General Specifications

UT75A

Digital Indicating Controller

UTFAdvanced.

GS 05P01B41-01EN

■ Overview

The UT75A digital indicating controllers employ an easy-to-read, 14-segment large color LCD display, along with navigation keys, thus greatly increasing the monitoring and operating capabilities. A ladder sequence function is included as standard. The short depth of the controller helps save instrument panel space. The UT75A also support open networks such as Ethernet communication.

Features

- A 14-segment, active (PV display color changing function) color LCD display is employed.
Two five-digit, high-resolution displays are possible. Alphabet letters can be displayed in an easy-to-read manner. The guide display shows parameter names.
- Easy to operate Navigation keys (SET/ENTER and Up/Down/Left/Right arrow keys) are employed to facilitate making settings.
- 65 mm depth

The small depth enables the mounting in a thin and small instrumented panel.

- Ladder sequence function is included as standard. This function allows for creating a simple sequence control. Dedicated LL50A Parameter Setting Software (sold separatly) allows for performing programming using a ladder language.
Multi-line ladder programs such as numerical computation can be simplified using custom ladder instructions. Custom ladder programs allow for secure management using passwords.
- Various built-in open network functions such as Ethernet are available.
Easy connection with various vendors' PLCs is possible.
- Quick setting function

Setting only the minimum necessary parameters for operation is possible. (For single-loop control only)

- Equipped with a multitude of functions Universal I/O, eight control modes (dual-loop control, cascade control, etc) and program pattern operation are included as standard. PID control, heating/cooling control, feed forward control, etc. are available.
- LL50A Parameter Setting Software (sold separately) The parameters and ladder programs of UTAdvanced digital indicating controller can be built from a PC using this software. It makes data management even easier.
- Dust-proof and drip-proof

IP66 (for front panel) (Not applicable to side-by-side close mounting.)
NEMA4 (Hose-down test only)

Functional Specifications

Control Specifications

(1) Control Mode

Control functions of the controller can be set as control modes.

Control mode	Function
SGL (1)	Single-loop control
CAS1 (2)	Cascade primary-loop control ${ }^{(4)}$
CAS2 (3)	Cascade secondary-loop control ${ }^{\left({ }^{(4)}\right)}$
CAS (4)	Cascade control ${ }^{(41)}$
BUM (5)	Loop control for backup ${ }^{(41)}$
PVSW (6)	Loop control with PV switching ${ }^{\left({ }^{\text {(1) }}\right.}$
PVSEL (7)	Loop control with PV auto-selector (Max./Min./Ave./Diff.) ${ }^{(1])}$
PVHD (8)	Control with PV-hold function
2LP (11)	Dual-loop control ${ }^{(2)}$

*1: Remote (auxiliary analog) input is required.
*2: Dual-loop type ("-5" for type 1 code is required.)

2) Control period

Selectable from $50 \mathrm{~ms}{ }^{(33)}, 100 \mathrm{~ms}$, and 200 ms
*3: Cascade control and Dual-loop control cannot be used. "Super" function or "Super 2" function cannot be used.

Table of Number of Inputs and Outputs

Model and suffix code (See the model code)	Number of analog input points	Number of analog output points
UT75A		
$-00 \times$	1	2
$-01 \times$	2	2
$-02 \times$	3	2
$-03 \times$	2	2
$-10 \times$	1	2
$-11 \times$	2	2
$-12 \times$	3	2
$-13 \times$	2	2
$-50 \times$	2	3
$-51 \times$	3	3
$-52 \times$	4	3

For the number of $\mathrm{DI} / \mathrm{DO}$, see the model and suffix codes.

Control Computation Function

(1) Combination of types of control and control modes

Types of control	Control mode								
	1	2	3	4	5	6	7	8	11
PID control (${ }^{(5)}$	$\sqrt{ }$	$\sqrt{(* 4)}$	$\sqrt{ }$						
ON/OFF control ${ }^{(+4)\left({ }^{(5)}\right.}$	$\sqrt{ }$	N/A	N/A	N/A	N/A	$\sqrt{ }$	$\sqrt{ }$	N/A	$\sqrt{ }$
Two-position, twolevel control (*4)(*5)	$\sqrt{ }$	N/A							
Heating and cooling control ($\left.{ }^{4} 4\right)^{(55)}$	$\sqrt{ }$	N/A	$\sqrt{ }$	\checkmark					
Sample PI control	$\sqrt{ }$	N/A	N/A	N/A	N/A	\checkmark	$\sqrt{ }$	$\sqrt{ }$	N/A
Batch PID control	$\sqrt{ }$	N/A	N/A	N/A	N/A	\checkmark	$\sqrt{ }$	$\sqrt{ }$	N/A
Feedforward control	$\sqrt{ }$	N/A	N/A	N/A	N/A	N/A	N/A	$\sqrt{ }$	N/A

