART and WirelessHART is a registered trademark of FieldComm Group. DTM is a trademark of the FDT Group. NEMA is a registered trademark and service mark of the National Electrical Manufacturers Association. Neobee is a registered trademark of Stepan Specialty Products, LLC. SYLTHERM is a trademark of Dow Corning Corporation. Fluorinert is a trademark of 3M. FOUNDATION Fieldbus is a trademark of the FieldComm Group. eurofast and minifast are registered trademarks of TURCK. PROFIBUS is a registered trademark of PROFINET International (PI). All other marks are the property of their respective owners. © 2017 Emerson. All rights reserved.