\checkmark : Available, N/A: Not Available
*4: Not selectable for Position proportional type
*5: Selectable for Dual-loop type
(2) Control Computation Function
(a) Target setting point and the number of PID parameter groups
Respectively, twenty sets of target setpoints and alarm setpoints.Sixteen sets of PID parameters can be set. For dual-loop control and cascade control, respectively, sixteen sets can be set for loop-1 (primary side) and loop-2 (secondary side).
(b) Selecting the PID parameter group

The following PID parameter groups can be selected.

- Target setpoint number (SPNO) (The PID number can be set arbitrarily.)
- Measured input zone PID
- Target setpoint zone PID
- Reached target setpoint zone PID
(c) Auto-tuning
- Tuning results can be selected from two options, Normal or Stable.
- Tuning output limit can be set. (It cannot be used in heating/cooling control.)
(d) "Super" function: Overshoot-suppressing function
(e) "Super 2" function: Hunting-suppressing function
(f) STOP preset output function
(g) Input ERROR preset output function
(h) MANUAL preset output function
(3) Operation Mode Switching

	AUTO/MANUAL and RUN/STOP switching Operation mode switching
CASCADE/AUTO/MANUAL switching	
REMOTE/LOCAL switching	
Start (P.RUN)/ stop (P.STOP) of program operation	
Pause/cancel release of program operation (HOLD)	
Advance of segment (ADV)	

(4) Control Parameter Setting Range

Proportional band	0.1 to 999.9%
Integral time	1 to 6000 sec . or OFF (using manual reset)
Derivative time	1 to 6000 sec. or OFF
ON/OFF control hysteresis (one or two hysteresis points)	0.0 to 100.0% of measured input range width
Preset output value	-5.0 to 105.0% (however, 0 mA or less cannot be output)
High/low output limiter	-5.0 to 105.0% Low limit setpoint < high limit setpoint
Tight shut function	When manual control is carried out with 4 to 20 mA output, control output can be reduced to about 0 mA.
Rate-of-change limiter of output	0.1 to $100.0 \% /$ sec., OFF
Output deadband	For heating and cooling control: -100.0 to 50.0% For position proportional control: 1.0 to 10.0%

Program Pattern Functions

The program setting function increases or decreases the value of a target setpoint (SP) according to a given program pattern that varies with time. The program pattern consists of multiple line segments (program segments). The operator sets the time interval of each program segment using the segment time. The operator can also set such instructions as the number of repeats, start/stop for a given program pattern.

Number of Program pattern	1
Number of program segment	Max. 20
Segment time	0.00 to 999.59 (hour.minute or minute. second)
Number of repeat cycles	0 to 999, CONT (limitless number of times)
Wait operation	Can be set the upper-side wait zone and the lower zone for program setpoint.

Alarm Functions

- Types of Alarm

	PV (measured value) high/low limit alarm Deviation high/low limit alarm Measured value alarm Deviation alarm Revigh and low limits alarm Reviation within high and low limits alarm alarm
Analog input PV high/low limit alarm	
Analog input AIN4 (ROMOTE) SP high/low limit alarm	
Auxiliary analog input high/low limit alarm	
Feedback input high/low limit alarm	
PV rate-of-change alarm	

- Alarm Functions

Alarm output action	Alarm stand-by action Alarm latch (forced reset) function Alarm hysteresis Alarm ON/OFF delay timer
Number of alarm settings	8 (per loop)
Number of alarm output points	Differs by model code.

Contact I/O Function

This function allows for allocating the input error condition, operation condition, alarm condition or other conditions to the contact input and contact output.

	AUTO/MANUAL switching
	REMOTE/LOCAL switching
	STOP/START switching
	Switching to CASCADE
	Switching to AUTO
	Switching to MANUAL
	Switching to REMOTE
	Switching to LOCAL
	Start of program operation
	Stop of program operation
	Start of hold-mode operation
	Advance of segment
	AUTO-TUNING START/STOP switching
	OUTPUT TRACKING switching
	Two-input switching
	PV Hold
	LCD backlight ON/OFF switching
	PV red/white switch
	Message interrupt displays 1 through 4
	Custom display interrupt displays 1 and 2
	SP number specification
	PID number specification
	Manual preset output number specification
	Select display
Coop 1 alarms 1 through 8	
	Loop 2 alarms 1 through 8 (for dual-loop control and cascade control)
	Status output

Ladder Sequence Function

(1) Number of I/O Points

Number of digital input points	Up to 13
Number of digital output points	Up to 8

This is limited by the number of contact I/O signal points. (See the model code.)
(2) Types of Command

	Number of commands	Remark
Number of basic instructions	15	Load, AND, OR, Timer, Counter, etc.
Number of application instruc- tions	111	Comparison, reverse, addition/ subtraction/multiplication/ division, logic operation, high/ low limiter, carbon potential calculation (*), etc.

*: Available when /CP option is specified.
(3) Sequence Device

	Types of device	Number of points
	Input relay	$8(\mathrm{max})$
	Output relay	$18(\mathrm{max})$
Internal device	M relay (bit data)	256
	DAT register (data)	58
	P register (parameter)	30
	K register (constant)	50
Timers	Time-out relay (bit data)	4
Timers (Holding type)	Time-out relay (bit data)	2
Counters	Count-out relay (bit data)	4
Counters (Holding type)	Count-out relay (bit data)	2
Special device	Special relay (bit data)	12

Process data and process relay can be used besides the above-mentioned.
(4) Program capacity

Max. Program capacity: 1000 steps *
*: Available number of steps differs according to the parameters, using command and control period.
(5) Ladder computation period Ladder computation period is the same as control period.
(6) CP (carbon potential) calculation (Option /CP) Carbon potential operation is possible. CP calculation of ladder instructions is provided. However, 1 or 2 additional aux. analog input(s) is required. (Type 2 code is " 1 " or " 2 ")

Custom Display Building Function

The contents displayed on the screen of UT75A can be customized.
LL50A parameters setting software is required.

Communication Function

Physical Interface

Hardware Specifications

Display Specifications

- PV display

5-digit, 14-segment active color LCD (white/red) Character height: 21.5 mm

- Data display

5 -digit, 11-segment color LCD (orange)

- Bar graph display

12-segment color LCD (orange and white)

Universal Input Specifications (PV)

- Number of input points: 1 point
- Types of input, instrument range, and measurement accuracy (see the table below)

Types of input		Instrument range		Accuracy
		${ }^{\text {C }}$	${ }^{\circ} \mathrm{F}$	
	K	-270.0 to $1370.0^{\circ} \mathrm{C}$	-450.0 to $2500.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit for $0^{\circ} \mathrm{C}$ or more $\pm 0.2 \%$ of instrument range ± 1 digit for less than $0^{\circ} \mathrm{C}$ However, $\pm 2 \%$ of instrument range ± 1 digit for less than $-200^{\circ} \mathrm{C}$ of thermocouple $\mathrm{K} \pm 1 \%$ of instrument range ± 1 digit for less than $-200^{\circ} \mathrm{C}$ of thermocouple T
		-270.0 to $1000.0^{\circ} \mathrm{C}$	-450.0 to $2300.0^{\circ} \mathrm{F}$	
		-200.0 to $500.0^{\circ} \mathrm{C}$	-200.0 to $1000.0^{\circ} \mathrm{F}$	
	J	-200.0 to $1200.0^{\circ} \mathrm{C}$	-300.0 to $2300.0^{\circ} \mathrm{F}$	
	T	-270.0 to $400.0^{\circ} \mathrm{C}$	-450.0 to $750.0^{\circ} \mathrm{F}$	
		0.0 to $400.0^{\circ} \mathrm{C}$	-200.0 to $750.0^{\circ} \mathrm{F}$	
	B	0.0 to $1800.0^{\circ} \mathrm{C}$	32 to $3300^{\circ} \mathrm{F}$	$\pm 0.15 \%$ of instrument range ± 1 digit for $400^{\circ} \mathrm{C}$ or more $\pm 5 \%$ of instrument range ± 1 digit for less than $400^{\circ} \mathrm{C}$
	S	0.0 to $1700.0^{\circ} \mathrm{C}$	32 to $3100^{\circ} \mathrm{F}$	$\pm 0.15 \%$ of instrument range ± 1 digit
	R	0.0 to $1700.0^{\circ} \mathrm{C}$	32 to $3100^{\circ} \mathrm{F}$	
	N	-200.0 to $1300.0^{\circ} \mathrm{C}$	-300.0 to $2400.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit $\pm 0.25 \%$ of instrument range ± 1 digit for less than $0^{\circ} \mathrm{C}$
	E	-270.0 to $1000.0^{\circ} \mathrm{C}$	-450.0 to $1800.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit for $0^{\circ} \mathrm{C}$ or more $\pm 0.2 \%$ of instrument range ± 1 digit for less than $0^{\circ} \mathrm{C}$ However, $\pm 1.5 \%$ of instrument range ± 1 digit for less than $-200.0^{\circ} \mathrm{C}$ of thermocouple E
	L	-200.0 to $900.0^{\circ} \mathrm{C}$	-300.0 to $1600.0^{\circ} \mathrm{F}$	
	U	-200.0 to $400.0^{\circ} \mathrm{C}$	-300.0 to $750.0^{\circ} \mathrm{F}$	
		0.0 to $400.0^{\circ} \mathrm{C}$	-200.0 to $1000.0^{\circ} \mathrm{F}$	
	$W^{(2)}$	0.0 to $2300.0^{\circ} \mathrm{C}$	32 to $4200{ }^{\circ} \mathrm{F}$	$\pm 0.2 \%$ of instrument range ± 1 digit
	$\begin{gathered} \hline \text { Platinel } \\ 2 \\ \hline \end{gathered}$	0.0 to $1390.0^{\circ} \mathrm{C}$	32.0 to $2500.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit
	PR20-40	0.0 to $1900.0^{\circ} \mathrm{C}$	32 to $3400^{\circ} \mathrm{F}$	$\pm 0.5 \%$ of instrument range ± 1 digit for $800^{\circ} \mathrm{C}$ or more Accuracy not guaranteed for less than $800^{\circ} \mathrm{C}$
	$\begin{gathered} \text { W97 } \\ \text { Re3-W75 } \\ \operatorname{Re25} \\ \hline \end{gathered}$	0.0 to $2000.0^{\circ} \mathrm{C}$	32 to $3600^{\circ} \mathrm{F}$	$\pm 0.2 \%$ of instrument range ± 1 digit
	JPt100	-200.0 to $500.0^{\circ} \mathrm{C}$	-300.0 to $1000.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit ${ }^{\left({ }^{(1)}\right.}$
		-150.00 to $150.00^{\circ} \mathrm{C}$	-200.0 to 300.0 ${ }^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit
	Pt100	-200.0 to $850.0^{\circ} \mathrm{C}$	-300.0 to $1560.0^{\circ} \mathrm{F}$	$\begin{aligned} & \pm 0.1 \% \text { of instrument } \\ & \text { range } \pm 1 \text { digit }{ }^{\left({ }^{(1)}\right)} \\ & \hline \end{aligned}$
		-200.0 to $500.0^{\circ} \mathrm{C}$	-300.0 to $1000.0^{\circ} \mathrm{F}$	
		-150.00 to $150.00^{\circ} \mathrm{C}$	-200.0 to 300.0 ${ }^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit
Standard signal		0.400 to 2.0000 V	-	$\pm 0.1 \%$ of instrument range ± 1 digit
		1.000 to 5.000 V	-	
		4.00 to 20.00 mA	-	
DC voltage		0.000 to 2.000 V	-	
		0.00 to 10.00 V	-	
		-10.00 to 20.00 mV	-	
		0.0 to 100.0 mV		
DC	current	0.00 to 20.00 mA	-	

The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$.
*1: $\quad \pm 0.3^{\circ} \mathrm{C}$ and ± 1 digit in the range between 0 and $100^{\circ} \mathrm{C}$ $\pm 0.5^{\circ} \mathrm{C} \pm 1$ digit in the range between -100 and $200^{\circ} \mathrm{C}$
*2: W-5\% Re/W-26\% Re (Hoskins Mfg.Co.), ASTM E988

- Applicable standards: JIS, IEC and DIN (ITS-90) for thermocouples and resistance-temperature detectors (RTD)
- Input sampling period: Synchronized to control period
- Burnout detection

Upscale and downscale of function, and OFF can be specified for the standard signal of thermocouple and resistance-temperature detector (RTD).
For integrated signal input, 0.1 V or 0.4 mA or less is judged as a burnout.

- Input bias current: $0.05 \mu \mathrm{~A}$ (for thermocouple and resistance-temperature detector (RTD))
- Resistance-temperature detector (RTD) measured current: About 0.16 mA
- Input resistance
$1 \mathrm{M} \Omega$ or more for thermocouple $/ \mathrm{mV}$ input
About $1 \mathrm{M} \Omega$ for voltage input
About 250Ω for current input (with built-in shunt resistance)
- Allowable signal source resistance 250Ω or less for thermocouple $/ \mathrm{mV}$ input Effect of signal source resistance: $0.1 \mu \mathrm{~V} / \Omega$ or less $2 \mathrm{k} \Omega$ or less for $D C$ voltage input Effect of signal source resistance: about $0.01 \% / 100 \Omega$
- Allowable wiring resistance

Up to 150Ω per line for resistance-temperature detector (RTD) input (conductor resistance
between the three lines shall be equal)
Effect of wiring resistance: $\pm 0.1^{\circ} \mathrm{C} / 10 \Omega$

- Allowable input voltage/current
$\pm 10 \mathrm{~V}$ DC for thermocouple $/ \mathrm{mV} / \mathrm{mA}$ or resistance-
temperature detector (RTD) input
$\pm 20 \mathrm{~V}$ DC for V input
$\pm 40 \mathrm{mADC}$ for mA input
- Noise reduction ratio

40 dB or more (at $50 / 60 \mathrm{~Hz}$) in normal mode 120 dB or more (at $50 / 60 \mathrm{~Hz}$) in common mode

- Reference junction compensation error
$\pm 1.0^{\circ} \mathrm{C}\left(15\right.$ to $\left.35^{\circ} \mathrm{C}\right)$
$\pm 1.5^{\circ} \mathrm{C}\left(-10\right.$ to $5^{\circ} \mathrm{C}$ and 35 to $\left.50^{\circ} \mathrm{C}\right)$
Universal Input Specifications (PV2) (Type 1 code $=-5$)
(3-wire or 4-wire when RTD is selected)
- Number of input points: 1 point
- Types of input, instrument range, and measurement accuracy are the same as those of universal input (standard), except for the table below.

Types of input		Instrument range		Accuracy
		${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$	
$\begin{gathered} \text { 4-wire } \\ \text { RTD } \end{gathered}$	JPt100	-200.0 to $500.0^{\circ} \mathrm{C}$	-300.0 to $1000.0^{\circ} \mathrm{F}$	$\pm 0.5^{\circ} \mathrm{C} \pm 1$ digit
		-150.00 to $150.00^{\circ} \mathrm{C}$	-200.0 to $300.0^{\circ} \mathrm{F}$	$\pm 0.2^{\circ} \mathrm{C} \pm 1$ digit
	Pt100	-200.0 to $850.0^{\circ} \mathrm{C}$	-300.0 to $1560.0^{\circ} \mathrm{F}$	$\pm 0.1 \%$ of instrument range ± 1 digit (*)
		-200.0 to $500.0^{\circ} \mathrm{C}$	-300.0 to $1000.0^{\circ} \mathrm{F}$	$\pm 0.5^{\circ} \mathrm{C} \pm 1$ digit
		-150.00 to $150.00^{\circ} \mathrm{C}$	-200.0 to $300.0^{\circ} \mathrm{F}$	$\pm 0.2^{\circ} \mathrm{C} \pm 1$ digit

*: $\quad \pm 0.5^{\circ} \mathrm{C} \pm 1$ digit in the range of -200.0 to $500.0^{\circ} \mathrm{C}$

- Input sampling period: Synchronized to control period
- Burnout detection: Same as universal input

Auxiliary Analog Input Specifications (Type 2 code = 1, 2 or 3)

- This function can be used for remote setpoint setting, external compensating input, auxiliary input for computation, etc.
- Number of input points: see the model code table.
- For types of input, instrument range, and measurement accuracy, see the table below.

Types of input	Instrument range	Accuracy
Integrated signal	0.400 to 2.000 V	$\pm 0.2 \%$ of instrument range ± 1 digit
	1.000 to 5.000 V	$\pm 0.1 \%$ of instrument range ± 1 digit
	0.000 to 2.000 V	$\pm 0.2 \%$ of instrument range ± 1 digit
	0.00 to 10.00 V	$\pm 0.1 \%$ of instrument range ± 1 digit
DC voltage with High input impedance	0.000 to 1.250 V	$\pm 0.1 \%$ of instrument range ± 1 digit

- Input sampling period: Synchronized to control period
- Input resistance: about $1 \mathrm{M} \Omega$

However, $10 \mathrm{M} \Omega$ or more for high input impedance

- Burnout detection: Functions at standard signal Burnout is determined to have occurred if it is 0.1 V or less.

Contact Input Specifications

- Number of points: 3 points (standard) For the maximum number of points, see the model and suffix code table.
- Input type: no-voltage contact input or transistor contact input
- Input contact capacity: 12 V DC, 10 mA or more Be sure to use a contact with a minimum ON current of 1 mA or less
- ON/OFF detection For no-voltage contact input:

Contact resistance $1 \mathrm{k} \Omega$ or less in ON state
Contact resistance $50 \mathrm{k} \Omega$ or more in OFF state Transistor contact input:

2 V or less in ON state
Leak current $100 \mu \mathrm{~A}$ or less in OFF state

- Status detection minimum hold time: control period +50 ms
- Application: SP switching, operation mode switching, event input

Analog Output Specifications

- Number of points

Control output: 1 point (standard), which is shared with transmission output.
Loop-2 control output: 1 point, which is shared with transmission output.

- Output functions Current output or voltage pulse output
- Current output 4 to 20 mA DC or 0 to $20 \mathrm{~mA} \mathrm{DC/load} \mathrm{resistance}$ 600Ω or less
- Current output accuracy $\pm 0.1 \%$ of span (however, $\pm 5 \%$ of span for 1 mA or less)
The accuracy is that in the standard operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$
- Voltage pulse output Application: time proportional output ON voltage: 12 V or more/load resistance of 600 Ω or more OFF voltage: 0.1 V DC or less Time resolution: 10 ms or 0.1% of output value, whichever is larger

Retransmission Output Specifications

- Number of points: 1 point (standard), which is shared with 15 V DC loop power supply
- Output function: current output 4 to 20 mA DC or 0 to $20 \mathrm{~mA} \mathrm{DC/load} \mathrm{resistance}$ 600Ω or less
- Current output accuracy (conversion accuracy from PV display on the set scale): $\pm 0.1 \%$ of span (however, $\pm 5 \%$ of span for 1 mA or less)

The accuracy is that in the basic operating conditions: $23 \pm 2^{\circ} \mathrm{C}, 55 \pm 10 \% \mathrm{RH}$, and power frequency at $50 / 60 \mathrm{~Hz}$
This is not conversion accuracy through input and output but the performance of transmission output itself.

15V DC Loop Power Supply Specifications

- Number of points: 1 point (standard), which is shared with retransmission output

Control output (1 point) can also be used.

- Supply voltage: 14.5 to 18.0 V DC
- Maximum supply current: about 21 mA (with shortcircuit current limiting circuit)

Step Response Time Specifications

Within 500 ms (for a control period of 50 ms or 100 ms) Within 1 s (for a control period of 200 ms)
(Response time at 63% of transmission output when a change is made stepwise in the range between 10 and 90\% of input span)

Relay Contact Output Specifications

- Types of contact and number of points Control relay output: one 1c-contact point Loop-2 control relay output: one 1c-contact point Alarm output: 3 1a-contact points (Common is separated)
- Contact rating

1c-contact (contol output): 3 A at 250 V AC or 3 A at 30 V DC (resistance load)
1a-contact (alarm output): 1 A at 240 V AC or 1 A at 30 V DC (resistance load)
*: The control output should always be used with a load of 10 mA or more.
The alarm output should always be used with a load of 1 mA or more.

- Application: time proportional output, alarm output, FAIL output, etc.
- Time resolution for control output: 10 ms or 0.1% of output value, whichever is larger

Transistor Contact Output Specifications

- Number of points: see the model and suffix code table
- Output form: open collector (sink current)
- Output contact capacity: Up to 24 V DC, 50 mA
- Output time resolution: min 50 ms
- Application: alarm output, FAIL output, etc.

Position Proportional Output Specifications

- Position signal input

Slide resistance: 100Ω to $2.5 \mathrm{k} \Omega$ of total resistance 100% side and slide line: with disconnection detection
0% side: without disconnection detection
Current input: 4 to 20 mADC (with disconnection detection)
Input resistance: about 330Ω

- Sampling period: 50 ms
- Measurement resolution: 0.1% of input span
- Position proportional relay output

Two 1a-contact points, 3 A at 250 V AC or
3A at 30 V DC (resistance load)
*: This should always be used with a load of 10 mA or more.

Safety and EMC Standards

- Safety:

Compliant with IEC/EN 61010-1 (CE), IEC/EN 61010-2-201 (CE), IEC/EN 61010-2-030 (CE), approved by CAN/CSA C22.2 No. 61010-1 (CSA), approved by UL 61010-1.
Installation category: II
Pollution degree: 2
Measurement category: I (CAT I) (UL, CSA)
O (Other) (CE)

Rated measurement input voltage: Max. 10 V DC
Rated transient overvoltage: 1500 V (*)
*: This is a reference safety standard value for measurement category I of CSA/UL 61010-1, and for measurement category O of IEC/EN 61010-2-030. This value is not necessarily a guarantee of instrument performance.

- EMC standards:

Compliant with
CE marking
EN 61326-1 Class A, Table 2 (For use in industrial locations), EN 61326-2-3
*: The instrument continues to operate at a measurement accuracy of within $\pm 20 \%$ of the range during testing. EN 55011 Class A, Group 1
EN 61000-3-2 Class A
EN 61000-3-3
EMC Regulatory Arrangement in Australia and New Zealand EN 55011 Class A, Group 1

- KC marking: Electromagnetic wave interference prevention standard, electromagnetic wave protection standard compliance

Power Supply Specifications and Isolation

- Power supply

Rated voltage: 100 to 240 V AC (+10\%/-15\%), $50 / 60 \mathrm{~Hz}$ 24 V AC/DC (+10\%/-15\%) (When the /DC option is specified)

- Power consumption: 18 VA (For the /DC option. DC: $9 \mathrm{VA}, \mathrm{AC}: 14 \mathrm{VA})$
- Storage: Nonvolatile memory
- Allowable power interruption time: 20 ms (at 100 V AC)
- Withstanding voltage

2300 V AC for 1 minute between primary and secondary terminals (UL, CSA)
3000 V AC for 1 minute between primary and secondary terminals (CE)
1500 V AC for 1 minute between primary terminals 500 V AC for 1 minute between secondary terminals (Primary terminals $=$ Power (*) and relay output terminals, Secondary terminals = Analog I/O signal terminals, contact input terminals, communication terminals, and functional grounding terminals.) *: Power terminals for 24 V AC/DC models are the secondary terminals.

- Insulation resistance

Between power supply terminals and a grounding terminal: $20 \mathrm{M} \Omega$ or more at 500 V DC

- Isolation specifications

PV (universal) input terminal		
PV2 (universal) input terminal		
Aux. analog (AIN2) input terminals		
Aux. analog (AIN4) input terminals/remote input terminals		
Control and transmission (analog) output terminal (not isolated between the analog output terminals) Valve position (feedback) input terminal		
Control relay (c-contact) output terminal		
Alarm-1 relay (a-contact) output terminal		
Alarm-2 relay (a-contact) output terminal	Power supply	
Alarm-3 relay (a-contact) output terminal		
Position proportional relay output terminal		
Contact input terminal (All) RS485 communication terminal (2 ports)		
Contact output (transistor) terminal		
Ethernet/PROFIBUS-DP/CC-Link/DeviceNet communication terminal		

The circuits divided by lines are insulated mutually.

Environmental Conditions

Normal operating conditions

- Ambient temperature: -10 to $50^{\circ} \mathrm{C}$ (side-by-side mounting: -10 to $40{ }^{\circ} \mathrm{C}$)
0 to $50^{\circ} \mathrm{C}$ if the CC-Link option is specified. (side-byside mounting: 0 to $40^{\circ} \mathrm{C}$)
- Ambient humidity: 20 to 90% RH (no condensation)
- Magnetic field: $400 \mathrm{~A} / \mathrm{m}$ or less
- Continuous vibration (at 5 to 9 Hz) Half amplitude of 1.5 mm or less
(at 9 to 150 Hz) $4.9 \mathrm{~m} / \mathrm{s}^{2}$ or less, 1 oct $/ \mathrm{min}$ for $90 \mathrm{~min}-$ utes each in the three axis directions
- Rapid vibration: $14.7 \mathrm{~m} / \mathrm{s}^{2}$, 15 s or less
- Impact: $98 \mathrm{~m} / \mathrm{s}^{2}$ or less, 11 msec .
- Installation altitude: 2,000 m or less above sea level
- Warm-up time: 30 minutes or more after the power is turned on
- Start-up time within 10 s

Transportation and Storage Conditions

- Temperature: -25 to $70^{\circ} \mathrm{C}$
- Temperature change rate: $20^{\circ} \mathrm{C}$ per hour or less
- Humidity: 5 to 95\%RH (no condensation)

Effects of Operating Conditions

- Effect of ambient temperature

For voltage or TC input:
$\pm 1 \mu \mathrm{~V} /{ }^{\circ} \mathrm{C}$ or $\pm 0.01 \%$ of F.S. (instrument
range) $/{ }^{\circ} \mathrm{C}$, whichever is greater
For RTD input:
$\pm 0.05^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{C}$ (ambient temperature) or less
For current input:
$\pm 0.01 \%$ of F.S. (instrument range) $/{ }^{\circ} \mathrm{C}$
For analog output:
$\pm 0.02 \%$ of F.S. $/{ }^{\circ} \mathrm{C}$ or less

- Effect of power supply fluctuation:

For analog input: $\pm 0.05 \%$ of F.S. (instrument range) or less
For analog output: $\pm 0.05 \%$ of F.S. or less (Each within rated voltage range)

Block Diagram

Single Loop Control (For the block diagrams of other control modes, see the user's manual)

Dual-Loop Control (For the block diagrams of other control modes, see the user's manual)

Terminal Arrangement

Terminal Arrangement for UT75A Single Loop Control (for the terminal arrangements of other control modes, see the user's manual.)

${ }^{307-312}$ E2-Terminal Area
(Suffix code: Type 2=0, 1, or 3

Suffix code: Type 2=2)

501-506 E4-Terminal Area

(Suffix code: Type 2=3)

External Dimensions and Panel Cutout Dimensions

■ Construction, Mounting, and Wiring

- Dust-proof and drip-proof: IP66 (Front panel) (Except for side-by-side close mounting)/NEMA4 * *: Hose-down test only
- Material: Polycarbonate resin (Flame retardancy: UL94 V-0)
- Case color: White (Light gray) or Black (Light Charcoal gray)
- Weight: 0.5 kg or less
- External dimensions (mm): 96 (width) x 96 (height) x 65 (depth from the panel surface)
- Mounting: Direct panel mounting; mounting bracket, one each for upper and lower mounting
- Panel cutout dimensions (mm): $92+^{0.810}$ (width) x $92++^{0.810}$ (height)
- Mounting position: Up to 30 degrees above the horizontal. No downward titling allowed.
- Wiring: M3 screw terminal with square washer (signal wiring and power)

Model and Suffix Code

*1: When Type 1 code is "-5", " 3 " cannot be specified for Type 2 code.
*2: English and Spanish are available for the guide display. (German and French guide displays are customized. Contact our representatives for inquiries.)
*3: Only when Type 2 code is " 1 ", " 2 " or " 3 ", the /CP option can be specified.
*4: When the /CT option is specified, the UT75A does not conform to the safety standards (UL and CSA) and CE marking (Products with /CT option are not

Items to be specified when ordering

Model and suffix codes, whether User's Manual and QIC required.

■ Standard accessories

Terminal cover, Brackets (mounting hardware), Unit label, Operation Guide for Single-loop Control.

Special Order Items

Model code	Suffix code	Description
LL50A	-00	Parameter Setting Software
X010	See the General Specifications $\left(^{*}\right)$	Resistance Module

*: Necessary to input the current signal to the voltage input terminal.

Name	Model
Terminal cover	UTAP001
User's Manual (CD)	UTAP003

User's Manual

Product user's manuals can be downloaded or viewed at the following URL. To view the user's manual, you need to use Adobe Reader 7 or later by Adobe Systems.
URL: http://www.yokogawa.com/ns/ut/im/

